原作者: 辰忆书阁

原链接:http://www.360doc.com/myfiles.aspx?reg=1&app=1&type=3

1、频率分辨率的2种解释

解释一:频率分辨率可以理解为在使用DFT时,在频率轴上的所能得到的最小频率间隔f0=fs/N=1/NTs=1/T,其中N为采样点数,fs为采样频率,Ts为采样间隔。所以NTs就是采样前模拟信号的时间长度T,所以信号长度越长,频率分辨率越好。是不是采样点数越多,频率分辨力提高了呢?其实不是的,因为一段数据拿来就确定了时间T,注意:f0=1/T,而T=NTs,增加N必然减小Ts ,因此,增加N时f0是不变的。只有增加点数的同时导致增加了数据长度T才能使分辨率越好。还有容易搞混的一点,我们在做DFT时,常常在有效数据后面补零达到对频谱做某种改善的目的,我们常常认为这是增加了N,从而使频率分辨率变好了,其实不是这样的,补零并没有增加有效数据的长度,仍然为T。

但是补零其实有其他好处:
1)使数据N为2的整次幂,便于使用FFT。
2)补零后,其实是对DFT结果做了插值,克服“栅栏”效应,使谱外观平滑化;我把“栅栏”效应形象理解为,就像站在栅栏旁边透过栅栏看外面风景,肯定有被栅栏挡住比较多风景,此时就可能漏掉较大频域分量,但是补零以后,相当于你站远了,改变了栅栏密度,风景就看的越来越清楚了。
3)由于对时域数据的截短必然造成频谱泄露,因此在频谱中可能出现难以辨认的谱峰,补零在一定程度上能消除这种现象。

那么选择DFT时N参数要注意:
1)由采样定理:fs>=2fh,
2)频率分辨率:f0=fs/N,所以一般情况给定了fh和f0时也就限制了N范围:N>=fs/f0。

解释二:频率分辨率也可以理解为某一个算法(比如功率谱估计方法)将原信号中的两个靠得很近的谱峰依然能保持分开的能力。这是用来比较和检验不同算法性能好坏的指标。在信号系统中我们知道,宽度为N的矩形脉冲,它的频域图形为sinc函数,两个一阶零点之间的宽度为4π/N。由于时域信号的截短相当于时域信号乘了一个矩形窗函数,那么该信号的频域就等同卷积了一个sinc函数,也就是频域受到sinc函数的调制了,根据卷积的性质,因此两个信号圆周频率之差W0必须大于4π/N。从这里可以知道,如果增加数据点数N,即增加数据长度,也可以使频率分辨率变好,这一点与第一种解释是一样的。同时,考虑到窗函数截短数据的影响存在,当然窗函数的特性也要考虑,在频率做卷积,如果窗函数的频谱是个冲击函数最好了,那不就是相当于没截断吗?可是那不可能的。

我们考虑窗函数主要是以下几点:
1)主瓣宽度B最小(相当于矩形窗时的4π/N,频域两个过零点间的宽度)。
2)最大边瓣峰值A最小(这样旁瓣泄露小,一些高频分量损失少了)。3.边瓣谱峰渐近衰减速度D最大(同样是减少旁瓣泄露)。在此,总结几种很常用的窗函数的优缺点:

矩形窗:B=4π/N  A=-13dB  D=-6dB/oct

三角窗:B=8π/N  A=-27dB   D=-12dB/oct

汉宁窗:B=8π/N  A=-32dB   D=-18dB/oct

海明窗:B=8π/N  A=-43dB   D=-6dB/oct

布莱克曼窗:B=12π/N  A=-58dB  D=-18dB/oct

可以看出,矩形窗有最窄的主瓣,但是旁瓣泄露严重。汉宁窗和海明窗虽主瓣较宽,但是旁瓣泄露少,是常选用的窗函数。

2、采样周期与频率分辨率
fs/N常称作为频率分辨率,它实际是作FFT时谱图中的两条相邻谱线之间的频率间隔,也有称作步长。单位是Hz、Khz等。频率分辨率实际有二重含意,在这里只是其中一种。
1/fs的单位的s、ms、us或分、时...年等。1/fs代表采样周期,是时间域上两个相邻离散数据之间的时间差。
因此fs/N用在频率域,只在DFT以后的谱图中使用;而1/fs用时间域,只要数据经采样,离散化后任何其它的应用中都可使用。例如有的数字滤波器中就用到。
Δf=fs/N=1/T;Δf是频率采样间隔,同时也是频率分辨率的重要指标,如果这个值越小,则频率分辨率越高。
1/fs往往用在求时间序列上,如(0:N-1)*1/fs等等,如果这个不好理解,可以把前面的公式求倒数,这就清楚多了

3、采样定理
采样过程所应遵循的规律,又称取样定理、抽样定理。采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用。

时域采样定理  
频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t)。

采样定理
时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/2fM的采样值来确定,即采样点的重复频率f≥2fM。图为模拟信号和采样样本的示意图。 
时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。

频域采样定理  
对于时间上受限制的连续信号f(t)(即当│t│>T 时,f(t)=0,这里T =T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值来表示,只要这些采样点的频率间隔

4、分析频率/采样点数/谱线数的设置要点
1)最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。

2)采样点数N与谱线数M有如下的关系:
N=2.56M  其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M  即:M=Fm/ΔF  所以:N=2.56Fm/ΔF

★采样点数的多少与要求多大的频率分辨率有关。例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为:
最高分析频率Fm=8·50Hz=400Hz;
采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz;
采样点数N=2.56·(Fm/ΔF)=2.56·(400Hz/1Hz)=1024=210
谱线数M=N/2.56=1024/2.56=400条

【转载】采样频率、采样点数、频率分辨率相关推荐

  1. 谱线数matlab,采样频率、采样点数、分辨率、谱线数(line)

    1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率.根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm:而最高分析频率的选取决定于设备转速和预期所要判定的故 ...

  2. 采样频率、采样点数、分辨率、谱线数

    1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率.根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm:而最高分析频率的选取决定于设备转速和预期所要判定的故 ...

  3. Matlab FFT变换细节(信号采样频率,FFT变换点数,频率分辨率)

    问题: 在做深度学习的故障诊断中,发现代码直接将原始信号fft之后直接将实频域信号输入网络中进行诊断,虽说效果比较不错95% 但因为输入的是双边谱且频率范围远超故障特征频率同时由于单个样本的点数只有1 ...

  4. 分析时域窗长度和FFT计算点数对频率分辨率和栅栏效应的影响

    目录 频率分辨率 栅栏效应 频谱泄漏 实验结果: 窗长度改变: 改变fft计算点数 分析: 代码: 频率分辨率 频率分辨率是指将两个相邻谱峰分开的能力.在实际应用中是指分辨两个不同频率信号的最小间隔. ...

  5. matlab 采样点数,信号频率、采样频率、频率分辨率以及FFT信号补零

    采样点数,信号频率.采样频率.采样点数的区分 包含matlab代码讲解示例 清晰明了 采样点数,信号频率.采样频率.采样点数 首先,频率指的是物质在单位时间内完成周期性变化的次数叫做频率,常用f表示. ...

  6. 信号频率、采样频率、采样点数

    f-信号频率 fs-采样频率 N-采样点数 信号频率(f): 信号频率就是信号的频率,其倒数是信号一个周期的时间T. 采样点数(N): 采样点数一次向PC端发送的数据量包含的点数,采样点数决定了每次传 ...

  7. 关于傅立叶变换的频率分辨率,采样时间,采样率关系

    假设我们需要对某信号采样,其中几个关键参数为:         采样频率--fs;         采样点数--N; 根据以上两个参数可以得到频率分辨率为:         f_div = fs/N ...

  8. 采样点数与采样频率的区别

    采样率决定了采样的精度.采样点数决定了每次传到pc内的数据量.比如点数设为1000,pc内会开辟初始大小1000的buffer(buffer大小可以自己改), 板卡就每采1000点往pc传一次.程序每 ...

  9. 信号采样中,频率分辨率的定义

    引言 对于信号采样过程,我们需要遵循奈奎斯特采样定律,采样频率应大于信号最高频率的两倍. 这个概念容易理解,但是为了分辨系统信号的某一频率的值,即频率分辨率的概念让人有些迷惑.下面对于频率分辨率的概念 ...

最新文章

  1. FPGA 控制 FLASH 之 Startup 原语使用相关链接
  2. linux代码环境配置,linux下配置环境变量【原创】(示例代码)
  3. 2017/5 JavaScript基础9 --- 闭包、作用域
  4. 递归方式-全排列生成算法
  5. java集合——队列和双端队列+优先级队列
  6. flux storm_Apache Storm:如何使用Flux配置KafkaBolt
  7. 操作系统短作业优先(SJF)调度算法
  8. java上传组件_java上传组件FileUpload
  9. wamp新建虚拟目录无法运行的解决方法
  10. 三大公有云托管 Kubernetes 服务 (EKS、GKE、AKS) 评估
  11. Python基础——min/max与np.argmin/np.argmax
  12. 淘宝图片服务器的学习
  13. SQL-(增)-插入操作
  14. tombstone 信息解析
  15. 生信识图 之 点图进阶-2(PCA)
  16. 裸眼 3D 技术是什么原理?
  17. Photoshop抠头发丝超简单方法 PS抠头发
  18. VMware: vmw_ioctl_command error 无效的参数
  19. win7系统怎么删除电脑运行记录?
  20. JsonCpp库遍历

热门文章

  1. Cilium 开源 Tetragon – 基于 eBPF 的安全可观测性 运行时增强
  2. 实现单向选择题和多项选择题的选中状态-不使用radio和CheckBox
  3. 五大常用项目管理工具软件-也支持敏捷开发
  4. 设置 Docker 开机自启动
  5. 实现带头结点单链表的就地逆置问题。
  6. GPG(GnuPG)的安装和使用
  7. 在博客和Markdown和Python中自由添加emoji!包括博客标题和Python打印!
  8. A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification(论文笔记)(2019CVPR)
  9. Java的图书商城项目如何添加商品到购物车
  10. 记十月五日寨口大坡徒步