这里将加载iris数据集,创建一个山鸢尾花(I.setosa)的分类器。

# Nonlinear SVM Example
#----------------------------------
#
# This function wll illustrate how to
# implement the gaussian kernel on
# the iris dataset.
#
# Gaussian Kernel:
# K(x1, x2) = exp(-gamma * abs(x1 - x2)^2)import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()# Create graph
sess = tf.Session()# Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
# 加载iris数据集,抽取花萼长度和花瓣宽度,分割每类的x_vals值和y_vals值
iris = datasets.load_iris()
x_vals = np.array([[x[0], x[3]] for x in iris.data])
y_vals = np.array([1 if y==0 else -1 for y in iris.target])
class1_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==1]
class1_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==1]
class2_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==-1]
class2_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==-1]# Declare batch size
# 声明批量大小(偏向于更大批量大小)
batch_size = 150# Initialize placeholders
x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32)# Create variables for svm
b = tf.Variable(tf.random_normal(shape=[1,batch_size]))# Gaussian (RBF) kernel
# 声明批量大小(偏向于更大批量大小)
gamma = tf.constant(-25.0)
sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))
my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))# Compute SVM Model
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
loss = tf.negative(tf.subtract(first_term, second_term))# Gaussian (RBF) prediction kernel
# 创建一个预测核函数
rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),[-1,1])
pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))# 声明一个准确度函数,其为正确分类的数据点的百分比
prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target),b), pred_kernel)
prediction = tf.sign(prediction_output-tf.reduce_mean(prediction_output))
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)# Training loop
loss_vec = []
batch_accuracy = []
for i in range(300):rand_index = np.random.choice(len(x_vals), size=batch_size)rand_x = x_vals[rand_index]rand_y = np.transpose([y_vals[rand_index]])sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})loss_vec.append(temp_loss)acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,y_target: rand_y,prediction_grid:rand_x})batch_accuracy.append(acc_temp)if (i+1)%75==0:print('Step #' + str(i+1))print('Loss = ' + str(temp_loss))# Create a mesh to plot points in
# 为了绘制决策边界(Decision Boundary),我们创建一个数据点(x,y)的网格,评估预测函数
x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction, feed_dict={x_data: rand_x,y_target: rand_y,prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)# Plot points and grid
plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Pedal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()# Plot batch accuracy
plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()# Plot loss over time
plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

输出:

Step #75
Loss = -110.332
Step #150
Loss = -222.832
Step #225
Loss = -335.332
Step #300
Loss = -447.832

四种不同的gamma值(1,10,25,100):




不同gamma值的山鸢尾花(I.setosa)的分类器结果图,采用高斯核函数的SVM。
gamma值越大,每个数据点对分类边界的影响就越大。

本文是《TensorFlow机器学习实战指南》的读书笔记和动手实践结果。

用TensorFlow实现非线性支持向量机相关推荐

  1. 统计学习方法笔记(六)-非线性支持向量机原理及python实现

    非线性支持向量机 非线性支持向量机 定义 非线性支持向量机 算法 非线性支持向量机学习算法 代码案例 TensorFlow 案例地址 非线性支持向量机 定义 非线性支持向量机 从非线性分类训练集,通过 ...

  2. 支持向量机(SVM):超平面及最大间隔化、支持向量机的数学模型、软间隔与硬间隔、线性可分支持向量机、线性支持向量机、非线性支持向量机、核函数、核函数选择、SMO算法、SVM vs LR、优缺点

    支持向量机(SVM):超平面及最大间隔化.支持向量机的数学模型.软间隔与硬间隔.线性可分支持向量机.线性支持向量机.非线性支持向量机.核函数.核函数选择.SMO算法.SVM vs LR.优缺点 目录

  3. 线性支持向量机、线性可分支持向量机、非线性支持向量机是怎么区分的?

    SVM(Support Vector Machine)是一种二类分类模型. 它的基本模型是定义在特征空间上的间隔最大的线性分类器. 支持向量就是最大间隔或者分割超平面上的那几个临界点,具体入下图所示: ...

  4. 监督学习 | SVM 之非线性支持向量机原理

    文章目录 1. 非线性支持向量机 1.1 核技巧 1.2 核函数 1.2.1 核函数选择 1.2.2 RBF 函数 参考资料 相关文章: 机器学习 | 目录 机器学习 | 网络搜索及可视化 监督学习 ...

  5. 分类:支持向量机(四)——非线性支持向量机

    前面介绍的支持向量机都是在数据线性可分条件下的,但我们拿到训练数据时,并不一定能知道数据是否线性可分,低维数据可以通过可视化的方式观察是否线性可分,而高维数据则很难判断其是否线性可分了.对线性不可分数 ...

  6. 线性可分支持向量机、线性支持向量机、非线性支持向量机的区别

    线性可分支持向量机: 线性可分支持向量机处理的是严格线性可分的数据集. 其分类超平面为: 相应的决策函数为:或者 其学习的优化问题为: 线性支持向量机: 线性支持向量机处理的是线性不可分的数据集.对于 ...

  7. 机器学习(7)——支持向量机(二):线性可分支持向量机到非线性支持向量机

    线性可分支持向量机 回顾 前面总结了线性可分支持向量机,知道了支持向量机的最终目的就是通过"间隔最大化" 得到最优分类器,能够使最难区分的样本点得到最大的分类确信度,而这些难区分的 ...

  8. 支持向量机(四)——非线性支持向量机

    前面介绍的支持向量机都是在数据线性可分条件下的,但我们拿到训练数据时,并不一定能知道数据是否线性可分,低维数据可以通过可视化的方式观察是否线性可分,而高维数据则很难判断其是否线性可分了.对线性不可分数 ...

  9. 支持向量机 二 :非线性支持向量机

    如果您还未了解 线性向量机,建议首先阅读 <支持向量机 一:线性支持向量机> 一.为什么要用非线性支持向量机? 线性支持向量机不香吗?为什么还要用非线性支持向量机? 线性支持向量机香是香, ...

最新文章

  1. 别盲目调参!深度学习要先找到最佳策略
  2. 在家办公如何提高效率?
  3. python:面向对象初级
  4. html用占位符文本填补空白,占位符文本的选择
  5. 遥感图像场景分类常用数据集
  6. python until语句_详解Lua中repeat...until循环语句的使用方法
  7. OpenCV 入门级一
  8. [bzoj 1398] Vijos1382寻找主人 Necklace 解题报告(最小表示法)
  9. Android项目实战(三十一):异步下载apk文件并安装(非静默安装)
  10. java怎么调用另一个类的方法_Java设计模式:十篇,代码小白必看
  11. 数学图形(1.41)super spiral超级螺线
  12. 智引IT综合管理解决方案
  13. 联通iptv机顶盒中心服务器连接异常,联通iptv机顶盒连接安装 联通iptv机顶盒使用...
  14. 用c语言编程一个滑稽图案,滑稽,用C语言搞个鼠标连点器
  15. 商迪3D三维虚拟现实VR景区全景漫游展示
  16. Vue 可暂停计时器
  17. 青龙面板-花花阅读6.25 最新修复版
  18. 图像搜索引擎 - 原理篇
  19. 中国·乌镇互联网产业园项目总投资约100亿元
  20. 服务器宝塔Error: connect ETIMEDOUT

热门文章

  1. 中科创达发布融合智能泊车技术于解决方案
  2. 安装双系统后,将windows设置为默认启动选项的方法
  3. Codeforces Round #693 (Div. 3)部分题解
  4. ArcGIS JSAPI2.0在IIS上的安装
  5. 股票跌得猝不及防,是因为你还不懂这个技术!
  6. python求平均值的怎么编写,python 怎么求平均值
  7. 一个未知的项目被声明为你的MXML文件的根。切换到源代码模式加以纠正。
  8. 超云服务器 节能清单,天地超云推出高温节能服务器新品--科技--人民网
  9. Qt QEvent 介绍
  10. QEMU(1) - QOM