点击上方“AI算法与图像处理”,选择加"星标"或“置顶”

重磅干货,第一时间送达

这篇文章在国外知名的网站 medium 上面获得了一千多的赞,给出了很多建议,同时也备注了论文的来源,所以这么优质的文章,大家一定要多多宣传哈

训练深度神经网络是困难的。它需要知识和经验,以适当的训练和获得一个最优模型。在这篇文章中,我想分享我在训练深度神经网络时学到的东西。以下提示和技巧可能对你的研究有益,并可以帮助你加速网络架构或参数搜索。

现在,让我们开始吧……

整理自:https://towardsdatascience.com/a-bunch-of-tips-and-tricks-for-training-deep-neural-networks-3ca24c31ddc8

1

在你开始建立你的网络体系结构,你需要做的第一件事是验证输入到网络的数据,确保输入(x)对应于一个标签(y)。在预测的情况下,确保真实标签(y)正确编码标签索引(或者one-hot-encoding)。否则,训练就不起作用。

2

决定是选择使用预模型还是从头开始训练你的网络?

  • 如果问题域中的数据集类似于ImageNet数据集,则对该数据集使用预训练模型。使用最广泛的预训练模型有VGG net、ResNet、DenseNet或Xception等。有许多层架构,例如,VGG(19和16层),ResNet(152, 101, 50层或更少),DenseNet(201, 169和121层)。注意:不要尝试通过使用更多的层网来搜索超参数(例如VGG-19, ResNet-152或densen -201层网络,因为它在计算量很大),而是使用较少的层网(例如VGG-16, ResNet-50或densen -121层)。选择一个预先训练过的模型,你认为它可以用你的超参数提供最好的性能(比如ResNet-50层)。在你获得最佳超参数后,只需选择相同但更多的层网(如ResNet-101或ResNet-152层),以提高准确性。

    ImageNet:http://www.image-net.org/challenges/LSVRC/2012/

    VGG net :https://arxiv.org/abs/1409.1556

    ResNet:https://arxiv.org/abs/1512.03385

    DenseNet:https://arxiv.org/abs/1608.06993

    Xception :https://arxiv.org/abs/1610.02357

  • 微调几层,或者如果你有一个小的数据集,只训练分类器,你也可以尝试在你要微调的卷积层之后插入Dropout层,因为它可以帮助对抗网络中的过拟合。

    Dropout:http://jmlr.org/papers/v15/srivastava14a.html

  • 如果你的数据集与ImageNet数据集不相似,你可以考虑从头构建并训练你的网络。

3

在你的网络中始终使用归一化层(normalization layers)。如果你使用较大的批处理大小(比如10个或更多)来训练网络,请使用批标准化层(BatchNormalization)。否则,如果你使用较小的批大小(比如1)进行训练,则使用InstanceNormalization层。请注意,大部分作者发现,如果增加批处理大小,那么批处理规范化会提高性能,而当批处理大小较小时,则会降低性能。但是,如果使用较小的批处理大小,InstanceNormalization会略微提高性能。或者你也可以尝试组规范化(GroupNormalization)。

BatchNormalization:https://arxiv.org/abs/1502.03167

InstanceNormalization:https://arxiv.org/abs/1607.08022

GroupNormalization:https://arxiv.org/abs/1803.08494

4

如果你有两个或更多的卷积层(比如Li)对相同的输入(比如F)进行操作(参考下面的示意图理解),那么在特征连接后使用SpatialDropout。由于这些卷积层是在相同的输入上操作的,因此输出特征很可能是相关的。因此,SpatialDropout删除了那些相关的特征,并防止网络中的过拟合。

注意: 它主要用于较低的层而不是较高的层。

SpatialDropout:https://arxiv.org/abs/1411.4280

5

为了确定你的网络容量,尝试用一小部分训练例子来超载你的网络(andrej karpathy的提示)。如果它没有超载,增加你的网络容量。在过拟合后,使用正则化技巧如L1、L2、Dropout或其他技术来对抗过拟合。

L1:https://keras.io/regularizers/

L2:https://keras.io/regularizers/

Dropout:http://jmlr.org/papers/v15/srivastava14a.html

6

另一种正则化技术是约束或限制你的网络权值。这也有助于防止网络中的梯度爆炸问题,因为权值总是有界的。与L2正则化相反,在你的损失函数中惩罚高权重,这个约束直接正则化你的权重。你可以在Keras中轻松设置权重约束:

from keras.constraints import max_norm
# add to Dense layers
model.add(Dense(64, kernel_constraint=max_norm(2.)))
# or add to Conv layers
model.add(Conv2D(64, kernel_constraint=max_norm(2.)))

7

对数据进行均值减法有时会产生非常糟糕的效果,特别是对灰度图像进行减法(我个人在前景分割领域就遇到过这个问题)。

8

在训练前和训练期间,确保打乱训练数据,以防你不能从时序数据中获取有用信息。这可能有助于提高您的网络性能。

9

如果你的问题域与稠密预测(dense prediction)相关(如语义分割),我建议你使用膨胀残差网络作为预训练模型,因为它最适合稠密预测。

Dilated Residual Networks:https://arxiv.org/abs/1705.09914

10

要捕获对象周围的上下文信息,可以使用多尺度特性的池化模块。该思想成功地应用于语义分割或前景分割中。

semantic segmentation:https://arxiv.org/abs/1802.02611

foreground segmentation:https://arxiv.org/abs/1808.01477

11

Opt-out void labels(或模糊区域)从您的损失或精度计算,如果有。这可以帮助你的网络在预测时更有信心。

12

如果你有高度不平衡的数据问题,在训练期间应用类别加权操作。换句话说,给稀少的类更多的权重,但给主要类更少的权重。使用sklearn可以很容易地计算类权重。或者尝试使用过采样和欠采样技术重新采样你的训练集。这也可以帮助提高预测的准确性。

sklearn:http://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html

OverSampling and UnderSampling techniques:https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis

13

选择一个正确的优化器。有许多流行的自适应优化器,如Adam, Adagrad, Adadelta,或RMSprop等。SGD+动量被广泛应用于各种问题领域。有两件事需要考虑:

第一,如果你关心快速收敛,使用自适应优化器,如Adam,但它可能会陷入局部极小,提供了糟糕的泛化(下图)。

第二,SGD+momentum可以实现找到全局最小值,但它依赖于鲁棒初始化,而且可能比其他自适应优化器需要更长的时间来收敛(下图)。我建议你使用SGD+动量,因为它能达到更好的最佳效果。

14

有三个学习率起点(即1e- 1,1e -3和1e-6)。如果您对预训练模型进行微调,请考虑小于1e-3(比如1e-4)的低学习率。如果您从头开始训练您的网络,请考虑一个大于或等于1e-3的学习率。您可以尝试这些起点,并调整它们,看看哪个是最好的,选择那个。还有一件事,您可以考虑通过使用 Learning Rate Schedulers来降低训练过程中的学习率。这也可以帮助提高网络性能。

Learning Rate Schedulers:https://keras.io/callbacks/#learningratescheduler

15

除了Learning Rate Schedule 外,即在一定的次数后降低学习率,还有另一种方式,我们可以由一些因素减少学习率,如果验证损loss在某些epoch(比如5)停止改善,减小学习率和如果验证损失停止改善在某些epoch(比如10),停止训练过程。这可以通过在Keras中使用early stop的ReduceLROnPlateau很容易做到。

ReduceLROnPlateau:https://keras.io/callbacks/#reducelronplateau

EarlyStopping:https://keras.io/callbacks/#earlystopping

16

如果您在dense prediction领域工作,如前景分割或语义分割,您应该使用跳过连接,因为对象边界或有用的信息会由于最大池化操作或strided convolutions而丢失。这也可以帮助您的网络轻松地学习特征空间到图像空间的特征映射,有助于缓解网络中的消失梯度问题。

skip connections:https://arxiv.org/abs/1505.04597

17

数据越多越好!总是使用数据增强,如水平翻转,旋转,缩放裁剪等。这可以帮助大幅度提高精确度。

18

你必须要有一个高速的GPU来进行训练,但是这有点昂贵。如果你想使用免费的云GPU,我推荐使用谷歌Colab。如果你不知道从哪里开始,看看我之前的文章或者尝试各种云GPU平台,如Floydhub或Paperspace等。

Google Colab:https://colab.research.google.com/notebooks/welcome.ipynb#recent=true

使用教程:https://towardsdatascience.com/a-comprehensive-guide-on-how-to-fine-tune-deep-neural-networks-using-keras-on-google-colab-free-daaaa0aced8f

Floydhub:https://www.floydhub.com

Paperspace:https://www.paperspace.com

19

在ReLU之前使用最大池化来节省一些计算。由于ReLU阈值的值为0:f(x)=max(0,x)和最大池化只有max激活:f(x)=max(x1,x2,…,xi),使用Conv > MaxPool > ReLU 而不是Conv > ReLU > MaxPool。

例如,假设我们有两个从Conv来的激活值(即0.5和-0.5):

  • 因此MaxPool > ReLU = max(0, max(0.5,-0.5)) = 0.5

  • 和ReLU > MaxPool = max(max(0,0.5), max(0,-0.5)) = 0.5

看到了吗?这两个操作的输出仍然是0.5。在这种情况下,使用MaxPool > ReLU可以节省一个max 操作。

20

考虑采用深度可分离卷积运算,与常规的卷积运算相比,该运算速度快,且参数数量大大减少。

Depthwise Separable Convolution:https://arxiv.org/abs/1610.02357

21

最后但并非最不重要的是不要放弃????。相信自己,你能做到!如果你还没有得到你还找精度高,调整你的hyper-parameters,网络体系结构或训练数据,直到你得到你正在寻找的准确性。

往期精彩回顾适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑

获取一折本站知识星球优惠券,复制链接直接打开:

https://t.zsxq.com/y7uvZF6

本站qq群704220115。

加入微信群请扫码:

【深度学习】21个深度学习调参技巧,一定要看到最后一个相关推荐

  1. 天下苦深度强化学习久矣,这有一份训练与调参技巧手册

    ©作者 | 申岳 单位 | 北京邮电大学 研究方向 | 机器人学习 天下苦 RL 久矣,其中最苦的地方莫过于训练和调参了,人人欲"调"之而后快. 在此为 RL 社区贡献一点绵薄之力 ...

  2. 提升深度学习模型性能及网络调参

    提升深度学习模型性能及网络调参 https://www.toutiao.com/a6637086018950398472/ 图像处理与机器视觉 2018-12-25 10:42:00 深度学习有很多的 ...

  3. 深度学习这么调参训练_聊一聊深度学习中的调参技巧?

    本期问题能否聊一聊深度学习中的调参技巧? 我们主要从以下几个方面来讲.1. 深度学习中有哪些参数需要调? 2. 深度学习在什么时候需要动用调参技巧?又如何调参? 3. 训练网络的一般过程是什么? 1. ...

  4. 手把手写深度学习(18):finetune微调CLIP模型的原理、代码、调参技巧

    前言:在前面的博客<手把手写深度学习(16):用CILP预训练模型搭建图文检索系统/以图搜图/关键词检索系统>中介绍了如何在图文检索.以图搜图.关键词检索等任务中使用CLIP.这篇博客重点 ...

  5. 深度学习网络调参技巧

    深度学习网络调参技巧 本文转载自[炼丹实验室],讲了一些深度学习训练的技巧,其中包含了部分调参心得:深度学习训练心得.不过由于一般深度学习实验,相比普通机器学习任务,时间较长,因此调参技巧就显得尤为重 ...

  6. 深度学习调参技巧总结

    深度学习调参技巧总结 做dl也有一段时间了,积累了一些经验,也在网上看到一些别人的经验.  为了面试,结合知乎上面的问答,我也总结了一下,欢迎大家补充. 知乎 深度学习调参有哪些技巧? 一. 初始化  ...

  7. 深度卷积神经网络(CNN tricks)调参技巧

    (53条消息) 深度卷积神经网络(CNN tricks)调参技巧(一)学习率调节_踏雪飞鸿的博客-CSDN博客https://blog.csdn.net/weixin_38957591/article ...

  8. 漫谈机器学习的【泛化能力】【模型能力】【调参技巧】_CodingPark编程公园

    漫谈机器学习 完成第一幅初稿 完成终稿 1945年12月5日 1946年1月17日 前言 上面的画就是20世纪最著名的抽象派画家毕加索于1946年1月17日完稿的画作--公牛,寥寥几笔,勾勒出公牛的& ...

  9. XGBoost调参技巧(二)Titanic实战Top9%

    学习Kaggle的第一个比赛就是Titanic,断断续续的半年时间,从小白到杀入9%.XGBoost果真是Kaggle杀器,帮我在Titanic中进入9%.zillow进入22%. 简介 Titani ...

  10. 深度学习这么调参训练_深度学习调参技巧

    训练技巧对深度学习来说是非常重要的,作为一门实验性质很强的科学,同样的网络结构使用不同的训练方法训练,结果可能会有很大的差异.这里我总结了近一年来的炼丹心得,分享给大家,也欢迎大家补充指正. 参数初始 ...

最新文章

  1. 「完结」你对深度学习模型的理解是否足够深刻,这12篇文章了解下
  2. Des和Base64的Util
  3. java 二叉树_二叉树实现java
  4. java异常在哪一层捕获_当在一个方法的代码中抛出一个检测异常时,该异常或被方法中的 ( )结构 捕获,或者在方法的 ( ) 中声明_学小易找答案...
  5. 最近看Kafka源码,着实被它的客户端缓冲池技术优雅到了
  6. Http-tunnel突破单位网管封杀QQ、MSN端口的方法
  7. c++ 将集合set的数据输出到数组中_Java集合类(容器类)简介:(摘抄)
  8. Debug经验总结:优化、程序员和概率
  9. Android:DELETE_FAILED_INTERNAL_ERROR Error while Installing APKs
  10. ArcGIS API for Silverlight 调用GP服务准备---GP模型建立、发布、测试
  11. php数组排序id取得,php专用数组排序类ArraySortUtil用法实例
  12. 工作笔记-增加swap分区空间
  13. 7649:我家的门牌号
  14. jquery中的ready函数与window.onload谁先执行
  15. Python面向对象成员修饰符
  16. Modelsim 安装步骤详解
  17. swift moya框架+rxswift+handyjson+SwiftyJSON封装和使用教程
  18. iOS数据恢复工具PhoneRescue for Mac中文破解版
  19. win7 微信 代理服务器设置,手把手为你讲解win7系统电脑登录多个微信的详细方法...
  20. echarts三维建筑地图注解

热门文章

  1. 几个不错的自己到的少的游戏站
  2. Swagger-概述
  3. EOS page问题
  4. mysql登录报错 ERROR 1045 (28000)
  5. 卓越管理的秘密(Behind Closed Doors)
  6. 算法复习(7)有序二叉树
  7. oracle dbms overflow,Oracle DBA课程系列笔记(12_1)
  8. python hello world重复_从hello world开始学Python
  9. 细胞冻存及细胞计数的技巧
  10. 微型计算机硬件认识和拆装,贵州省习水县第一中学张天梅