由于公式太多,汇总成一篇容易打不开,所以分三篇。整篇链接:https://blog.csdn.net/zhaohongfei_358/article/details/106039576

章节 链接
基础回顾篇 https://blog.csdn.net/zhaohongfei_358/article/details/119929920
高等数学篇 https://blog.csdn.net/zhaohongfei_358/article/details/119929988
线性代数篇 https://blog.csdn.net/zhaohongfei_358/article/details/119930063

文章目录

  • 基础回顾
    • 面(体)积公式
    • 一元二次方程基础
    • 极坐标方程与直角坐标转换
    • 切线与法线方程
    • 因式分解公式
    • 阶乘与双阶乘
    • 函数的奇偶性
    • 排列组合
    • 等差数列
    • 等比数列
    • 常用数列前n项和
    • 不等式
    • 三角函数公式
      • 诱导公式
      • 平方关系
      • 两角和与差的三角函数
      • 积化和差公式
      • 和差化积公式
      • 倍角公式
      • 半角公式
      • 万能公式
      • 其他公式
    • 反三角函数恒等式
  • 极限相关公式
    • 数列极限递推式
    • 重要极限公式
    • 常用等价无穷小
    • 1^∞ 型
  • 导数相关公式
    • 导数定义
    • 微分定义
    • 连续,可导及可微关系
      • 一元函数
      • 多元函数
    • 导数四则运算
    • 复合函数求导
    • 反函数求导
    • 参数方程求导
    • 变限积分求导公式
    • 基本初等函数的导数公式(❤❤❤)
    • 高阶导数的运算
    • 常用初等函数的n阶导数公式
    • 极值判别条件
    • 凹凸性判定
    • 拐点判别条件
    • 斜渐近线
    • 曲率
  • 积分相关公式
    • 定积分的精确定义
    • 分布积分公式
    • 分部积分表格法
    • 区间再现公式
    • 华里士公式
    • 敛散性判别公式
    • 基本积分公式
    • 重要积分公式
  • 有理函数的拆分
    • 积分求平均值
    • 定积分应用
      • 定积分求平面图形面积
      • 定积分求旋转体的体积
      • 平面曲线的弧长
      • 旋转曲面的面积
      • 平面截面面积为已知的立体体积
      • 变力沿直线做功
      • 抽水做功
      • 水压力
      • 质心
        • 直线段的质心(一维)
        • 不均匀薄片质心(二维)
      • 形心
      • 质量
      • 转动惯量
      • 物理公式
  • 泰勒公式
    • 拉格朗日余项的泰勒公式
    • 佩亚诺余项的泰勒公式
    • 常用的泰勒展开式
  • 中值定理
    • 罗尔定理
    • 罗尔定理推论
    • 罗尔定理证明题辅助函数构造
    • 微分方程构造罗尔定理辅助函数
    • 拉格朗日中值定理
    • 柯西中值定理
    • 积分中值定理
  • 多元微积分相关公式
    • 多元微分定义
    • 多元隐函数求导
    • 极坐标下二重积分计算法
    • 隐函数存在定理
    • 多元函数极值判定
    • 拉格朗日数乘法求最值
    • 多重积分的应用
      • 空间曲面的面积
  • 微分方程
    • 一阶线性微分方程
    • 二阶常系数齐次线性微分方程的通解
    • 三阶常系数齐次线性微分方程的通解
    • 二阶常系数非齐次线性微分方程的特解
    • “算子法”求二阶常系数非齐次线性微分方程的特解
  • 线性代数
    • 行列式
    • 几个重要的行列式
    • 矩阵
    • 分块矩阵
    • 正交矩阵
    • 施密特正交化
    • 可逆矩阵
    • 等价矩阵
    • 秩相关公式
    • 特征值与特征向量
    • 相似矩阵
    • 相似对角化
  • 矩阵合同
    • 正定二次型
    • 二次型配方法(通法)

基础回顾

面(体)积公式

球表面积公式:S=4πR2球体积公式:V=43πR3圆锥体积公式:V=13sh(s为圆锥底面积,h为圆锥的高)椭圆面积公式:S=πab扇形面积公式:S=12lr=12r2θ(其中l为弧长,r为半径,θ为夹角(用π表示))\begin{aligned} & \\ & 球表面积公式:S= 4\pi R^2 \\ \\ & 球体积公式:V = \frac{4}{3}\pi R^3 \\ \\ & 圆锥体积公式:V=\frac{1}{3} sh ~~~~~(s为圆锥底面积,h为圆锥的高) \\\\ & 椭圆面积公式: S=\pi ab \\ \\ & 扇形面积公式: S= \frac{1}{2}l r = \frac{1}{2}r^2\theta ~~~~~(其中l为弧长,r为半径,\theta为夹角(用\pi表示)) \end{aligned} ​球表面积公式:S=4πR2球体积公式:V=34​πR3圆锥体积公式:V=31​sh     (s为圆锥底面积,h为圆锥的高)椭圆面积公式:S=πab扇形面积公式:S=21​lr=21​r2θ     (其中l为弧长,r为半径,θ为夹角(用π表示))​

一元二次方程基础

一元二次方程:ax2+bx+c=0(a≠0)根的公式x1,2=−b±b2−4ac2a韦达定理:x1+x2=−bax1x2=ca判别式:Δ=b2−4ac⟹{Δ>0,两个不等实根Δ=0,两个相等实根Δ<0,两个共轭的复根(无实根)抛物线y=ax2+bx+c的顶点:(−b2a,c−b24a)\begin{aligned} & \\ & 一元二次方程:ax^2 + bx + c =0 ~~~~~(a \ne 0) \\ \\ & 根的公式 ~~~~ x_{1,2} = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \\ \\ & 韦达定理: x_1 + x_2 = -\frac{b}{a} ~~~~~~~ x_1 x_2 = \frac{c}{a} \\ \\ & 判别式: \Delta=b^2 - 4ac \implies \begin{cases} \Delta >0,两个不等实根 \\ \Delta =0,两个相等实根 \\ \Delta <0,两个共轭的复根(无实根) \\ \end{cases} \\\\ & 抛物线~ y=ax^2 + bx + c 的顶点:(-\frac{b}{2a}, c-\frac{b^2}{4a}) \end{aligned} ​一元二次方程:ax2+bx+c=0     (a​=0)根的公式    x1,2​=2a−b±b2−4ac​​韦达定理:x1​+x2​=−ab​       x1​x2​=ac​判别式:Δ=b2−4ac⟹⎩⎪⎨⎪⎧​Δ>0,两个不等实根Δ=0,两个相等实根Δ<0,两个共轭的复根(无实根)​抛物线 y=ax2+bx+c的顶点:(−2ab​,c−4ab2​)​

极坐标方程与直角坐标转换

直角坐标化极坐标{x=ρcos⁡θy=ρsin⁡θ⟹x2+y2=ρ2极坐标化直角坐标:ρ2=x2+y2⟹tan⁡θ=yx\begin{aligned} &直角坐标化极坐标 \begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \implies x^2+y^2=\rho ^2 \\\\ &极坐标化直角坐标 :\rho ^2 = x^2+y^2 \implies \tan \theta = \frac{y}{x} \\\\ \end{aligned} ​直角坐标化极坐标{x=ρcosθy=ρsinθ​⟹x2+y2=ρ2极坐标化直角坐标:ρ2=x2+y2⟹tanθ=xy​​

切线与法线方程

切线方程:y−y0x−x0=f′(x0),即y−y0=f′(x0)(x−x0)法线方程:y−y0x−x0=−1f′(x0),即y−y0=−1f′(x0)(x−x0)\begin{aligned} & 切线方程: \frac{y - y_0}{x - x_0} = f'(x_0) ~~~~,即 y-y_0 = f'(x_0)(x-x_0) \\ \\ & 法线方程: \frac{y - y_0}{x - x_0} = -\frac{1}{f'(x_0)}~~~~~,即y-y_0 = -\frac{1}{f'(x_0)}(x-x_0) \end{aligned} ​切线方程:x−x0​y−y0​​=f′(x0​)    ,即y−y0​=f′(x0​)(x−x0​)法线方程:x−x0​y−y0​​=−f′(x0​)1​     ,即y−y0​=−f′(x0​)1​(x−x0​)​

因式分解公式

(a+b)2=a2+2ab+b2(a−b)2=a2−2ab+b2(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b)3=a3+3a2b+3ab2+b3(a−b)3=a3−3a2b+3ab2−b3(a+b)(a−b)=a2−b2a3+b3=(a+b)(a2−ab+b2)a3−b3=(a−b)(a2+ab+b2)an−bn=(a−b)(an−1+an−2b+⋯+abn−2+bn−1)(a+b)n=∑k=0nCnkakbn−k=an+nan−1b+n(n−1)2!an−1b2+⋯+n(n−1)⋯(n−k+1)k!an−kbk+⋯+nabn−1+bn\begin{aligned} & \\ & (a+b)^2 = a^2 + 2ab+b^2 \\ \\ & (a-b)^2 = a^2 - 2ab + b^2 \\ \\ & (a+b+c)^2 =a^2+b^2+c^2 + 2ab+2ac+2bc \\\\ & (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \\ \\ & (a-b)^3 = a^3 - 3a^2b+3ab^2-b^3 \\ \\ & (a+b)(a-b) = a^2 - b^2 \\ \\ & a^3 + b^3 = (a+b) (a^2 -ab + b^2) \\ \\ & a^3-b^3 = (a-b)(a^2+ab+b^2) \\ \\ & a^n-b^n = (a-b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1}) \\ \\ & (a+b)^n = \sum_{k=0}^n C_n^ka^kb^{n-k} = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-1}b^2 + \cdots + \frac{n(n-1)\cdots(n-k+1)}{k!}a^{n-k}b^k + \cdots + nab^{n-1} + b^n \end{aligned} ​(a+b)2=a2+2ab+b2(a−b)2=a2−2ab+b2(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b)3=a3+3a2b+3ab2+b3(a−b)3=a3−3a2b+3ab2−b3(a+b)(a−b)=a2−b2a3+b3=(a+b)(a2−ab+b2)a3−b3=(a−b)(a2+ab+b2)an−bn=(a−b)(an−1+an−2b+⋯+abn−2+bn−1)(a+b)n=k=0∑n​Cnk​akbn−k=an+nan−1b+2!n(n−1)​an−1b2+⋯+k!n(n−1)⋯(n−k+1)​an−kbk+⋯+nabn−1+bn​

阶乘与双阶乘

n!=1×2×3×...×n(规定0!=1)(2n)!!=2×4×6×...×(2n)=2n⋅n!(2n−1)!!=1×3×5...×(2n−1)\begin{aligned} & n! = 1\times2\times3\times ... \times n ~~~~~(规定0!=1) \\ \\ & (2n)!! = 2\times4\times6\times ... \times (2n) = 2^n \cdot n! \\ \\ & (2n-1)!! = 1\times3\times5...\times(2n-1) \end{aligned} ​n!=1×2×3×...×n     (规定0!=1)(2n)!!=2×4×6×...×(2n)=2n⋅n!(2n−1)!!=1×3×5...×(2n−1)​

函数的奇偶性

定义在[−a,a]上的任一函数,可以表示为一个奇函数与一个偶函数之和:f(x)=12[f(x)−f(−x)]+12[f(x)+f(−x)]\begin{aligned} & 定义在[-a,a]上的任一函数,可以表示为一个奇函数与一个偶函数之和: \\ \\ & f(x) = \frac{1}{2}[f(x)-f(-x)] + \frac{1}{2}[f(x) + f(-x)] \end{aligned} ​定义在[−a,a]上的任一函数,可以表示为一个奇函数与一个偶函数之和:f(x)=21​[f(x)−f(−x)]+21​[f(x)+f(−x)]​

排列组合

Anm=n(n−1)(n−2)⋯(n−m+1)=n!(n−m)!Cnm=Anmm!=n(n−1)⋯(n−m+1)m!=n!m!(n−m)!\begin{aligned} A_n^m & = n(n-1)(n-2)\cdots(n-m +1) \\\\ & = \frac{n!}{(n-m)!} \\\\ \\ C_n^m & = \frac{A_n^m}{m!} = \frac{n(n-1)\cdots(n-m + 1)}{m!} \\\\ & = \frac{n!}{m!(n-m)!} \end{aligned} Anm​Cnm​​=n(n−1)(n−2)⋯(n−m+1)=(n−m)!n!​=m!Anm​​=m!n(n−1)⋯(n−m+1)​=m!(n−m)!n!​​

等差数列

an=a1+(n−1)dSn=na1+n(n−1)2dn∈N∗Sn=n(a1+an)2\begin{aligned} & a_n = a_1 + (n-1)d \\ \\ & S_n = na_1 + \frac{n(n-1)}{2}d ~~~~~~~~ n \in N^* \\ \\ & S_n = \frac{n(a_1+a_n)}{2} \\ \\ \end{aligned} ​an​=a1​+(n−1)dSn​=na1​+2n(n−1)​d        n∈N∗Sn​=2n(a1​+an​)​​

等比数列

an=a1⋅qn−1Sn=a1(1−qn)1−q(q≠1)\begin{aligned} & a_n = a_1 \cdot q^{n-1} \\ \\ & S_n = \frac{a_1(1-q^n)}{1-q} ~~~~~~(q\neq 1) \end{aligned} ​an​=a1​⋅qn−1Sn​=1−qa1​(1−qn)​      (q​=1)​

常用数列前n项和

∑k=1nk=1+2+3+⋯+n=n(n+1)2∑k=1n(2k−1)=1+3+5+⋯+(2n−1)=n2∑k=1nk2=12+22+32+⋯+n2=n(n+1)(2n+1)6∑k=1nk3=13+23+33+⋯+n3=[n(n+1)2]2=(∑k=1nk)2∑k=1nk(k+1)=1×2+2×3+3×4+⋯+n(n+1)=n(n+1)(n+2)3∑k=1n1k(k+1)=11×2+12×3+13×4+⋯+1n(n+1)=nn+1\begin{aligned} & \\ & \sum_{k=1}^n k = 1 + 2+3+\cdots + n=\frac{n(n+1)}{2} \\ \\ & \sum_{k=1}^n (2k-1) = 1+ 3 + 5 + \cdots + (2n-1) = n^2 \\ \\ & \sum_{k=1}^n k^2 = 1^2+2^2+3^2+\cdots +n^2 = \frac{n(n+1)(2n+1)}{6} \\ \\ & \sum_{k=1}^n k^3 = 1^3 + 2^3 +3^3 +\cdots + n^3 = [\frac{n(n+1)}{2}]^2 = (\sum_{k=1}^n k)^2 \\ \\ & \sum_{k=1}^n k(k+1) = 1 \times 2 + 2 \times 3 + 3 \times 4 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3} \\\\ & \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1} \end{aligned} ​k=1∑n​k=1+2+3+⋯+n=2n(n+1)​k=1∑n​(2k−1)=1+3+5+⋯+(2n−1)=n2k=1∑n​k2=12+22+32+⋯+n2=6n(n+1)(2n+1)​k=1∑n​k3=13+23+33+⋯+n3=[2n(n+1)​]2=(k=1∑n​k)2k=1∑n​k(k+1)=1×2+2×3+3×4+⋯+n(n+1)=3n(n+1)(n+2)​k=1∑n​k(k+1)1​=1×21​+2×31​+3×41​+⋯+n(n+1)1​=n+1n​​

不等式

2∣ab∣≤a2+b2∣a±b∣≤∣a∣+∣b∣∣∣a∣−∣b∣∣≤∣a−b∣∣a1±a2±⋅⋅⋅⋅±an∣≤∣a1∣+∣a2∣+⋅⋅⋅+∣an∣∣∫abf(x)dx∣≤∫ab∣f(x)∣dx(a<b)ab≤a+b2≤a2+b22(a,b>0)abc3≤a+b+c3≤a2+b2+c23(a,b,c>0)a1a2⋅⋅⋅ann≤a1+a2+...+ann≤a12+a22+...+an2n(a1,a2,...an>0,等号当且仅当a1=a2=...=an时成立)xy≤xpp+xqq(x,y,p,q>0,1p+1q=1)(ac+bd)2≤(a2+b2)(c2+d2)(a1b1+a2b2+a3b3)2≤(a12+a22+a32)(b12+b22+b32)[∫abf(x)⋅g(x)dx]2≤∫abf2(x)dx⋅∫abg2(x)dxsin⁡x<x<tan⁡x(0<x<π2)arctan⁡x≤x≤arcsin⁡x(0≤x≤1)x+1≤exln⁡x≤x−111+x<ln⁡(1+1x)<1x(x>0)\begin{aligned} & \\ & 2 |ab| \le a ^ 2 + b^2 \\ \\ & |a \pm b| \le |a| + |b| \\ \\ & | |a| - |b| | \le |a-b| \\ \\ & |a_1 \pm a_2 \pm \cdot\cdot\cdot\cdot \pm a_n| \le |a_1| + |a_2| + \cdot\cdot\cdot + |a_n| \\ \\ & |\int_a^b f(x) dx| \le \int_a^b |f(x)| dx ~~~~~(a<b) \\ \\ & \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}} ~~~~~(a,b>0) \\ \\ & \sqrt[3]{abc} \le \frac{a+b+c}{3} \le \sqrt{\frac{a^2+b^2+c^2}{3}} ~~~~~(a,b,c>0) \\ \\ & \sqrt[n]{a_1a_2\cdot\cdot\cdot a_n} \le \frac{a_1+a_2+...+a_n}{n} \le \sqrt{\frac{{a_1}^2+{a_2}^2 + ... + {a_n}^2}{n}} ~~~~(a_1,a_2,...a_n > 0,等号当且仅当 a_1 = a_2 = ... = a_n时成立) \\ \\ & xy \le \frac{x^p}{p} + \frac{x^q}{q} ~~~~~(x,y,p,q>0, \frac{1}{p}+\frac{1}{q}=1) \\ \\ & (ac+bd)^2 \le (a^2+b^2)(c^2+d^2) \\ \\ & (a_1 b_1 + a_2 b_2 + a_3 b_3)^2 \le ({a_1}^2 + {a_2}^2 + {a_3}^2)({b_1}^2 + {b_2}^2 + {b_3}^2) \\ \\ & [\int_a^b f(x)\cdot g(x) dx]^2 \le \int_a^bf^2(x)dx \cdot\int_a^bg^2(x)dx \\ \\ & \sin x < x < \tan x ~~~~~(0<x<\frac{\pi}{2}) \\ \\ & \arctan x \le x \le \arcsin x ~~~~~(0\le x \le 1) \\ \\ & x+1 \le e^x \\ \\ & \ln x \le x-1 \\ \\ & \frac{1}{1+x} < \ln (1+\frac{1}{x}) < \frac{1}{x} ~~~~~(x>0) \end{aligned} ​2∣ab∣≤a2+b2∣a±b∣≤∣a∣+∣b∣∣∣a∣−∣b∣∣≤∣a−b∣∣a1​±a2​±⋅⋅⋅⋅±an​∣≤∣a1​∣+∣a2​∣+⋅⋅⋅+∣an​∣∣∫ab​f(x)dx∣≤∫ab​∣f(x)∣dx     (a<b)ab​≤2a+b​≤2a2+b2​​     (a,b>0)3abc​≤3a+b+c​≤3a2+b2+c2​​     (a,b,c>0)na1​a2​⋅⋅⋅an​​≤na1​+a2​+...+an​​≤na1​2+a2​2+...+an​2​​    (a1​,a2​,...an​>0,等号当且仅当a1​=a2​=...=an​时成立)xy≤pxp​+qxq​     (x,y,p,q>0,p1​+q1​=1)(ac+bd)2≤(a2+b2)(c2+d2)(a1​b1​+a2​b2​+a3​b3​)2≤(a1​2+a2​2+a3​2)(b1​2+b2​2+b3​2)[∫ab​f(x)⋅g(x)dx]2≤∫ab​f2(x)dx⋅∫ab​g2(x)dxsinx<x<tanx     (0<x<2π​)arctanx≤x≤arcsinx     (0≤x≤1)x+1≤exlnx≤x−11+x1​<ln(1+x1​)<x1​     (x>0)​

三角函数公式

诱导公式

sin⁡(−α)=−sin⁡αcos⁡(−α)=cos⁡αsin⁡(π2−α)=cos⁡αcos⁡(π2−α)=sin⁡αsin⁡(π2+α)=cos⁡αcos⁡(π2+α)=−sin⁡αsin⁡(π−α)=sin⁡αcos⁡(π−α)=−cos⁡αsin⁡(π+α)=−sin⁡αcos⁡(π+α)=−cos⁡α奇变偶不变,符号看象限奇指k⋅π2中k看象限是指:将α看成锐角,然后看sin⁡(变之前的,或cos)(k⋅π2±α)的符号\begin{aligned} & \sin (-\alpha) = -\sin \alpha \\ \\ & \cos (-\alpha) = \cos \alpha \\ \\ & \sin (\frac{\pi}{2} - \alpha) = \cos \alpha \\ \\ & \cos (\frac{\pi}{2} - \alpha) = \sin \alpha \\ \\ & \sin (\frac{\pi}{2} + \alpha) = \cos \alpha \\ \\ & \cos (\frac{\pi}{2} + \alpha) = - \sin \alpha \\ \\ & \sin (\pi - \alpha) = \sin \alpha \\ \\ & \cos (\pi - \alpha) = - \cos \alpha \\ \\ & \sin (\pi + \alpha) = - \sin \alpha \\ \\ & \cos (\pi + \alpha) = - \cos \alpha \\ \\ \\ & 奇变偶不变,符号看象限 \\ & 奇指 ~~ k\cdot\frac{\pi}{2} ~~ 中 k \\ & 看象限是指:将 \alpha 看成锐角,然后看 \sin_{_{(变之前的,或cos)}}(k\cdot\frac{\pi}{2} \pm \alpha) 的符号 \end{aligned} ​sin(−α)=−sinαcos(−α)=cosαsin(2π​−α)=cosαcos(2π​−α)=sinαsin(2π​+α)=cosαcos(2π​+α)=−sinαsin(π−α)=sinαcos(π−α)=−cosαsin(π+α)=−sinαcos(π+α)=−cosα奇变偶不变,符号看象限奇指  k⋅2π​  中k看象限是指:将α看成锐角,然后看sin(变之前的,或cos)​​(k⋅2π​±α)的符号​

平方关系

1+tan⁡2α=sec⁡2α1+cot⁡2α=csc⁡2αsin⁡2α+cos⁡2α=1\begin{aligned} & \\ & 1 + \tan ^2 \alpha = \sec^2 \alpha \\ \\ & 1 + \cot^2 \alpha = \csc ^2 \alpha \\ \\ & \sin^2 \alpha + \cos ^2 \alpha = 1 \end{aligned} ​1+tan2α=sec2α1+cot2α=csc2αsin2α+cos2α=1​

两角和与差的三角函数

sin⁡(α+β)=sin⁡αcos⁡β+cos⁡αsin⁡βcos⁡(α+β)=cos⁡αcos⁡β−sin⁡αsin⁡βsin⁡(α−β)=sin⁡αcos⁡β−cos⁡αsin⁡βcos⁡(α−β)=cos⁡αcos⁡β+sin⁡αsin⁡βtan⁡(α+β)=tan⁡α+tan⁡β1−tan⁡αtan⁡βtan⁡(α−β)=tan⁡α−tan⁡β1+tan⁡αtan⁡β\begin{aligned} & \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \\ \\ & \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \\ & \sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \\ & \cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\ \\ & \tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{ 1- \tan \alpha \tan \beta} \\ \\ & \tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1+ \tan \alpha \tan \beta} \end{aligned} ​sin(α+β)=sinαcosβ+cosαsinβcos(α+β)=cosαcosβ−sinαsinβsin(α−β)=sinαcosβ−cosαsinβcos(α−β)=cosαcosβ+sinαsinβtan(α+β)=1−tanαtanβtanα+tanβ​tan(α−β)=1+tanαtanβtanα−tanβ​​

积化和差公式

cos⁡αcos⁡β=12[cos⁡(α+β)+cos(α−β)]cos⁡αsin⁡β=12[sin⁡(α+β)−sin⁡(α−β)]sin⁡αcos⁡β=12[sin⁡(α+β)+sin⁡(α−β)]sin⁡αsin⁡β=−12[cos⁡(α+β)−cos⁡(α−β)]\begin{aligned} & \cos \alpha \cos \beta = \frac{1}{2} [\cos (\alpha + \beta) + cos (\alpha - \beta)] \\ \\ & \cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin (\alpha - \beta)] \\ \\ & \sin \alpha \cos \beta = \frac {1}{2} [\sin (\alpha + \beta) + \sin (\alpha - \beta)] \\ \\ & \sin \alpha \sin \beta = - \frac{1}{2} [\cos (\alpha + \beta) - \cos (\alpha - \beta)] \end{aligned} ​cosαcosβ=21​[cos(α+β)+cos(α−β)]cosαsinβ=21​[sin(α+β)−sin(α−β)]sinαcosβ=21​[sin(α+β)+sin(α−β)]sinαsinβ=−21​[cos(α+β)−cos(α−β)]​
记忆口诀:
积化和差得和差,余弦在后要想加。异名函数取正弦,正弦相乘取负号。

和差化积公式

sin⁡α+sin⁡β=2sin⁡α+β2cos⁡α−β2sin⁡α−sin⁡β=2cos⁡α+β2sin⁡α−β2cos⁡α+cos⁡β=2cos⁡α+β2cos⁡α−β2cos⁡α−cos⁡β=−2sin⁡α+β2sin⁡α−β2\begin{aligned} & \sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\ \\ & \sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\ \\ & \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \\ \\ & \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} \end{aligned} ​sinα+sinβ=2sin2α+β​cos2α−β​sinα−sinβ=2cos2α+β​sin2α−β​cosα+cosβ=2cos2α+β​cos2α−β​cosα−cosβ=−2sin2α+β​sin2α−β​​
记忆口诀:
正加正,正在前,正减正,余在前;余加余,余并肩;余减余,负正弦

倍角公式

sin⁡2α=2sin⁡αcos⁡αcos⁡2α=cos⁡2α−sin⁡2α=1−2sin⁡2α=2cos⁡2α−1sin⁡3α=−4sin⁡3α+3sin⁡αcos⁡3α=4cos⁡3α−3cos⁡αsin⁡2α=1−cos⁡2α2cos⁡2α=1+cos⁡2α2tan⁡2α=2tan⁡α1−tan⁡2αcot⁡2α=cot⁡2α−12cot⁡α\begin{aligned} & \sin 2\alpha = 2\sin \alpha \cos \alpha \\ \\ & \cos 2\alpha = \cos ^2 \alpha - \sin ^2 \alpha = 1- 2\sin^2 \alpha = 2 \cos^2\alpha -1 \\ \\ & \sin 3\alpha = -4 \sin^3 \alpha + 3\sin \alpha \\ \\ & \cos 3 \alpha = 4\cos^3\alpha -3 \cos \alpha \\ \\ & \sin^2 \alpha = \frac{1-\cos 2\alpha}{2} \\ \\ & \cos^2 \alpha = \frac{1+\cos 2\alpha}{2} \\ \\ & \tan 2\alpha = \frac{2\tan \alpha}{1-\tan ^2\alpha} \\ \\ & \cot 2\alpha = \frac{\cot ^2 \alpha -1}{2\cot \alpha} \end{aligned} ​sin2α=2sinαcosαcos2α=cos2α−sin2α=1−2sin2α=2cos2α−1sin3α=−4sin3α+3sinαcos3α=4cos3α−3cosαsin2α=21−cos2α​cos2α=21+cos2α​tan2α=1−tan2α2tanα​cot2α=2cotαcot2α−1​​

半角公式

sin⁡2α2=1−cos⁡α2cos⁡2α2=1+cos⁡α2sin⁡α2=±1−cos⁡α2cos⁡α2=±1+cos⁡α2tan⁡α2=1−cos⁡αsin⁡α=sin⁡α1+cos⁡α=±1−cos⁡α1+cos⁡αcot⁡α2=sin⁡α1−cos⁡α=1+cos⁡αsin⁡α=±1+cos⁡α1−cos⁡α\begin{aligned} & \sin^2 \frac{\alpha}{2} = \frac{1- \cos \alpha}{2} \\ \\ & \cos^2 \frac{\alpha}{2} = \frac{1+\cos \alpha}{2} \\ \\ & \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1- \cos \alpha}{2}} \\ \\ & \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1+ \cos \alpha}{2}} \\ \\ & \tan \frac{\alpha}{2} = \frac{1- \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1+\cos \alpha} = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}} \\ \\ & \cot \frac{\alpha}{2} = \frac{\sin \alpha}{1- \cos \alpha} = \frac{1+\cos \alpha}{\sin \alpha} = \pm \sqrt{\frac{1+\cos \alpha}{1-\cos \alpha}} \end{aligned} ​sin22α​=21−cosα​cos22α​=21+cosα​sin2α​=±21−cosα​​cos2α​=±21+cosα​​tan2α​=sinα1−cosα​=1+cosαsinα​=±1+cosα1−cosα​​cot2α​=1−cosαsinα​=sinα1+cosα​=±1−cosα1+cosα​​​

万能公式

sin⁡α=2tan⁡α21+tan⁡2α2cos⁡α=1−tan⁡2α21+tan⁡2α2\begin{aligned} & \sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1+\tan^2 \frac{\alpha}{2}} \\ \\ & \cos \alpha = \frac{1- \tan^2 \frac{\alpha}{2}}{1+ \tan^2 \frac{\alpha}{2}} \end{aligned} ​sinα=1+tan22α​2tan2α​​cosα=1+tan22α​1−tan22α​​​

其他公式

1+sin⁡α=(sin⁡α2+cos⁡α2)21−sin⁡α=(sin⁡α2−cos⁡α2)2\begin{aligned} & 1 + \sin \alpha = (\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}) ^2 \\ \\ & 1 - \sin \alpha = (\sin \frac{\alpha}{2} - \cos \frac{\alpha}{2}) ^2 \end{aligned} ​1+sinα=(sin2α​+cos2α​)21−sinα=(sin2α​−cos2α​)2​

反三角函数恒等式

arcsin⁡x+arccos⁡x=π2arctan⁡x+arccotx=π2sin⁡(arccos⁡x)=1−x2cos⁡(arcsin⁡x)=1−x2sin⁡(arcsin⁡x)=xarcsin⁡(sin⁡x)=xcos⁡(arccos⁡x)=xarccos⁡(cos⁡x)=xarccos⁡(−x)=π−arccos⁡x\begin{aligned} & \arcsin x + \arccos x = \frac{\pi}{2} \\ \\ & \arctan x + arccot ~x= \frac{\pi}{2} \\ \\ & \sin(\arccos x) = \sqrt{1-x^2} \\ \\ & \cos(\arcsin x) = \sqrt{1- x^2} \\ \\ & \sin(\arcsin x) = x \\ \\ & \arcsin (\sin x) = x \\ \\ & \cos (\arccos x) = x \\ \\ & \arccos (\cos x) =x \\ \\ & \arccos (-x) = \pi - \arccos x \end{aligned} ​arcsinx+arccosx=2π​arctanx+arccot x=2π​sin(arccosx)=1−x2​cos(arcsinx)=1−x2​sin(arcsinx)=xarcsin(sinx)=xcos(arccosx)=xarccos(cosx)=xarccos(−x)=π−arccosx​

极限相关公式

数列极限递推式

an+1=f(an)结论一:f′(x)>0,{a2>a1⟹{an}↗单调递增a2<a1⟹{an}↘单调递减结论二(压缩映像原理):∃k∈(0,1),使得∣f′(x)∣≤k⟹an收敛\begin{aligned} & a_{n+1} = f(a_n) \\\\ 结论一: & f'(x) > 0 , \begin{cases} a_2 > a_1 \implies \{ a_n \} \nearrow单调递增 \\ a_2 < a_1 \implies \{ a_n \} \searrow单调递减 \end{cases} \\\\ 结论二(压缩映像原理):& \exist k \in (0,1),使得 |f'(x)| \le k \implies {a_n} 收敛 \end{aligned} 结论一:结论二(压缩映像原理):​an+1​=f(an​)f′(x)>0,{a2​>a1​⟹{an​}↗单调递增a2​<a1​⟹{an​}↘单调递减​∃k∈(0,1),使得∣f′(x)∣≤k⟹an​收敛​

重要极限公式

lim⁡x→0+xαln⁡x=0其中α>0lim⁡x→0+xα(ln⁡x)k=0其中α>0,k>0lim⁡x→+∞xαe−δx=0其中α>0,δ>0lim⁡x→0sin⁡xx=1⟹lim⁡ϕ(x)→0sin⁡ϕ(x)ϕ(x)=1其中ϕ(x)≠0lim⁡x→0(1+x)1x=e⟹lim⁡ϕ(x)→0(1+ϕ(x))1ϕ(x)=e其中ϕ(x)≠0lim⁡n→∞nn=1lim⁡n→∞an=1(常数a>0)\begin{aligned} & \lim_{x \to 0^+} x^\alpha \ln x = 0 ~~~~~ 其中 \alpha >0 \\\\ & \lim_{x \to 0^+} x^\alpha (\ln x)^k = 0 ~~~~~ 其中 \alpha >0 ,k>0 \\\\ & \lim_{x \to +\infty} x^\alpha e^{-\delta x} = 0 ~~~~~ 其中 \alpha >0 ,\delta >0 \\\\ & \lim_{x\to 0} \frac{\sin x}{x} = 1 ~~ \implies \lim_{\phi (x) \to 0} \frac{\sin \phi (x)}{\phi (x)} =1 ~~~~~其中\phi (x) \neq 0 \\ \\ & \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e ~~ \implies \lim_{\phi (x) \to 0} (1+\phi (x))^{\frac{1}{\phi (x)}} = e ~~~~~ 其中\phi (x) \neq 0 \\\\ & \lim_{n \to \infty} \sqrt[n]{n} = 1 \\\\ & \lim_{n \to \infty} \sqrt[n]{a} = 1 ~~~(常数a>0)\\\\ \end{aligned} ​x→0+lim​xαlnx=0     其中α>0x→0+lim​xα(lnx)k=0     其中α>0,k>0x→+∞lim​xαe−δx=0     其中α>0,δ>0x→0lim​xsinx​=1  ⟹ϕ(x)→0lim​ϕ(x)sinϕ(x)​=1     其中ϕ(x)​=0x→0lim​(1+x)x1​=e  ⟹ϕ(x)→0lim​(1+ϕ(x))ϕ(x)1​=e     其中ϕ(x)​=0n→∞lim​nn​=1n→∞lim​na​=1   (常数a>0)​

常用等价无穷小

x→0时,sin⁡x∼tan⁡x∼arcsin⁡x∼arctan⁡x∼(ex−1)∼ln⁡(1+x)∼x,1−cos⁡x∼12x2,(1+x)a−1∼ax,ax−1∼xln⁡a(a>0,a≠1)\begin{aligned} & x \to 0 时,\\\\ & \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim (e^x - 1) \sim \ln(1+x) \sim x ~~,~~ 1- \cos x \sim \frac{1}{2} x^2 ~~, \\ \\ & (1+x)^a - 1 \sim ax ~~,~~ a^x - 1 \sim x\ln a ~~~(a>0,a\neq1) \end{aligned} ​x→0时,sinx∼tanx∼arcsinx∼arctanx∼(ex−1)∼ln(1+x)∼x  ,  1−cosx∼21​x2  ,(1+x)a−1∼ax  ,  ax−1∼xlna   (a>0,a​=1)​

1^∞ 型

lim⁡uv=elim⁡(u−1)v(其中lim⁡u=1,lim⁡v=∞,即1∞型)\lim u^v = e^{\lim (u-1)v} ~~~~~~(其中 \lim u=1,\lim v=\infty,即 1^\infty 型) limuv=elim(u−1)v      (其中limu=1,limv=∞,即1∞型)

导数相关公式

导数定义

f′(x0)=lim⁡Δx→0f(x0+Δx)−f(x0)Δxf′(x0)=lim⁡x→x0f(x)−f(x0)x−x0\begin{aligned} & f'(x_0) = \lim\limits_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \\ \\ & f'(x_0) = \lim\limits_{x \to x_0} \frac{f(x) - f(x_0)}{x-x_0} \end{aligned} ​f′(x0​)=Δx→0lim​Δxf(x0​+Δx)−f(x0​)​f′(x0​)=x→x0​lim​x−x0​f(x)−f(x0​)​​

微分定义

Δy=f(x0+Δx)−f(x0)Δy=AΔx+o(Δx)AΔx=f′(x0)Δx\begin{aligned} & \Delta y = f(x_0 + \Delta x) - f(x_0) \\ \\ & \Delta y = A\Delta x + o(\Delta x) \\ \\ & A\Delta x = f'(x_0) \Delta x \end{aligned} ​Δy=f(x0​+Δx)−f(x0​)Δy=AΔx+o(Δx)AΔx=f′(x0​)Δx​

连续,可导及可微关系

一元函数

#mermaid-svg-Lqdf6uwSSYvdr3WI .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);fill:#333;color:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .label text{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .node rect,#mermaid-svg-Lqdf6uwSSYvdr3WI .node circle,#mermaid-svg-Lqdf6uwSSYvdr3WI .node ellipse,#mermaid-svg-Lqdf6uwSSYvdr3WI .node polygon,#mermaid-svg-Lqdf6uwSSYvdr3WI .node path{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-Lqdf6uwSSYvdr3WI .node .label{text-align:center;fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .node.clickable{cursor:pointer}#mermaid-svg-Lqdf6uwSSYvdr3WI .arrowheadPath{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .edgePath .path{stroke:#333;stroke-width:1.5px}#mermaid-svg-Lqdf6uwSSYvdr3WI .flowchart-link{stroke:#333;fill:none}#mermaid-svg-Lqdf6uwSSYvdr3WI .edgeLabel{background-color:#e8e8e8;text-align:center}#mermaid-svg-Lqdf6uwSSYvdr3WI .edgeLabel rect{opacity:0.9}#mermaid-svg-Lqdf6uwSSYvdr3WI .edgeLabel span{color:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .cluster rect{fill:#ffffde;stroke:#aa3;stroke-width:1px}#mermaid-svg-Lqdf6uwSSYvdr3WI .cluster text{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI div.mermaidTooltip{position:absolute;text-align:center;max-width:200px;padding:2px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:12px;background:#ffffde;border:1px solid #aa3;border-radius:2px;pointer-events:none;z-index:100}#mermaid-svg-Lqdf6uwSSYvdr3WI .actor{stroke:#ccf;fill:#ECECFF}#mermaid-svg-Lqdf6uwSSYvdr3WI text.actor>tspan{fill:#000;stroke:none}#mermaid-svg-Lqdf6uwSSYvdr3WI .actor-line{stroke:grey}#mermaid-svg-Lqdf6uwSSYvdr3WI .messageLine0{stroke-width:1.5;stroke-dasharray:none;stroke:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .messageLine1{stroke-width:1.5;stroke-dasharray:2, 2;stroke:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI #arrowhead path{fill:#333;stroke:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .sequenceNumber{fill:#fff}#mermaid-svg-Lqdf6uwSSYvdr3WI #sequencenumber{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI #crosshead path{fill:#333;stroke:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .messageText{fill:#333;stroke:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .labelBox{stroke:#ccf;fill:#ECECFF}#mermaid-svg-Lqdf6uwSSYvdr3WI .labelText,#mermaid-svg-Lqdf6uwSSYvdr3WI .labelText>tspan{fill:#000;stroke:none}#mermaid-svg-Lqdf6uwSSYvdr3WI .loopText,#mermaid-svg-Lqdf6uwSSYvdr3WI .loopText>tspan{fill:#000;stroke:none}#mermaid-svg-Lqdf6uwSSYvdr3WI .loopLine{stroke-width:2px;stroke-dasharray:2, 2;stroke:#ccf;fill:#ccf}#mermaid-svg-Lqdf6uwSSYvdr3WI .note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-Lqdf6uwSSYvdr3WI .noteText,#mermaid-svg-Lqdf6uwSSYvdr3WI .noteText>tspan{fill:#000;stroke:none}#mermaid-svg-Lqdf6uwSSYvdr3WI .activation0{fill:#f4f4f4;stroke:#666}#mermaid-svg-Lqdf6uwSSYvdr3WI .activation1{fill:#f4f4f4;stroke:#666}#mermaid-svg-Lqdf6uwSSYvdr3WI .activation2{fill:#f4f4f4;stroke:#666}#mermaid-svg-Lqdf6uwSSYvdr3WI .mermaid-main-font{font-family:"trebuchet ms", verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI .section{stroke:none;opacity:0.2}#mermaid-svg-Lqdf6uwSSYvdr3WI .section0{fill:rgba(102,102,255,0.49)}#mermaid-svg-Lqdf6uwSSYvdr3WI .section2{fill:#fff400}#mermaid-svg-Lqdf6uwSSYvdr3WI .section1,#mermaid-svg-Lqdf6uwSSYvdr3WI .section3{fill:#fff;opacity:0.2}#mermaid-svg-Lqdf6uwSSYvdr3WI .sectionTitle0{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .sectionTitle1{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .sectionTitle2{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .sectionTitle3{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .sectionTitle{text-anchor:start;font-size:11px;text-height:14px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI .grid .tick{stroke:#d3d3d3;opacity:0.8;shape-rendering:crispEdges}#mermaid-svg-Lqdf6uwSSYvdr3WI .grid .tick text{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI .grid path{stroke-width:0}#mermaid-svg-Lqdf6uwSSYvdr3WI .today{fill:none;stroke:red;stroke-width:2px}#mermaid-svg-Lqdf6uwSSYvdr3WI .task{stroke-width:2}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskText{text-anchor:middle;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskText:not([font-size]){font-size:11px}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskTextOutsideRight{fill:#000;text-anchor:start;font-size:11px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskTextOutsideLeft{fill:#000;text-anchor:end;font-size:11px}#mermaid-svg-Lqdf6uwSSYvdr3WI .task.clickable{cursor:pointer}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskText.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskTextOutsideLeft.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskTextOutsideRight.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskText0,#mermaid-svg-Lqdf6uwSSYvdr3WI .taskText1,#mermaid-svg-Lqdf6uwSSYvdr3WI .taskText2,#mermaid-svg-Lqdf6uwSSYvdr3WI .taskText3{fill:#fff}#mermaid-svg-Lqdf6uwSSYvdr3WI .task0,#mermaid-svg-Lqdf6uwSSYvdr3WI .task1,#mermaid-svg-Lqdf6uwSSYvdr3WI .task2,#mermaid-svg-Lqdf6uwSSYvdr3WI .task3{fill:#8a90dd;stroke:#534fbc}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskTextOutside0,#mermaid-svg-Lqdf6uwSSYvdr3WI .taskTextOutside2{fill:#000}#mermaid-svg-Lqdf6uwSSYvdr3WI .taskTextOutside1,#mermaid-svg-Lqdf6uwSSYvdr3WI .taskTextOutside3{fill:#000}#mermaid-svg-Lqdf6uwSSYvdr3WI .active0,#mermaid-svg-Lqdf6uwSSYvdr3WI .active1,#mermaid-svg-Lqdf6uwSSYvdr3WI .active2,#mermaid-svg-Lqdf6uwSSYvdr3WI .active3{fill:#bfc7ff;stroke:#534fbc}#mermaid-svg-Lqdf6uwSSYvdr3WI .activeText0,#mermaid-svg-Lqdf6uwSSYvdr3WI .activeText1,#mermaid-svg-Lqdf6uwSSYvdr3WI .activeText2,#mermaid-svg-Lqdf6uwSSYvdr3WI .activeText3{fill:#000 !important}#mermaid-svg-Lqdf6uwSSYvdr3WI .done0,#mermaid-svg-Lqdf6uwSSYvdr3WI .done1,#mermaid-svg-Lqdf6uwSSYvdr3WI .done2,#mermaid-svg-Lqdf6uwSSYvdr3WI .done3{stroke:grey;fill:#d3d3d3;stroke-width:2}#mermaid-svg-Lqdf6uwSSYvdr3WI .doneText0,#mermaid-svg-Lqdf6uwSSYvdr3WI .doneText1,#mermaid-svg-Lqdf6uwSSYvdr3WI .doneText2,#mermaid-svg-Lqdf6uwSSYvdr3WI .doneText3{fill:#000 !important}#mermaid-svg-Lqdf6uwSSYvdr3WI .crit0,#mermaid-svg-Lqdf6uwSSYvdr3WI .crit1,#mermaid-svg-Lqdf6uwSSYvdr3WI .crit2,#mermaid-svg-Lqdf6uwSSYvdr3WI .crit3{stroke:#f88;fill:red;stroke-width:2}#mermaid-svg-Lqdf6uwSSYvdr3WI .activeCrit0,#mermaid-svg-Lqdf6uwSSYvdr3WI .activeCrit1,#mermaid-svg-Lqdf6uwSSYvdr3WI .activeCrit2,#mermaid-svg-Lqdf6uwSSYvdr3WI .activeCrit3{stroke:#f88;fill:#bfc7ff;stroke-width:2}#mermaid-svg-Lqdf6uwSSYvdr3WI .doneCrit0,#mermaid-svg-Lqdf6uwSSYvdr3WI .doneCrit1,#mermaid-svg-Lqdf6uwSSYvdr3WI .doneCrit2,#mermaid-svg-Lqdf6uwSSYvdr3WI .doneCrit3{stroke:#f88;fill:#d3d3d3;stroke-width:2;cursor:pointer;shape-rendering:crispEdges}#mermaid-svg-Lqdf6uwSSYvdr3WI .milestone{transform:rotate(45deg) scale(0.8, 0.8)}#mermaid-svg-Lqdf6uwSSYvdr3WI .milestoneText{font-style:italic}#mermaid-svg-Lqdf6uwSSYvdr3WI .doneCritText0,#mermaid-svg-Lqdf6uwSSYvdr3WI .doneCritText1,#mermaid-svg-Lqdf6uwSSYvdr3WI .doneCritText2,#mermaid-svg-Lqdf6uwSSYvdr3WI .doneCritText3{fill:#000 !important}#mermaid-svg-Lqdf6uwSSYvdr3WI .activeCritText0,#mermaid-svg-Lqdf6uwSSYvdr3WI .activeCritText1,#mermaid-svg-Lqdf6uwSSYvdr3WI .activeCritText2,#mermaid-svg-Lqdf6uwSSYvdr3WI .activeCritText3{fill:#000 !important}#mermaid-svg-Lqdf6uwSSYvdr3WI .titleText{text-anchor:middle;font-size:18px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI g.classGroup text{fill:#9370db;stroke:none;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:10px}#mermaid-svg-Lqdf6uwSSYvdr3WI g.classGroup text .title{font-weight:bolder}#mermaid-svg-Lqdf6uwSSYvdr3WI g.clickable{cursor:pointer}#mermaid-svg-Lqdf6uwSSYvdr3WI g.classGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-Lqdf6uwSSYvdr3WI g.classGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI .classLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.5}#mermaid-svg-Lqdf6uwSSYvdr3WI .classLabel .label{fill:#9370db;font-size:10px}#mermaid-svg-Lqdf6uwSSYvdr3WI .relation{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-Lqdf6uwSSYvdr3WI .dashed-line{stroke-dasharray:3}#mermaid-svg-Lqdf6uwSSYvdr3WI #compositionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI #compositionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI #aggregationStart{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI #aggregationEnd{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI #dependencyStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI #dependencyEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI #extensionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI #extensionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI .commit-id,#mermaid-svg-Lqdf6uwSSYvdr3WI .commit-msg,#mermaid-svg-Lqdf6uwSSYvdr3WI .branch-label{fill:lightgrey;color:lightgrey;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI .pieTitleText{text-anchor:middle;font-size:25px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI .slice{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI g.stateGroup text{fill:#9370db;stroke:none;font-size:10px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI g.stateGroup text{fill:#9370db;fill:#333;stroke:none;font-size:10px}#mermaid-svg-Lqdf6uwSSYvdr3WI g.statediagram-cluster .cluster-label text{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI g.stateGroup .state-title{font-weight:bolder;fill:#000}#mermaid-svg-Lqdf6uwSSYvdr3WI g.stateGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-Lqdf6uwSSYvdr3WI g.stateGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-Lqdf6uwSSYvdr3WI .transition{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-Lqdf6uwSSYvdr3WI .stateGroup .composit{fill:white;border-bottom:1px}#mermaid-svg-Lqdf6uwSSYvdr3WI .stateGroup .alt-composit{fill:#e0e0e0;border-bottom:1px}#mermaid-svg-Lqdf6uwSSYvdr3WI .state-note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-Lqdf6uwSSYvdr3WI .state-note text{fill:black;stroke:none;font-size:10px}#mermaid-svg-Lqdf6uwSSYvdr3WI .stateLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.7}#mermaid-svg-Lqdf6uwSSYvdr3WI .edgeLabel text{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .stateLabel text{fill:#000;font-size:10px;font-weight:bold;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-Lqdf6uwSSYvdr3WI .node circle.state-start{fill:black;stroke:black}#mermaid-svg-Lqdf6uwSSYvdr3WI .node circle.state-end{fill:black;stroke:white;stroke-width:1.5}#mermaid-svg-Lqdf6uwSSYvdr3WI #statediagram-barbEnd{fill:#9370db}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-cluster rect{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-cluster rect.outer{rx:5px;ry:5px}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-state .divider{stroke:#9370db}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-state .title-state{rx:5px;ry:5px}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-cluster.statediagram-cluster .inner{fill:white}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-cluster.statediagram-cluster-alt .inner{fill:#e0e0e0}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-cluster .inner{rx:0;ry:0}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-state rect.basic{rx:5px;ry:5px}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-state rect.divider{stroke-dasharray:10,10;fill:#efefef}#mermaid-svg-Lqdf6uwSSYvdr3WI .note-edge{stroke-dasharray:5}#mermaid-svg-Lqdf6uwSSYvdr3WI .statediagram-note rect{fill:#fff5ad;stroke:#aa3;stroke-width:1px;rx:0;ry:0}:root{--mermaid-font-family: '"trebuchet ms", verdana, arial';--mermaid-font-family: "Comic Sans MS", "Comic Sans", cursive}#mermaid-svg-Lqdf6uwSSYvdr3WI .error-icon{fill:#522}#mermaid-svg-Lqdf6uwSSYvdr3WI .error-text{fill:#522;stroke:#522}#mermaid-svg-Lqdf6uwSSYvdr3WI .edge-thickness-normal{stroke-width:2px}#mermaid-svg-Lqdf6uwSSYvdr3WI .edge-thickness-thick{stroke-width:3.5px}#mermaid-svg-Lqdf6uwSSYvdr3WI .edge-pattern-solid{stroke-dasharray:0}#mermaid-svg-Lqdf6uwSSYvdr3WI .edge-pattern-dashed{stroke-dasharray:3}#mermaid-svg-Lqdf6uwSSYvdr3WI .edge-pattern-dotted{stroke-dasharray:2}#mermaid-svg-Lqdf6uwSSYvdr3WI .marker{fill:#333}#mermaid-svg-Lqdf6uwSSYvdr3WI .marker.cross{stroke:#333}:root { --mermaid-font-family: "trebuchet ms", verdana, arial;}#mermaid-svg-Lqdf6uwSSYvdr3WI {color: rgba(0, 0, 0, 0.75);font: ;}

可微
连续
可导

多元函数

#mermaid-svg-hYNSUVmCZ81aRFYM .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);fill:#333;color:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .label text{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .node rect,#mermaid-svg-hYNSUVmCZ81aRFYM .node circle,#mermaid-svg-hYNSUVmCZ81aRFYM .node ellipse,#mermaid-svg-hYNSUVmCZ81aRFYM .node polygon,#mermaid-svg-hYNSUVmCZ81aRFYM .node path{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-hYNSUVmCZ81aRFYM .node .label{text-align:center;fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .node.clickable{cursor:pointer}#mermaid-svg-hYNSUVmCZ81aRFYM .arrowheadPath{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .edgePath .path{stroke:#333;stroke-width:1.5px}#mermaid-svg-hYNSUVmCZ81aRFYM .flowchart-link{stroke:#333;fill:none}#mermaid-svg-hYNSUVmCZ81aRFYM .edgeLabel{background-color:#e8e8e8;text-align:center}#mermaid-svg-hYNSUVmCZ81aRFYM .edgeLabel rect{opacity:0.9}#mermaid-svg-hYNSUVmCZ81aRFYM .edgeLabel span{color:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .cluster rect{fill:#ffffde;stroke:#aa3;stroke-width:1px}#mermaid-svg-hYNSUVmCZ81aRFYM .cluster text{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM div.mermaidTooltip{position:absolute;text-align:center;max-width:200px;padding:2px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:12px;background:#ffffde;border:1px solid #aa3;border-radius:2px;pointer-events:none;z-index:100}#mermaid-svg-hYNSUVmCZ81aRFYM .actor{stroke:#ccf;fill:#ECECFF}#mermaid-svg-hYNSUVmCZ81aRFYM text.actor>tspan{fill:#000;stroke:none}#mermaid-svg-hYNSUVmCZ81aRFYM .actor-line{stroke:grey}#mermaid-svg-hYNSUVmCZ81aRFYM .messageLine0{stroke-width:1.5;stroke-dasharray:none;stroke:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .messageLine1{stroke-width:1.5;stroke-dasharray:2, 2;stroke:#333}#mermaid-svg-hYNSUVmCZ81aRFYM #arrowhead path{fill:#333;stroke:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .sequenceNumber{fill:#fff}#mermaid-svg-hYNSUVmCZ81aRFYM #sequencenumber{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM #crosshead path{fill:#333;stroke:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .messageText{fill:#333;stroke:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .labelBox{stroke:#ccf;fill:#ECECFF}#mermaid-svg-hYNSUVmCZ81aRFYM .labelText,#mermaid-svg-hYNSUVmCZ81aRFYM .labelText>tspan{fill:#000;stroke:none}#mermaid-svg-hYNSUVmCZ81aRFYM .loopText,#mermaid-svg-hYNSUVmCZ81aRFYM .loopText>tspan{fill:#000;stroke:none}#mermaid-svg-hYNSUVmCZ81aRFYM .loopLine{stroke-width:2px;stroke-dasharray:2, 2;stroke:#ccf;fill:#ccf}#mermaid-svg-hYNSUVmCZ81aRFYM .note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-hYNSUVmCZ81aRFYM .noteText,#mermaid-svg-hYNSUVmCZ81aRFYM .noteText>tspan{fill:#000;stroke:none}#mermaid-svg-hYNSUVmCZ81aRFYM .activation0{fill:#f4f4f4;stroke:#666}#mermaid-svg-hYNSUVmCZ81aRFYM .activation1{fill:#f4f4f4;stroke:#666}#mermaid-svg-hYNSUVmCZ81aRFYM .activation2{fill:#f4f4f4;stroke:#666}#mermaid-svg-hYNSUVmCZ81aRFYM .mermaid-main-font{font-family:"trebuchet ms", verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM .section{stroke:none;opacity:0.2}#mermaid-svg-hYNSUVmCZ81aRFYM .section0{fill:rgba(102,102,255,0.49)}#mermaid-svg-hYNSUVmCZ81aRFYM .section2{fill:#fff400}#mermaid-svg-hYNSUVmCZ81aRFYM .section1,#mermaid-svg-hYNSUVmCZ81aRFYM .section3{fill:#fff;opacity:0.2}#mermaid-svg-hYNSUVmCZ81aRFYM .sectionTitle0{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .sectionTitle1{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .sectionTitle2{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .sectionTitle3{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .sectionTitle{text-anchor:start;font-size:11px;text-height:14px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM .grid .tick{stroke:#d3d3d3;opacity:0.8;shape-rendering:crispEdges}#mermaid-svg-hYNSUVmCZ81aRFYM .grid .tick text{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM .grid path{stroke-width:0}#mermaid-svg-hYNSUVmCZ81aRFYM .today{fill:none;stroke:red;stroke-width:2px}#mermaid-svg-hYNSUVmCZ81aRFYM .task{stroke-width:2}#mermaid-svg-hYNSUVmCZ81aRFYM .taskText{text-anchor:middle;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM .taskText:not([font-size]){font-size:11px}#mermaid-svg-hYNSUVmCZ81aRFYM .taskTextOutsideRight{fill:#000;text-anchor:start;font-size:11px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM .taskTextOutsideLeft{fill:#000;text-anchor:end;font-size:11px}#mermaid-svg-hYNSUVmCZ81aRFYM .task.clickable{cursor:pointer}#mermaid-svg-hYNSUVmCZ81aRFYM .taskText.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-hYNSUVmCZ81aRFYM .taskTextOutsideLeft.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-hYNSUVmCZ81aRFYM .taskTextOutsideRight.clickable{cursor:pointer;fill:#003163 !important;font-weight:bold}#mermaid-svg-hYNSUVmCZ81aRFYM .taskText0,#mermaid-svg-hYNSUVmCZ81aRFYM .taskText1,#mermaid-svg-hYNSUVmCZ81aRFYM .taskText2,#mermaid-svg-hYNSUVmCZ81aRFYM .taskText3{fill:#fff}#mermaid-svg-hYNSUVmCZ81aRFYM .task0,#mermaid-svg-hYNSUVmCZ81aRFYM .task1,#mermaid-svg-hYNSUVmCZ81aRFYM .task2,#mermaid-svg-hYNSUVmCZ81aRFYM .task3{fill:#8a90dd;stroke:#534fbc}#mermaid-svg-hYNSUVmCZ81aRFYM .taskTextOutside0,#mermaid-svg-hYNSUVmCZ81aRFYM .taskTextOutside2{fill:#000}#mermaid-svg-hYNSUVmCZ81aRFYM .taskTextOutside1,#mermaid-svg-hYNSUVmCZ81aRFYM .taskTextOutside3{fill:#000}#mermaid-svg-hYNSUVmCZ81aRFYM .active0,#mermaid-svg-hYNSUVmCZ81aRFYM .active1,#mermaid-svg-hYNSUVmCZ81aRFYM .active2,#mermaid-svg-hYNSUVmCZ81aRFYM .active3{fill:#bfc7ff;stroke:#534fbc}#mermaid-svg-hYNSUVmCZ81aRFYM .activeText0,#mermaid-svg-hYNSUVmCZ81aRFYM .activeText1,#mermaid-svg-hYNSUVmCZ81aRFYM .activeText2,#mermaid-svg-hYNSUVmCZ81aRFYM .activeText3{fill:#000 !important}#mermaid-svg-hYNSUVmCZ81aRFYM .done0,#mermaid-svg-hYNSUVmCZ81aRFYM .done1,#mermaid-svg-hYNSUVmCZ81aRFYM .done2,#mermaid-svg-hYNSUVmCZ81aRFYM .done3{stroke:grey;fill:#d3d3d3;stroke-width:2}#mermaid-svg-hYNSUVmCZ81aRFYM .doneText0,#mermaid-svg-hYNSUVmCZ81aRFYM .doneText1,#mermaid-svg-hYNSUVmCZ81aRFYM .doneText2,#mermaid-svg-hYNSUVmCZ81aRFYM .doneText3{fill:#000 !important}#mermaid-svg-hYNSUVmCZ81aRFYM .crit0,#mermaid-svg-hYNSUVmCZ81aRFYM .crit1,#mermaid-svg-hYNSUVmCZ81aRFYM .crit2,#mermaid-svg-hYNSUVmCZ81aRFYM .crit3{stroke:#f88;fill:red;stroke-width:2}#mermaid-svg-hYNSUVmCZ81aRFYM .activeCrit0,#mermaid-svg-hYNSUVmCZ81aRFYM .activeCrit1,#mermaid-svg-hYNSUVmCZ81aRFYM .activeCrit2,#mermaid-svg-hYNSUVmCZ81aRFYM .activeCrit3{stroke:#f88;fill:#bfc7ff;stroke-width:2}#mermaid-svg-hYNSUVmCZ81aRFYM .doneCrit0,#mermaid-svg-hYNSUVmCZ81aRFYM .doneCrit1,#mermaid-svg-hYNSUVmCZ81aRFYM .doneCrit2,#mermaid-svg-hYNSUVmCZ81aRFYM .doneCrit3{stroke:#f88;fill:#d3d3d3;stroke-width:2;cursor:pointer;shape-rendering:crispEdges}#mermaid-svg-hYNSUVmCZ81aRFYM .milestone{transform:rotate(45deg) scale(0.8, 0.8)}#mermaid-svg-hYNSUVmCZ81aRFYM .milestoneText{font-style:italic}#mermaid-svg-hYNSUVmCZ81aRFYM .doneCritText0,#mermaid-svg-hYNSUVmCZ81aRFYM .doneCritText1,#mermaid-svg-hYNSUVmCZ81aRFYM .doneCritText2,#mermaid-svg-hYNSUVmCZ81aRFYM .doneCritText3{fill:#000 !important}#mermaid-svg-hYNSUVmCZ81aRFYM .activeCritText0,#mermaid-svg-hYNSUVmCZ81aRFYM .activeCritText1,#mermaid-svg-hYNSUVmCZ81aRFYM .activeCritText2,#mermaid-svg-hYNSUVmCZ81aRFYM .activeCritText3{fill:#000 !important}#mermaid-svg-hYNSUVmCZ81aRFYM .titleText{text-anchor:middle;font-size:18px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM g.classGroup text{fill:#9370db;stroke:none;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);font-size:10px}#mermaid-svg-hYNSUVmCZ81aRFYM g.classGroup text .title{font-weight:bolder}#mermaid-svg-hYNSUVmCZ81aRFYM g.clickable{cursor:pointer}#mermaid-svg-hYNSUVmCZ81aRFYM g.classGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-hYNSUVmCZ81aRFYM g.classGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM .classLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.5}#mermaid-svg-hYNSUVmCZ81aRFYM .classLabel .label{fill:#9370db;font-size:10px}#mermaid-svg-hYNSUVmCZ81aRFYM .relation{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-hYNSUVmCZ81aRFYM .dashed-line{stroke-dasharray:3}#mermaid-svg-hYNSUVmCZ81aRFYM #compositionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM #compositionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM #aggregationStart{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM #aggregationEnd{fill:#ECECFF;stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM #dependencyStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM #dependencyEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM #extensionStart{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM #extensionEnd{fill:#9370db;stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM .commit-id,#mermaid-svg-hYNSUVmCZ81aRFYM .commit-msg,#mermaid-svg-hYNSUVmCZ81aRFYM .branch-label{fill:lightgrey;color:lightgrey;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM .pieTitleText{text-anchor:middle;font-size:25px;fill:#000;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM .slice{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM g.stateGroup text{fill:#9370db;stroke:none;font-size:10px;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM g.stateGroup text{fill:#9370db;fill:#333;stroke:none;font-size:10px}#mermaid-svg-hYNSUVmCZ81aRFYM g.statediagram-cluster .cluster-label text{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM g.stateGroup .state-title{font-weight:bolder;fill:#000}#mermaid-svg-hYNSUVmCZ81aRFYM g.stateGroup rect{fill:#ECECFF;stroke:#9370db}#mermaid-svg-hYNSUVmCZ81aRFYM g.stateGroup line{stroke:#9370db;stroke-width:1}#mermaid-svg-hYNSUVmCZ81aRFYM .transition{stroke:#9370db;stroke-width:1;fill:none}#mermaid-svg-hYNSUVmCZ81aRFYM .stateGroup .composit{fill:white;border-bottom:1px}#mermaid-svg-hYNSUVmCZ81aRFYM .stateGroup .alt-composit{fill:#e0e0e0;border-bottom:1px}#mermaid-svg-hYNSUVmCZ81aRFYM .state-note{stroke:#aa3;fill:#fff5ad}#mermaid-svg-hYNSUVmCZ81aRFYM .state-note text{fill:black;stroke:none;font-size:10px}#mermaid-svg-hYNSUVmCZ81aRFYM .stateLabel .box{stroke:none;stroke-width:0;fill:#ECECFF;opacity:0.7}#mermaid-svg-hYNSUVmCZ81aRFYM .edgeLabel text{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .stateLabel text{fill:#000;font-size:10px;font-weight:bold;font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family)}#mermaid-svg-hYNSUVmCZ81aRFYM .node circle.state-start{fill:black;stroke:black}#mermaid-svg-hYNSUVmCZ81aRFYM .node circle.state-end{fill:black;stroke:white;stroke-width:1.5}#mermaid-svg-hYNSUVmCZ81aRFYM #statediagram-barbEnd{fill:#9370db}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-cluster rect{fill:#ECECFF;stroke:#9370db;stroke-width:1px}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-cluster rect.outer{rx:5px;ry:5px}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-state .divider{stroke:#9370db}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-state .title-state{rx:5px;ry:5px}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-cluster.statediagram-cluster .inner{fill:white}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-cluster.statediagram-cluster-alt .inner{fill:#e0e0e0}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-cluster .inner{rx:0;ry:0}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-state rect.basic{rx:5px;ry:5px}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-state rect.divider{stroke-dasharray:10,10;fill:#efefef}#mermaid-svg-hYNSUVmCZ81aRFYM .note-edge{stroke-dasharray:5}#mermaid-svg-hYNSUVmCZ81aRFYM .statediagram-note rect{fill:#fff5ad;stroke:#aa3;stroke-width:1px;rx:0;ry:0}:root{--mermaid-font-family: '"trebuchet ms", verdana, arial';--mermaid-font-family: "Comic Sans MS", "Comic Sans", cursive}#mermaid-svg-hYNSUVmCZ81aRFYM .error-icon{fill:#522}#mermaid-svg-hYNSUVmCZ81aRFYM .error-text{fill:#522;stroke:#522}#mermaid-svg-hYNSUVmCZ81aRFYM .edge-thickness-normal{stroke-width:2px}#mermaid-svg-hYNSUVmCZ81aRFYM .edge-thickness-thick{stroke-width:3.5px}#mermaid-svg-hYNSUVmCZ81aRFYM .edge-pattern-solid{stroke-dasharray:0}#mermaid-svg-hYNSUVmCZ81aRFYM .edge-pattern-dashed{stroke-dasharray:3}#mermaid-svg-hYNSUVmCZ81aRFYM .edge-pattern-dotted{stroke-dasharray:2}#mermaid-svg-hYNSUVmCZ81aRFYM .marker{fill:#333}#mermaid-svg-hYNSUVmCZ81aRFYM .marker.cross{stroke:#333}:root { --mermaid-font-family: "trebuchet ms", verdana, arial;}#mermaid-svg-hYNSUVmCZ81aRFYM {color: rgba(0, 0, 0, 0.75);font: ;}

一阶偏导数连续
可微
连续
可导

导数四则运算

[u(x)±v(x)]′=u′(x)±v′(x)[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x)[u(x)v(x)w(x)]′=u′(x)v(x)w(x)+u(x)v′(x)w(x)+u(x)v(x)w′(x)[u(x)v(x)]′=u′(x)v(x)−u(x)v′(x)[v(x)]2\begin{aligned} & [u(x) \pm v(x)]' = u'(x) \pm v'(x) \\ \\ & [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x) \\ \\ & [u(x)v(x)w(x)]' = u'(x)v(x)w(x) + u(x)v'(x)w(x) + u(x)v(x)w'(x) \\ \\ & \begin{bmatrix}\frac{u(x)}{v(x)} \end{bmatrix}' = \frac{u'(x)v(x)-u(x)v'(x)}{[v(x)]^2} \\ \\ \end{aligned} ​[u(x)±v(x)]′=u′(x)±v′(x)[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x)[u(x)v(x)w(x)]′=u′(x)v(x)w(x)+u(x)v′(x)w(x)+u(x)v(x)w′(x)[v(x)u(x)​​]′=[v(x)]2u′(x)v(x)−u(x)v′(x)​​

复合函数求导

{f[g(x)]}′=f′[g(x)]g′(x)\{ f[g(x)] \}' = f'[g(x)]g'(x) {f[g(x)]}′=f′[g(x)]g′(x)

反函数求导

y=f(x),x=φ(y)⟹φ′(y)=1f′(x)yx′=dydx=1dxdy=1xy′yxx′′=d2ydx2=d(dydx)dx=d(1xy′)dx=d(1xy′)dy⋅dydx=d(1xy′)dy⋅1xy′=−xyy′′(xy′)3\begin{aligned} & y = f(x), x = \varphi(y) \implies \varphi ' (y) = \frac{1}{f'(x)} \\ \\ & y'_x = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{x'_y} \\ \\ & y^{''}_{xx} = \frac{d^2 y}{dx^2} = \frac{d(\frac{dy}{dx})}{dx} = \frac{d(\frac{1}{x'_y})}{dx} = \frac{d(\frac{1}{x'_y})}{dy} \cdot \frac{dy}{dx} = \frac{d(\frac{1}{x'_y})}{dy} \cdot \frac{1}{x'_y} = \frac{-x^{''}_{yy}}{(x'_y)^3} \end{aligned} ​y=f(x),x=φ(y)⟹φ′(y)=f′(x)1​yx′​=dxdy​=dydx​1​=xy′​1​yxx′′​=dx2d2y​=dxd(dxdy​)​=dxd(xy′​1​)​=dyd(xy′​1​)​⋅dxdy​=dyd(xy′​1​)​⋅xy′​1​=(xy′​)3−xyy′′​​​

参数方程求导

{x=φ(t)y=ψ(t)dydx=dy/dtdx/dt=ψ′(t)φ′(t)d2ydx2=d(dydx)dx=d(dydx)/dtdx/dt=ψ′′(t)φ′(t)−ψ′(t)φ′′(t)[φ′(t)]3\begin{aligned} & \begin{cases} x = \varphi (t) \\ y = \psi (t) \end{cases} \\\\ & \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\psi ' (t)}{\varphi ' (t)} \\ \\ & \frac{d^2 y}{dx^2} = \frac{d(\frac{dy}{dx})}{dx} = \frac {d(\frac{dy}{dx})/dt}{dx/dt} = \frac{\psi '' (t) \varphi '(t) - \psi '(t) \varphi '' (t) }{[\varphi ' (t)]^3} \end{aligned} ​{x=φ(t)y=ψ(t)​dxdy​=dx/dtdy/dt​=φ′(t)ψ′(t)​dx2d2y​=dxd(dxdy​)​=dx/dtd(dxdy​)/dt​=[φ′(t)]3ψ′′(t)φ′(t)−ψ′(t)φ′′(t)​​

变限积分求导公式

设F(x)=∫φ1(x)φ2(x)f(t)dt,则F′(x)=ddx[∫φ1(x)φ2(x)f(t)dt]=f[φ2(x)]φ2′(x)−f[φ1(x)]φ1′(x)\begin{aligned} & 设 F(x) = \int ^{\varphi_2(x)}_{\varphi_1(x)} f(t) dt, 则 \\ \\ & F'(x) = \frac{d}{dx}\begin{bmatrix}\int ^{\varphi_2(x)}_{\varphi_1(x)} f(t) dt \end{bmatrix} = f[\varphi _2(x)]\varphi '_2(x) - f[\varphi_1(x)]\varphi '_1(x) \end{aligned} ​设F(x)=∫φ1​(x)φ2​(x)​f(t)dt,则F′(x)=dxd​[∫φ1​(x)φ2​(x)​f(t)dt​]=f[φ2​(x)]φ2′​(x)−f[φ1​(x)]φ1′​(x)​

基本初等函数的导数公式(❤❤❤)

(xa)′=axa−1(a为常数)(ax)′=axln⁡a(ex)′=ex(logax)′=1xln⁡a(a>0,a≠1)(ln⁡x)′=1x(sin⁡x)′=cos⁡x(cos⁡x)′=−sin⁡x(arcsin⁡x)′=11−x2(arccos⁡x)′=−11−x2(tan⁡x)′=sec⁡2x(cot⁡x)′=−csc⁡2x(arctan⁡x)′=11+x2(arccotx)′=−11+x2(sec⁡x)′=sec⁡x⋅tan⁡x(csc⁡x)′=−csc⁡x⋅cot⁡x[ln⁡(x+x2+1)]′=1x2+1[ln⁡(x+x2−1)]′=1x2−1\begin{aligned} & (x^a)' = a x^{a-1} ~~~~~(a为常数) \\ \\ & (a^x)' = a^x \ln a \\ \\ & (e^x)' = e^x \\ \\ & (log_a x)' = \frac{1}{x \ln a} ~~~~~(a>0, a \ne 1) \\ \\ & (\ln x)' = \frac{1}{x} \\ \\ & (\sin x)' = \cos x \\ \\ & (\cos x)' = -\sin x \\ \\ & (\arcsin x)' = \frac{1}{\sqrt{1-x^2}} \\ \\ & (\arccos x)' = - \frac{1}{\sqrt{1-x^2}} \\ \\ & (\tan x)' = \sec ^2 x \\ \\ & (\cot x)' = - \csc^2 x \\ \\ & (\arctan x)' = \frac{1}{1+x^2} \\ \\ & (arccot ~ x)' = - \frac{1}{1+x^2} \\ \\ & (\sec x)' = \sec x \cdot \tan x \\ \\ & (\csc x)' = - \csc x \cdot \cot x \\ \\ & [\ln (x+\sqrt{x^2+1})]' = \frac{1}{\sqrt{x^2+1}} \\ \\ & [\ln (x+\sqrt{x^2-1})]' = \frac{1}{\sqrt{x^2-1}} \\ \\ \end{aligned} ​(xa)′=axa−1     (a为常数)(ax)′=axlna(ex)′=ex(loga​x)′=xlna1​     (a>0,a​=1)(lnx)′=x1​(sinx)′=cosx(cosx)′=−sinx(arcsinx)′=1−x2​1​(arccosx)′=−1−x2​1​(tanx)′=sec2x(cotx)′=−csc2x(arctanx)′=1+x21​(arccot x)′=−1+x21​(secx)′=secx⋅tanx(cscx)′=−cscx⋅cotx[ln(x+x2+1​)]′=x2+1​1​[ln(x+x2−1​)]′=x2−1​1​​

高阶导数的运算

[u±v](n)=u(n)±v(n)[u \pm v ]^{(n)} = u^{(n)} \pm v^{(n)} [u±v](n)=u(n)±v(n)
(uv)(n)=u(n)v+Cn1u(n−1)v′+Cn2u(n−2)v′′+...+Cnku(n−k)v(k)+...+Cnn−1u′v(n−1)+uv(n)=∑k=0nCnku(n−k)v(k)\begin{aligned} (uv)^{(n)} & = u^{(n)}v + C_n^1 u^{(n-1)}v' + C_n^2 u^{(n-2)}v'' + ... + C_n^k u^{(n-k)}v^{(k)} + ... + C_n^{n-1} u'v^{(n-1)} + uv^{(n)} \\ & = \displaystyle\sum_{k=0}^n C_n^k u^{(n-k)}v^{(k)} \end{aligned} (uv)(n)​=u(n)v+Cn1​u(n−1)v′+Cn2​u(n−2)v′′+...+Cnk​u(n−k)v(k)+...+Cnn−1​u′v(n−1)+uv(n)=k=0∑n​Cnk​u(n−k)v(k)​

常用初等函数的n阶导数公式

(ax)(n)=ax(ln⁡a)n(ex)(n)=ex(sin⁡kx)(n)=knsin⁡(kx+n⋅π2)(cos⁡kx)(n)=kncos⁡(kx+n⋅π2)(ln⁡x)(n)=(−1)n−1(n−1)!xn(x>0)[ln⁡(1+x)](n)=(−1)n−1(n−1)!(x+1)n(x>−1)[(x+x0)m](n)=m(m−1)(m−2)⋅⋅⋅⋅(m−n+1)(x+x0)m−n(1x+a)(n)=(−1)n⋅n!(x+a)n+1\begin{aligned} & (a^x)^{(n)} = a^x (\ln a)^n \\ \\ & (e^x)^{(n)} = e^x \\ \\ & (\sin kx)^{(n)} = k^n \sin (kx + n\cdot \frac{\pi}{2}) \\ \\ & (\cos kx)^{(n)} = k^n \cos (kx + n\cdot \frac{\pi}{2}) \\ \\ & (\ln x) ^ {(n)} = (-1)^{n-1} \frac{(n-1)!}{x^n} ~~~~~(x>0) \\ \\ & [\ln(1+x)]^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n} ~~~~~(x>-1) \\ \\ & [(x+x_0)^m]^{(n)} = m(m-1)(m-2)\cdotp\cdotp\cdotp\cdot (m-n+1)(x+x_0)^{m-n} \\ \\ & (\frac{1}{x+a})^{(n)} = \frac{(-1)^n \cdot n!}{(x+a)^{n+1}} \\ \\ \end{aligned} ​(ax)(n)=ax(lna)n(ex)(n)=ex(sinkx)(n)=knsin(kx+n⋅2π​)(coskx)(n)=kncos(kx+n⋅2π​)(lnx)(n)=(−1)n−1xn(n−1)!​     (x>0)[ln(1+x)](n)=(−1)n−1(x+1)n(n−1)!​     (x>−1)[(x+x0​)m](n)=m(m−1)(m−2)⋅⋅⋅⋅(m−n+1)(x+x0​)m−n(x+a1​)(n)=(x+a)n+1(−1)n⋅n!​​

极值判别条件

{1.f′(x)左右异号⟹{左正右负⟹极大值左负右正⟹极小值2.f′(x)=0,f′′(x)≠0⟹{f′′(x)<0⟹极大值f′′(x)>0⟹极小值3.f′′(x)到f(n−1)(x)=0,f(n)(x)≠0,n为偶数⟹{f(n)(x)<0⟹极大值f(n)(x)>0⟹极小值\begin{cases} 1.~~f'(x)左右异号 \implies \begin{cases} 左正右负 \implies 极大值 \\ 左负右正 \implies 极小值 \end{cases} \\ \\ 2.~~f'(x)=0, f''(x)\ne 0 \implies \begin{cases} f''(x) < 0 \implies 极大值 \\ f''(x)>0 \implies 极小值 \end{cases} \\ \\ 3. ~~f''(x) 到 f^{(n-1)}(x)=0 ,f^{(n)}(x) \ne 0, n为偶数 \implies \begin{cases} f^{(n)}(x) < 0 \implies 极大值 \\ f^{(n)}(x) > 0 \implies 极小值 \end{cases} \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧​1.  f′(x)左右异号⟹{左正右负⟹极大值左负右正⟹极小值​2.  f′(x)=0,f′′(x)​=0⟹{f′′(x)<0⟹极大值f′′(x)>0⟹极小值​3.  f′′(x)到f(n−1)(x)=0,f(n)(x)​=0,n为偶数⟹{f(n)(x)<0⟹极大值f(n)(x)>0⟹极小值​​

凹凸性判定

1.{f(x1+x22)<f(x1)+f(x2)2⟹凹f(x1+x22)>f(x1)+f(x2)2⟹凸2.{f′′(x)>0⟹凹f′′(x)<0⟹凸\begin{aligned} 1.&\begin{cases} f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2} \implies 凹 \\\\ f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2} \implies 凸 \end{cases} \\\\ 2.&\begin{cases} f''(x) > 0 \implies 凹 \\\\ f''(x) < 0 \implies 凸 \end{cases} \end{aligned} 1.2.​⎩⎪⎨⎪⎧​f(2x1​+x2​​)<2f(x1​)+f(x2​)​⟹凹f(2x1​+x2​​)>2f(x1​)+f(x2​)​⟹凸​⎩⎪⎨⎪⎧​f′′(x)>0⟹凹f′′(x)<0⟹凸​​

拐点判别条件

{1.f′′(x)左右异号⟹{左负右正⟹凸→凹左正右负⟹凹→凸2.f′′(x)=0,f′′′(x)≠0⟹{f′′′(x)<0⟹凹→凸f′′′(x)>0⟹凸→凹3.f′′(x)到f(n−1)(x)=0,f(n)(x)≠0,n为奇数⟹{f(n)(x)<0⟹凹→凸f(n)(x)>0⟹凸→凹\begin{cases} 1.~~f''(x)左右异号 \implies \begin{cases} 左负右正 \implies 凸 \to 凹 \\ 左正右负 \implies 凹 \to 凸 \end{cases} \\ \\ 2.~~f''(x)=0, f'''(x)\ne 0 \implies \begin{cases} f'''(x) < 0 \implies 凹 \to 凸 \\ f'''(x)>0 \implies 凸 \to 凹 \end{cases} \\ \\ 3. ~~f''(x) 到 f^{(n-1)}(x)=0 ,f^{(n)}(x) \ne 0, n为奇数 \implies \begin{cases} f^{(n)}(x) < 0 \implies 凹 \to 凸 \\ f^{(n)}(x) > 0 \implies 凸 \to 凹 \end{cases} \end{cases} ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧​1.  f′′(x)左右异号⟹{左负右正⟹凸→凹左正右负⟹凹→凸​2.  f′′(x)=0,f′′′(x)​=0⟹{f′′′(x)<0⟹凹→凸f′′′(x)>0⟹凸→凹​3.  f′′(x)到f(n−1)(x)=0,f(n)(x)​=0,n为奇数⟹{f(n)(x)<0⟹凹→凸f(n)(x)>0⟹凸→凹​​

斜渐近线

lim⁡x→+∞f(x)x=alim⁡x→+∞(f(x)−ax)=b⟹斜渐近线为:y=ax+b\lim_{x \to +\infty} \frac{f(x)}{x} = a ~~~~\lim_{x \to + \infty}(f(x)-ax) = b \implies 斜渐近线为: y=ax+b x→+∞lim​xf(x)​=a    x→+∞lim​(f(x)−ax)=b⟹斜渐近线为:y=ax+b

曲率

密切圆半径r=(1+y′2)32∣y′′∣曲率K=1r=∣y′′∣(1+y′2)32曲率圆(X−(x−y′(1+y′2)y′′2))2+(Y−(y+1+y′2y′′2))=((1+y′2)32∣y′′∣)2\begin{aligned} 密切圆半径 ~~~~~ & r = \frac{(1+y'^2)^{\frac{3}{2}}}{|y''|} \\ \\ 曲率 ~~~~~ &K = \frac{1}{r} = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}} \\ \\ 曲率圆 ~~~~~& (X-(x-\frac{y'(1+y'^2)}{y''^2}))^2 +(Y-(y+\frac{1+y'^2}{y''^2})) = (\frac{(1+y'^2)^{\frac{3}{2}}}{|y''|})^2 \end{aligned} 密切圆半径     曲率     曲率圆     ​r=∣y′′∣(1+y′2)23​​K=r1​=(1+y′2)23​∣y′′∣​(X−(x−y′′2y′(1+y′2)​))2+(Y−(y+y′′21+y′2​))=(∣y′′∣(1+y′2)23​​)2​

积分相关公式

定积分的精确定义

∫abf(x)dx=lim⁡n→∞∑i=1nf(a+b−ani)b−an常用:∫01f(x)dx=lim⁡n→∞∑i=1nf(in)⋅1n∫0kf(x)dx=lim⁡n→∞∑i=1knf(in)⋅1n二重定积分精确定义:∬Df(x,y)dσ=lim⁡n→∞∑i=1n∑j=1nf(a+b−ani,c+d−cnj)⋅b−an⋅d−cn常用:∫01∫01f(x,y)dxdy=lim⁡n→∞∑i=1n∑j=1nf(in,jn)⋅1n2\begin{aligned} & \int_a^b f(x) dx = \lim_{n \to \infty} \displaystyle\sum_{i=1}^n f(a+\frac{b-a}{n}i)\frac{b-a}{n} \\ \\ \\ 常用:& \int_0^1 f(x) dx = \lim_{n \to \infty} \displaystyle\sum_{i=1}^n f(\frac{i}{n})\cdot\frac{1}{n} \\ \\ & \int_0^k f(x) dx = \lim_{n \to \infty} \displaystyle\sum_{i=1}^{kn} f(\frac{i}{n})\cdot\frac{1}{n} \\ \\ \\ 二重定积分精确定义:& \iint\limits_D f(x,y) d\sigma = \lim_{n \to \infty} \displaystyle\sum_{i=1}^n \displaystyle\sum_{j=1}^n f(a+\frac{b-a}{n}i, c+\frac{d-c}{n}j) \cdot \frac{b-a}{n} \cdot \frac{d-c}{n} \\ \\ \\ 常用:&\int_0^1 \int_0^1 f(x,y) dxdy = \lim_{n \to \infty} \displaystyle\sum_{i=1}^n \displaystyle\sum_{j=1}^n f(\frac{i}{n}, \frac{j}{n})\cdot \frac{1}{n^2} \end{aligned} 常用:二重定积分精确定义:常用:​∫ab​f(x)dx=n→∞lim​i=1∑n​f(a+nb−a​i)nb−a​∫01​f(x)dx=n→∞lim​i=1∑n​f(ni​)⋅n1​∫0k​f(x)dx=n→∞lim​i=1∑kn​f(ni​)⋅n1​D∬​f(x,y)dσ=n→∞lim​i=1∑n​j=1∑n​f(a+nb−a​i,c+nd−c​j)⋅nb−a​⋅nd−c​∫01​∫01​f(x,y)dxdy=n→∞lim​i=1∑n​j=1∑n​f(ni​,nj​)⋅n21​​

分布积分公式

∫udv=uv−∫vdu∫uv(n+1)dx=uv(n)−u′v(n−1)+u′′v(n−2)−...+(−1)nu(n)v+(−1)n+1∫u(n+1)vdx\begin{aligned} & \int u dv = uv - \int vdu \\ & \int uv^{(n+1)}dx = uv^{(n)} - u'v^{(n-1)} + u''v^{(n-2)} - ... + (-1)^nu^{(n)}v + (-1)^{n+1}\int u^{(n+1)}vdx \end{aligned} ​∫udv=uv−∫vdu∫uv(n+1)dx=uv(n)−u′v(n−1)+u′′v(n−2)−...+(−1)nu(n)v+(−1)n+1∫u(n+1)vdx​

分部积分表格法

∫f(x)g(x)dx\int f(x) g(x) dx\\\\\\ ∫f(x)g(x)dx

f(x)f′(x)f′′(x)⋯f(n)(x)g(x)g1(x)g2(x)⋯gn(x)\def\arraystretch{2} \begin{array}{c:c:c:c:c} f(x) & f'(x) & f''(x) & \cdots & f^{(n)}(x) \\ \hline g(x) & g_1(x) & g_2(x) & \cdots & g_n(x) \\ \end{array} f(x)g(x)​f′(x)g1​(x)​f′′(x)g2​(x)​⋯⋯​f(n)(x)gn​(x)​​

∫f(x)g(x)dx=f(x)g1(x)−f′(x)g2(x)+f′′(x)g3(x)−⋯±∫f(n)(x)gn(x)dx其中g1(x)代表g(x)的积分,依次类推。公式为斜对角线加减交替。\int f(x) g(x) dx = f(x)g_1(x) - f'(x)g_2(x) + f''(x)g_3(x) - \cdots \pm \int f^{(n)}(x) g_n(x) dx \\ \\ 其中 g_1(x) 代表g(x)的积分,依次类推。公式为斜对角线加减交替。 ∫f(x)g(x)dx=f(x)g1​(x)−f′(x)g2​(x)+f′′(x)g3​(x)−⋯±∫f(n)(x)gn​(x)dx其中g1​(x)代表g(x)的积分,依次类推。公式为斜对角线加减交替。

区间再现公式

∫abf(x)dx=∫abf(a+b−x)dx\int_a^b f(x) dx = \int_a^b f(a+b-x) dx ∫ab​f(x)dx=∫ab​f(a+b−x)dx

华里士公式

∫0π2sin⁡nxdx=∫0π2cos⁡nxdx={n−1n⋅n−3n−2⋅⋅⋅⋅⋅12⋅π2n为正偶数n−1n⋅n−3n−2⋅⋅⋅⋅⋅23n为大于1的奇数\int_0^\frac{\pi}{2} \sin ^n x dx = \int_0^\frac{\pi}{2} \cos ^n x dx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot\cdot\cdot\cdot\cdot \frac{1}{2} \cdot \frac{\pi}{2} ~~~~~ n 为正偶数 \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot\cdot\cdot\cdot\cdot \frac{2}{3} ~~~~~ n 为大于1的奇数 \\ \end{cases} ∫02π​​sinnxdx=∫02π​​cosnxdx={nn−1​⋅n−2n−3​⋅⋅⋅⋅⋅21​⋅2π​     n为正偶数nn−1​⋅n−2n−3​⋅⋅⋅⋅⋅32​     n为大于1的奇数​

敛散性判别公式

∫1+∞1xpdx⟹{p>1⟹收敛p≤1⟹发散∫011xpdx⟹{p<1⟹收敛p≥1⟹发散\begin{aligned} & \int_1^{+\infty} \frac{1}{x^p} dx \implies & \begin{cases} p>1 \implies 收敛 \\ p \le 1 \implies 发散 \end{cases} \\\\ & \int_0^1 \frac{1}{x^p} dx \implies & \begin{cases} p < 1 \implies 收敛 \\ p \ge 1 \implies 发散 \end{cases} \\\\ \end{aligned} ​∫1+∞​xp1​dx⟹∫01​xp1​dx⟹​{p>1⟹收敛p≤1⟹发散​{p<1⟹收敛p≥1⟹发散​​

基本积分公式

以下公式中,α与a均为常数,除声明者外,a>0∫xαdx=1α+1xα+1+C(α≠−1)∫1xdx=ln⁡∣x∣+C∫axdx=axln⁡a+C(a>0,a≠1)∫exdx=ex+C∫sin⁡xdx=−cos⁡x+C∫cos⁡xdx=sin⁡x+C∫tan⁡xdx=−ln⁡∣cos⁡x∣+C∫cot⁡xdx=ln⁡∣sin⁡x∣+C∫sec⁡xdx=ln⁡∣sec⁡x+tan⁡x∣+C∫csc⁡xdx=ln⁡∣csc⁡x−cot⁡x∣+C∫sec⁡2xdx=tan⁡x+C∫csc⁡2xdx=−cot⁡x+C∫1a2+x2dx=1aarctan⁡xa+C∫1a2−x2dx=12aln⁡∣a+xa−x∣+C∫1a2−x2dx=arcsin⁡xa+C∫1x2±a2dx=ln⁡∣x+x2±a2∣+C\begin{aligned} & 以下公式中,\alpha 与 a 均为常数,除声明者外,a>0 \\ \\ & \int x^\alpha dx = \frac{1}{\alpha +1} x^{\alpha + 1} + C ~~~~~(\alpha \ne -1) \\ \\ & \int \frac{1}{x} dx = \ln |x| + C \\ \\ & \int a^x dx = \frac{a^x}{\ln a} + C ~~~~~(a >0 , a\ne 1) \\ \\ & \int e^x dx = e^x + C \\ \\ & \int \sin x dx = -\cos x + C \\ \\ & \int \cos x dx = \sin x +C \\ \\ & \int \tan x dx = - \ln |\cos x| + C \\ \\ & \int \cot xdx = \ln |\sin x| + C \\ \\ & \int \sec x dx = \ln |\sec x + \tan x| + C \\ \\ & \int \csc x dx = \ln |\csc x - \cot x| + C \\ \\ & \int \sec ^2 x dx = \tan x + C \\ \\ & \int \csc^2x dx = - \cot x + C \\ \\ & \int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C \\ \\ & \int \frac{1}{a^2-x^2} dx = \frac{1}{2a} \ln |\frac{a+x}{a-x}| + C \\ \\ & \int \frac{1}{\sqrt{a^2-x^2}} dx = \arcsin \frac{x}{a} + C \\ \\ & \int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln |x+\sqrt{x^2 \pm a^2}| + C \end{aligned} ​以下公式中,α与a均为常数,除声明者外,a>0∫xαdx=α+11​xα+1+C     (α​=−1)∫x1​dx=ln∣x∣+C∫axdx=lnaax​+C     (a>0,a​=1)∫exdx=ex+C∫sinxdx=−cosx+C∫cosxdx=sinx+C∫tanxdx=−ln∣cosx∣+C∫cotxdx=ln∣sinx∣+C∫secxdx=ln∣secx+tanx∣+C∫cscxdx=ln∣cscx−cotx∣+C∫sec2xdx=tanx+C∫csc2xdx=−cotx+C∫a2+x21​dx=a1​arctanax​+C∫a2−x21​dx=2a1​ln∣a−xa+x​∣+C∫a2−x2​1​dx=arcsinax​+C∫x2±a2​1​dx=ln∣x+x2±a2​∣+C​

重要积分公式

∫−∞+∞e−x2dx=2∫0+∞e−x2dx=π∫0+∞xne−xdx=n!∫−aaf(x)dx=∫0a[f(x)+f(−x)]dx∫0πxf(sin⁡x)dx=π2∫0πf(sin⁡x)dx=π∫0π2f(sin⁡x)dx∫abf(x)dx=(b−a)∫01f[a+(b−a)x]dx\begin{aligned} & \int_{-\infty}^{+\infty} e^{-x^2} dx = 2\int_{0}^{+\infty} e^{-x^2} dx = \sqrt{\pi} \\ \\ & \int_{0}^{+\infty} x^n e^{-x} dx = n! \\ \\ & \int_{-a}^{a} f(x) dx = \int_0^a [f(x)+f(-x)]dx \\ \\ & \int_0^\pi xf(\sin x) dx = \frac{\pi}{2} \int_0^\pi f(\sin x)dx = \pi \int_0^{\frac{\pi}{2}} f(\sin x) dx \\ \\ & \int_a^b f(x) dx = (b-a) \int_0^1 f[a+(b-a)x] dx \end{aligned} ​∫−∞+∞​e−x2dx=2∫0+∞​e−x2dx=π​∫0+∞​xne−xdx=n!∫−aa​f(x)dx=∫0a​[f(x)+f(−x)]dx∫0π​xf(sinx)dx=2π​∫0π​f(sinx)dx=π∫02π​​f(sinx)dx∫ab​f(x)dx=(b−a)∫01​f[a+(b−a)x]dx​

有理函数的拆分

Pn(x)(a1x+b1)(a2x+b2)(a3x+b3)=A1a1x+b1+A2a2x+b2+A3a2x+b2Pn(x)Qm(x)(ax+b)3=A(x)Qm(x)+A1(ax+b)3+A2(ax+b)2+A3(ax+b)Pn(x)Qm(x)(ax2+bx+c)3=A(x)Qm(x)+A1x+B1(ax2+bx+c)3+A2x+B2(ax2+bx+c)2+A3x+B3(ax2+bx+c)\begin{aligned} & \frac{P_n(x)}{(a_1 x+b_1)(a_2 x+b_2)(a_3 x+b_3)} = \frac{A_1}{a_1 x+b_1}+\frac{A_2}{a_2 x+b_2}+\frac{A_3}{a_2 x+b_2} \\ \\ & \frac{P_n(x)}{Q_m(x)(ax+b)^3} = \frac{A(x)}{Q_m(x)} + \frac{A_1}{(ax+b)^3} + \frac{A_2}{(ax+b)^2} + \frac{A_3}{(ax+b)} \\ \\ & \frac{P_n(x)}{Q_m(x)(ax^2+bx+c)^3} = \frac{A(x)}{Q_m(x)} + \frac{A_1x+B_1}{(ax^2+bx+c)^3} + \frac{A_2x+B_2}{(ax^2+bx+c)^2} + \frac{A_3x+B_3}{(ax^2+bx+c)} \\ \\ \end{aligned} ​(a1​x+b1​)(a2​x+b2​)(a3​x+b3​)Pn​(x)​=a1​x+b1​A1​​+a2​x+b2​A2​​+a2​x+b2​A3​​Qm​(x)(ax+b)3Pn​(x)​=Qm​(x)A(x)​+(ax+b)3A1​​+(ax+b)2A2​​+(ax+b)A3​​Qm​(x)(ax2+bx+c)3Pn​(x)​=Qm​(x)A(x)​+(ax2+bx+c)3A1​x+B1​​+(ax2+bx+c)2A2​x+B2​​+(ax2+bx+c)A3​x+B3​​​

积分求平均值

f(x)在[a,b]上的平均值为:∫abf(x)dxb−af(x) 在[a,b]上的平均值为: \frac{\int_a^b f(x) dx}{b-a} f(x)在[a,b]上的平均值为:b−a∫ab​f(x)dx​

定积分应用

定积分求平面图形面积

y=y1(x)与y=y2(x),及x=a,x=b(a<b)所围成的平面图形面积:S=∫ab∣y1(x)−y2(x)∣dx曲线r=r1(θ)与r=r2(θ)与两射线θ=α与θ=β(0<β−α≤2π)所围成的曲边扇形的面积:S=12∫αβ∣r12(θ)−r22(θ)∣dθ\begin{aligned} & y=y_1(x) 与 y=y_2(x),及x=a,x=b(a<b)所围成的平面图形面积:\\ \\ & S= \int_a^b |y_1(x)-y_2(x)|dx \\ \\ \\ & 曲线 r=r_1(\theta) 与 r=r_2(\theta) 与 两射线 \theta = \alpha 与 \theta = \beta (0<\beta - \alpha \le 2\pi)所围成的曲边扇形的面积:\\ \\ & S = \frac{1}{2}\int_\alpha^\beta |{r_1}^2(\theta) - {r_2}^2(\theta)|d\theta \end{aligned} ​y=y1​(x)与y=y2​(x),及x=a,x=b(a<b)所围成的平面图形面积:S=∫ab​∣y1​(x)−y2​(x)∣dx曲线r=r1​(θ)与r=r2​(θ)与两射线θ=α与θ=β(0<β−α≤2π)所围成的曲边扇形的面积:S=21​∫αβ​∣r1​2(θ)−r2​2(θ)∣dθ​

定积分求旋转体的体积

曲线y=y(x)与x=a,x=b(a<b)及x轴围成的曲边梯形绕x轴旋转一周所得到的旋转体的体积V=π∫aby2(x)dx曲线y=y1(x)≥0与y=y2(x)≥0及x=a,x=b(a<b)所围成的平面图形绕x轴旋转一周所的到的旋转体的体积V=π∫ab∣y12(x)−y22(x)∣dx曲线y=y(x)与x=a,x=b(0≤a<b)及x轴围成的曲边梯形绕y轴旋转一周所得到的的旋转体的体积Vy=2π∫abx∣y(x)∣dx曲线y=y1(x)与y=y2(x)及x=a,x=b(0≤a≤b)所围成的圆形绕y轴旋转一周所成的旋转体的体积V=2π∫abx∣y1(x)−y2(x)∣dx\begin{aligned} & 曲线 y=y(x)与x=a,x=b(a<b)及x轴围成的曲边梯形绕x轴旋转一周所得到的旋转体的体积 \\ \\ & V = \pi\int_a^b y^2(x) dx \\ \\ \\ & 曲线y=y_1(x) \ge 0 与 y = y_2(x) \ge 0 及 x=a,x=b(a<b)所围成的平面图形绕x轴旋转一周所的到的旋转体的体积 \\ \\ & V = \pi \int_a^b |{y_1}^2(x) - {y_2}^2(x)| dx \\ \\ \\ & 曲线 y=y(x) 与 x=a,x=b(0\le a < b) 及x轴围成的曲边梯形绕y轴旋转一周所得到的的旋转体的体积 \\ \\ & V_y = 2\pi \int_a^b x|y(x)|dx \\ \\ \\ & 曲线y=y_1(x)与y=y_2(x)及x=a,x=b(0\le a \le b)所围成的圆形绕y轴旋转一周所成的旋转体的体积 \\\\ & V= 2\pi \int_a^b x |{y_1}(x) - {y_2}(x)| dx \end{aligned} ​曲线y=y(x)与x=a,x=b(a<b)及x轴围成的曲边梯形绕x轴旋转一周所得到的旋转体的体积V=π∫ab​y2(x)dx曲线y=y1​(x)≥0与y=y2​(x)≥0及x=a,x=b(a<b)所围成的平面图形绕x轴旋转一周所的到的旋转体的体积V=π∫ab​∣y1​2(x)−y2​2(x)∣dx曲线y=y(x)与x=a,x=b(0≤a<b)及x轴围成的曲边梯形绕y轴旋转一周所得到的的旋转体的体积Vy​=2π∫ab​x∣y(x)∣dx曲线y=y1​(x)与y=y2​(x)及x=a,x=b(0≤a≤b)所围成的圆形绕y轴旋转一周所成的旋转体的体积V=2π∫ab​x∣y1​(x)−y2​(x)∣dx​

平面曲线的弧长

L=∫ab1+[y′(x)]2dxL=∫αβ[x′(t)]2+[y′(t)]2dtL=∫αβ[r(θ)]2+[r′(θ)]2dθ\begin{aligned} & L = \int_a^b \sqrt{1+[y'(x)]^2}dx \\ \\ & L = \int_\alpha^\beta \sqrt{[x'(t)]^2 + [y'(t)]^2}dt \\ \\ & L = \int_\alpha^\beta \sqrt{[r(\theta)]^2+[r'(\theta)]^2}d\theta \end{aligned} ​L=∫ab​1+[y′(x)]2​dxL=∫αβ​[x′(t)]2+[y′(t)]2​dtL=∫αβ​[r(θ)]2+[r′(θ)]2​dθ​

旋转曲面的面积

曲线y=y(x)在区间[a,b]上的曲线弧段绕x轴旋转一周所得到的旋转曲面的“面积”S=2π∫ab∣y(x)∣1+[y′(x)]2dxS=2π∫ab∣y(t)∣[x′(t)]2+[y′(t)]2dtS=2π∫αβrsin⁡θr2+(r′)2dθ\begin{aligned} & 曲线y=y(x)在区间[a,b]上的曲线弧段绕x轴旋转一周所得到的旋转曲面的“面积” \\\\ & S = 2\pi \int_a^b |y(x)| \sqrt{1+[y'(x)]^2}dx \\ \\ & S = 2\pi \int_a^b |y(t)| \sqrt{[x'(t)]^2 + [y'(t)]^2} dt \\ \\ & S = 2\pi \int_\alpha^\beta r\sin \theta \sqrt{r^2 + (r')^2} d\theta \end{aligned} ​曲线y=y(x)在区间[a,b]上的曲线弧段绕x轴旋转一周所得到的旋转曲面的“面积”S=2π∫ab​∣y(x)∣1+[y′(x)]2​dxS=2π∫ab​∣y(t)∣[x′(t)]2+[y′(t)]2​dtS=2π∫αβ​rsinθr2+(r′)2​dθ​

平面截面面积为已知的立体体积

在区间[a,b]上,垂直于x轴的平面截立体Ω所得到截面面积为x的连续函数A(x),则Ω的体积为V=∫abA(x)dx\begin{aligned} & 在区间[a,b]上,垂直于x轴的平面截立体\Omega所得到截面面积为x的连续函数A(x),则\Omega的体积为 \\ \\ & V = \int_a^b A(x)dx \end{aligned} ​在区间[a,b]上,垂直于x轴的平面截立体Ω所得到截面面积为x的连续函数A(x),则Ω的体积为V=∫ab​A(x)dx​

变力沿直线做功

设力函数为F(x)(a≤x≤b),则物体沿x轴从点a移动到点b时,变力F(x)所做的功为W=∫abF(x)dx\begin{aligned} & 设力函数为F(x) (a\le x \le b),则物体沿x轴从点a移动到点b时,变力F(x)所做的功为 \\\\ & W = \int_a^bF(x)dx \end{aligned} ​设力函数为F(x)(a≤x≤b),则物体沿x轴从点a移动到点b时,变力F(x)所做的功为W=∫ab​F(x)dx​

抽水做功

W=ρg∫abxA(x)dx(ρ为水的密度,g为重力加速度,A(x)为水平截面面积)\begin{aligned} & W = \rho g \int_a^b xA(x)dx ~~~~~\\\\ &(\rho为水的密度,g为重力加速度,A(x)为水平截面面积) \end{aligned} ​W=ρg∫ab​xA(x)dx     (ρ为水的密度,g为重力加速度,A(x)为水平截面面积)​

水压力

P=ρg∫abx[f(x)−h(x)]dx(ρ为水的密度,g为重力加速度,f(x)−h(x)是矩形条的宽度,dx是矩形条的高度)\begin{aligned} & P = \rho g \int_a^b x[f(x)-h(x)]dx ~~~~~\\\\ &(\rho为水的密度,g为重力加速度,f(x)-h(x)是矩形条的宽度,dx是矩形条的高度) \end{aligned} ​P=ρg∫ab​x[f(x)−h(x)]dx     (ρ为水的密度,g为重力加速度,f(x)−h(x)是矩形条的宽度,dx是矩形条的高度)​

质心

直线段的质心(一维)

xˉ=∫abxρ(x)dx∫abρ(x)dxρ(x)为不均匀物体的密度与x的函数关系\begin{aligned} & \bar{x} = \frac{\int_a^b x \rho(x)dx}{\int_a^b \rho(x)dx} \\\\ & \rho(x) 为不均匀物体的密度与x的函数关系 \end{aligned} ​xˉ=∫ab​ρ(x)dx∫ab​xρ(x)dx​ρ(x)为不均匀物体的密度与x的函数关系​

不均匀薄片质心(二维)

xˉ=MyM=∬Dxρ(x,y)dxdy∬Dρ(x,y)dxdyyˉ=MxM=∬Dyρ(x,y)dxdy∬Dρ(x,y)dxdyρ(x,y)为不均匀物体的密度与x,y的函数关系\begin{aligned} & \bar{x} = \frac{M_y}{M} = \frac{\iint\limits_D x \rho(x,y)dxdy}{\iint\limits_D \rho(x,y) dxdy} \\\\ & \bar{y} = \frac{M_x}{M} = \frac{\iint\limits_D y \rho(x,y)dxdy}{\iint\limits_D \rho(x,y) dxdy} \\\\ & \rho(x,y) 为不均匀物体的密度与x,y的函数关系 \end{aligned} ​xˉ=MMy​​=D∬​ρ(x,y)dxdyD∬​xρ(x,y)dxdy​yˉ​=MMx​​=D∬​ρ(x,y)dxdyD∬​yρ(x,y)dxdy​ρ(x,y)为不均匀物体的密度与x,y的函数关系​

形心

xˉ=MyM=∬Dxdxdy∬Ddxdyyˉ=MxM=∬Dydxdy∬Ddxdy质量均匀的情况下,质心与形心重合,即舍去密度ρ(x,y)\begin{aligned} & \bar{x} = \frac{M_y}{M} = \frac{\iint\limits_D x dxdy}{\iint\limits_D dxdy} \\\\ & \bar{y} = \frac{M_x}{M} = \frac{\iint\limits_D y dxdy}{\iint\limits_D dxdy} \\\\ & 质量均匀的情况下,质心与形心重合,即舍去密度\rho(x,y) \end{aligned} ​xˉ=MMy​​=D∬​dxdyD∬​xdxdy​yˉ​=MMx​​=D∬​dxdyD∬​ydxdy​质量均匀的情况下,质心与形心重合,即舍去密度ρ(x,y)​

质量

m=∬Dρ(x,y)dxdym = \iint\limits_D \rho (x,y)dxdy m=D∬​ρ(x,y)dxdy

转动惯量

Ix=∬Dy2ρ(x,y)dxdyIy=∬Dx2ρ(x,y)dxdy\begin{aligned} & I_x = \iint\limits_D y^2 \rho(x,y)dxdy \\\\ & I_y = \iint\limits_D x^2 \rho(x,y)dxdy \\\\ \end{aligned} ​Ix​=D∬​y2ρ(x,y)dxdyIy​=D∬​x2ρ(x,y)dxdy​

物理公式

浮力公式:F浮=ρ液gV排压强:P=FS(F为压力,S为受力面积)压强与气体体积成反比:PV=k(k=nRT,n是分子个数,R为常数,T为温度)水深h处的压强:P=ρgh在水中的压力:F压=P压S受压面积=ρghS受压面积力:F=G重力=mg重力加速度做功:W功=F力S距离=mgh高度=ρghV=ρgsh2密度公式:ρ=mV引力:F=Gm1m2r2(质量为m1,m2相距为r的两质点间的引力大小)\begin{aligned} 浮力公式:~~~ & F_{浮} = \rho_{_液}gV_{_排} \\\\ 压强:~~~& P = \frac{F}{S} ~~~~~~~(F为压力,S为受力面积)\\\\ 压强与气体体积成反比:~~~& PV=k ~~~~~(k=nRT,n是分子个数,R为常数,T为温度) \\\\ 水深h处的压强:~~~& P=\rho gh \\\\ 在水中的压力:~~~& F_{_压} = P_{_压}S_{_{受压面积}} = \rho g h S_{_{受压面积}} \\ \\ 力:~~~& F = G_{_{重力}} = mg_{_{重力加速度}} \\ \\ 做功:~~~& W_功 = F_{_力} S_{_{距离}} = mgh_{_{高度}} = \rho g h V =\rho g s h^2 \\ \\ 密度公式:~~~& \rho = \frac{m}{V} \\\\ 引力:~~~ & F = G \frac{m_1 m_2}{r^2} ~~~~~~~(质量为m_1,m_2相距为r的两质点间的引力大小) \end{aligned} 浮力公式:   压强:   压强与气体体积成反比:   水深h处的压强:   在水中的压力:   力:   做功:   密度公式:   引力:   ​F浮​=ρ液​​gV排​​P=SF​       (F为压力,S为受力面积)PV=k     (k=nRT,n是分子个数,R为常数,T为温度)P=ρghF压​​=P压​​S受压面积​​=ρghS受压面积​​F=G重力​​=mg重力加速度​​W功​=F力​​S距离​​=mgh高度​​=ρghV=ρgsh2ρ=Vm​F=Gr2m1​m2​​       (质量为m1​,m2​相距为r的两质点间的引力大小)​

泰勒公式

f(x)=f(a)0!+f′(a)1!(x−a)+f′′(a)2!(x−a)2+...+f(n)(a)n!(x−a)n+Rn(x)=lim⁡n→∞∑i=0nf(n)(a)n!(x−a)n\begin{aligned} f(x) & = \frac{f(a)}{0!} + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + ... + \frac{f^{(n)}(a)}{n!} (x-a)^n + R_n(x) \\ \\ & = \lim_{n \to \infty} \displaystyle\sum_{i=0}^n \frac{f^{(n)}(a)}{n!} (x-a)^n \end{aligned} f(x)​=0!f(a)​+1!f′(a)​(x−a)+2!f′′(a)​(x−a)2+...+n!f(n)(a)​(x−a)n+Rn​(x)=n→∞lim​i=0∑n​n!f(n)(a)​(x−a)n​

拉格朗日余项的泰勒公式

f(x)=f(a)0!+f′(a)1!(x−a)+f′′(a)2!(x−a)2+...+f(n)(a)n!(x−a)n+f(n+1)(ξ)(n+1)!(x−a)n+1其中ξ介于x,a之间.f(x) = \frac{f(a)}{0!} + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + ... + \frac{f^{(n)}(a)}{n!} (x-a)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} ~~~~~其中\xi 介于x,a之间. f(x)=0!f(a)​+1!f′(a)​(x−a)+2!f′′(a)​(x−a)2+...+n!f(n)(a)​(x−a)n+(n+1)!f(n+1)(ξ)​(x−a)n+1     其中ξ介于x,a之间.

佩亚诺余项的泰勒公式

f(x)=f(a)0!+f′(a)1!(x−a)+f′′(a)2!(x−a)2+...+f(n)(a)n!(x−a)n+o((x−a)n)f(x) = \frac{f(a)}{0!} + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + ... + \frac{f^{(n)}(a)}{n!} (x-a)^n + o((x-a)^n) f(x)=0!f(a)​+1!f′(a)​(x−a)+2!f′′(a)​(x−a)2+...+n!f(n)(a)​(x−a)n+o((x−a)n)

常用的泰勒展开式

sin⁡x=x−x33!+o(x3)cos⁡x=1−x22!+x44!+o(x4)arcsin⁡x=x+x33!+o(x3)tan⁡x=x+x33+o(x3)arctan⁡x=x−x33+x55+o(x5)(1+x)α=1+αx+α(α−1)2!x2+o(x2)11−x=1+x+x2+x3+o(x3)11+x=1−x+x2−x3+o(x3)ln⁡(1+x)=x−x22+x33−x44+o(x4)11+x2=1−x2+x4−x6+o(x6)ex=1+x+x22!+x33!+o(x3)\begin{aligned} & \\ & \sin x = x - \frac{x^3}{3!} + o(x^3) \\ \\ & \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4) \\ \\ & \arcsin x = x + \frac{x^3}{3!} + o(x^3) \\ \\ \\ & \tan x = x + \frac{x^3}{3} + o (x^3) \\ \\ & \arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + o(x^5) \\ \\ \\ & (1+x)^\alpha = 1 + \alpha x + \frac{\alpha (\alpha - 1)}{2!} x^2 + o(x^2) \\ \\ & \frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3) \\ \\ & \frac{1}{1+x} = 1 - x + x^2 - x^3 + o(x^3) \\ \\ & \ln (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4) \\ \\ & \frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + o(x^6) \\ \\ & e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3) \end{aligned} ​sinx=x−3!x3​+o(x3)cosx=1−2!x2​+4!x4​+o(x4)arcsinx=x+3!x3​+o(x3)tanx=x+3x3​+o(x3)arctanx=x−3x3​+5x5​+o(x5)(1+x)α=1+αx+2!α(α−1)​x2+o(x2)1−x1​=1+x+x2+x3+o(x3)1+x1​=1−x+x2−x3+o(x3)ln(1+x)=x−2x2​+3x3​−4x4​+o(x4)1+x21​=1−x2+x4−x6+o(x6)ex=1+x+2!x2​+3!x3​+o(x3)​

口诀:指对连,三角断,三角对数隔一换,三角指数有感叹,反三角它同又乱
指对连:指数函数、对数函数,都是12345连续的
三角断:三角函数的展开式是135,246这样不连续的
三角对数隔一换:三角函数和对数函数的符号隔一个换一次
三角指数有感叹:三角函数和指数函数中分母有阶层(感叹号)
反三角它同又乱:反三角函数的和三角函数第一项相同,第二项为相反数

中值定理

罗尔定理

设f(x)满足{(1)[a,b]上连续(2)(a,b)内可导(3)f(a)=f(b)⟹则∃ξ∈(a,b),使得f′(ξ)=0设f(x)满足 \begin{cases} (1)[a,b]上连续 \\ (2)(a,b) 内可导 \\ (3)f(a) = f(b) \end{cases} \implies则\exists \xi \in (a,b),使得 f'(\xi)=0 设f(x)满足⎩⎪⎨⎪⎧​(1)[a,b]上连续(2)(a,b)内可导(3)f(a)=f(b)​⟹则∃ξ∈(a,b),使得f′(ξ)=0

罗尔定理推论

若f(n)(x)=0至多k个根⟹则f(n−1)(x)=0至多k+1个根若 f^{(n)}(x)=0 至多k个根 \implies 则 f^{(n-1)}(x)=0至多k+1个根 若f(n)(x)=0至多k个根⟹则f(n−1)(x)=0至多k+1个根

罗尔定理证明题辅助函数构造

f′′(x)+g(x)f′(x)=0⟹F(x)=f′(x)e∫g(x)dxf(x)+g(x)∫0xf(t)dt=0⟹F(x)=∫0xf(t)dt⋅e∫g(x)dxf′(x)+g(x)[f(x)−1]=0⟹F(x)=[f(x)−1]⋅e∫g(x)dx⋅⋅⋅⋅⋅⋅⋅⋅\begin{aligned} & f''(x) + g(x)f'(x) = 0 \implies F(x) = f'(x) e^{\int g(x)dx} \\ \\ & f(x) + g(x)\int_0^x f(t)dt = 0 \implies F(x) = \int_0^x f(t) dt \cdot e^{\int g(x)dx} \\ \\ & f'(x) + g(x)[f(x)-1] =0 \implies F(x) = [f(x) -1] \cdot e^{\int g(x)dx} \\ \\ & \cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot \end{aligned} ​f′′(x)+g(x)f′(x)=0⟹F(x)=f′(x)e∫g(x)dxf(x)+g(x)∫0x​f(t)dt=0⟹F(x)=∫0x​f(t)dt⋅e∫g(x)dxf′(x)+g(x)[f(x)−1]=0⟹F(x)=[f(x)−1]⋅e∫g(x)dx⋅⋅⋅⋅⋅⋅⋅⋅​

微分方程构造罗尔定理辅助函数

欲证:F[ξ,f(ξ),f′(ξ)]=01)求微分方程F(x,y,y′)=0的通解H(x,y)=C2)设辅助函数:g(x)=H(x,f(x))\begin{aligned} & 欲证:F[\xi, f(\xi), f'(\xi)] = 0 \\ \\ & 1) 求微分方程 F(x, y, y') =0的通解H(x,y) =C \\ \\ & 2) 设辅助函数:g(x) = H(x, f(x)) \end{aligned} ​欲证:F[ξ,f(ξ),f′(ξ)]=01)求微分方程F(x,y,y′)=0的通解H(x,y)=C2)设辅助函数:g(x)=H(x,f(x))​

拉格朗日中值定理

设f(x)满足{(1)[a,b]上连续(2)(a,b)内可导⟹则∃ξ∈(a,b),使得f(b)−f(a)=f′(ξ)(b−a),或者写成f′(ξ)=f(b)−f(a)b−a\begin{aligned} & 设f(x)满足 \begin{cases} (1)[a,b]上连续 \\ (2)(a,b) 内可导 \\ \end{cases} \\ \\ & \implies则\exists \xi \in (a,b),使得 f(b)-f(a) = f'(\xi)(b-a),或者写成 \\ \\ & f'(\xi) = \frac{f(b)-f(a)}{b-a} \end{aligned} ​设f(x)满足{(1)[a,b]上连续(2)(a,b)内可导​⟹则∃ξ∈(a,b),使得f(b)−f(a)=f′(ξ)(b−a),或者写成f′(ξ)=b−af(b)−f(a)​​

柯西中值定理

设f(x),g(x)满足{(1)[a,b]上连续(2)(a,b)内可导(3)g′(x)≠0⟹则∃ξ∈(a,b),使得f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)\begin{aligned} & 设f(x),g(x)满足 \begin{cases} (1)[a,b]上连续 \\ (2)(a,b) 内可导 \\ (3)g'(x) \neq 0 \end{cases} \\ \\ & \implies则\exists \xi \in (a,b),使得 \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)} \end{aligned} ​设f(x),g(x)满足⎩⎪⎨⎪⎧​(1)[a,b]上连续(2)(a,b)内可导(3)g′(x)​=0​⟹则∃ξ∈(a,b),使得g(b)−g(a)f(b)−f(a)​=g′(ξ)f′(ξ)​​

积分中值定理

f(x)在[a,b]上连续⟹存在η∈[a,b],使得∫abf(x)dx=f(η)(b−a)f(x),g(x)在[a,b]上连续,且g(x)不变号⟹∫abf(x)g(x)dx=f(η)∫abg(x)dx二重积分中值定理,D上连续,A为D的面积⟹∬Df(x,y)dxdy=f(ξ,η)A\begin{aligned} & f(x)在[a,b]上连续 \implies 存在 \eta \in [a,b], 使得 \\ & \int_a^b f(x) dx = f(\eta)(b-a) \\ \\ \\ & f(x),g(x)在[a,b]上连续,且g(x)不变号 \implies \\ & \int_a^b f(x)g(x)dx = f(\eta)\int_a^b g(x)dx \\\\\\ & 二重积分中值定理,D上连续,A为D的面积 \implies \\ & \iint\limits_D f(x,y) dxdy = f(\xi, \eta)A \end{aligned} ​f(x)在[a,b]上连续⟹存在η∈[a,b],使得∫ab​f(x)dx=f(η)(b−a)f(x),g(x)在[a,b]上连续,且g(x)不变号⟹∫ab​f(x)g(x)dx=f(η)∫ab​g(x)dx二重积分中值定理,D上连续,A为D的面积⟹D∬​f(x,y)dxdy=f(ξ,η)A​

多元微积分相关公式

多元微分定义

定义:Δz=AΔx+BΔy+o(ρ)(ρ=(Δx)2+(Δy)2)全增量:Δz=f(x0+Δx,y0+Δy)−f(x0,y0)线性增量:AΔx+BΔy其中A=fx′(x0,y0),B=fy′(x0,y0)可微判定:lim⁡Δx→0Δy→0Δz−(AΔx+BΔy)(Δx)2+(Δy)2⟹{=0⟹可微≠0⟹不可微\begin{aligned} 定义:& \Delta z = A \Delta x + B \Delta y + o (\rho) ~~~~~~ (\rho = \sqrt{(\Delta x)^2 + (\Delta y) ^2}) \\ \\ 全增量:& \Delta z =f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \\ \\ 线性增量:& A\Delta x + B \Delta y ~~~~~~ 其中 ~~ A=f'_x(x_0, y_0),B=f'_y(x_0, y_0) \\ \\ 可微判定:& \lim_{\underset{\Delta y \to 0}{\Delta x \to 0}} \frac{\Delta z - (A\Delta x + B \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y )^2}} \implies \begin{cases} = 0 \implies 可微 \\ \ne 0 \implies 不可微 \end{cases} \\ \\ \end{aligned} 定义:全增量:线性增量:可微判定:​Δz=AΔx+BΔy+o(ρ)      (ρ=(Δx)2+(Δy)2​)Δz=f(x0​+Δx,y0​+Δy)−f(x0​,y0​)AΔx+BΔy      其中  A=fx′​(x0​,y0​),B=fy′​(x0​,y0​)Δy→0Δx→0​lim​(Δx)2+(Δy)2​Δz−(AΔx+BΔy)​⟹{=0⟹可微​=0⟹不可微​​

多元隐函数求导

∂z∂x=−Fx′Fz′∂z∂y=−Fy′Fz′\begin{aligned} & \frac{\partial z}{\partial x} = - \frac{F'_x}{F'_z} \\ \\ & \frac{\partial z}{\partial y} = - \frac{F'_y}{F'_z} \\ \end{aligned} ​∂x∂z​=−Fz′​Fx′​​∂y∂z​=−Fz′​Fy′​​​

极坐标下二重积分计算法

∬Df(x,y)dσ=∫αβdθ∫r1(θ)r2(θ)f(rcos⁡θ,rsin⁡θ)rdr\underset{D}{\iint} f(x,y)d\sigma = \int_\alpha^\beta d\theta \int_{r_1(\theta)}^{r_2(\theta)}f(r\cos \theta, r\sin\theta)rdr D∬​f(x,y)dσ=∫αβ​dθ∫r1​(θ)r2​(θ)​f(rcosθ,rsinθ)rdr

隐函数存在定理

F函数F(x,y,z)在点P(x0,y0,z0)的某一邻域内具有连续偏导数F(x0,y0,z0)=0,Fz′(x0,y0,z0)≠0⟹方程F(x,y,z)=0在点(x0,y0,z0)的某一邻域内能唯一确定一个连续且具有连续偏导数的函数z=f(x,y)\begin{aligned} & F函数F(x,y,z)在点P(x_0,y_0,z_0)的某一邻域内具有连续偏导数 \\ & F(x_0, y_0, z_0) =0, F'_z(x_0, y_0, z_0) \ne 0 \\ \implies & 方程F(x,y,z)=0 在点(x_0, y_0, z_0)的某一邻域内能唯一确定\\ &一个连续且具有连续偏导数的函数 z=f(x,y) \end{aligned} ⟹​F函数F(x,y,z)在点P(x0​,y0​,z0​)的某一邻域内具有连续偏导数F(x0​,y0​,z0​)=0,Fz′​(x0​,y0​,z0​)​=0方程F(x,y,z)=0在点(x0​,y0​,z0​)的某一邻域内能唯一确定一个连续且具有连续偏导数的函数z=f(x,y)​

多元函数极值判定

1.求出同时满足fx′(x,y)=0,fy′(x,y)=0的“一组”(x0,y0)2.记{fxx′′(x0,y0)=Afxy′′(x0,y0)=Bfyy′′(x0,y0)=C则Δ=B2−AC{<0⟹极值{A<0⟹极大值A>0⟹极小值>0⟹非极值=0⟹方法失效,另谋他法\begin{aligned} 1.&~~~ 求出同时满足 f'_x(x,y) =0,f'_y(x,y) =0的“一组”(x_0,y_0) \\ \\ 2. &~~~ 记 \begin{cases} f''_{xx}(x_0,y_0) =A \\ f''_{xy}(x_0,y_0) =B \\ f''_{yy}(x_0,y_0)=C \end{cases} ~~则 \Delta=B^2-AC \begin{cases} <0 \implies 极值 \begin{cases} A<0 \implies 极大值 \\ A>0 \implies 极小值 \end{cases} \\ >0 \implies 非极值 \\ =0 \implies 方法失效,另谋他法 \end{cases} \end{aligned} 1.2.​   求出同时满足fx′​(x,y)=0,fy′​(x,y)=0的“一组”(x0​,y0​)   记⎩⎪⎨⎪⎧​fxx′′​(x0​,y0​)=Afxy′′​(x0​,y0​)=Bfyy′′​(x0​,y0​)=C​  则Δ=B2−AC⎩⎪⎪⎪⎨⎪⎪⎪⎧​<0⟹极值{A<0⟹极大值A>0⟹极小值​>0⟹非极值=0⟹方法失效,另谋他法​​

拉格朗日数乘法求最值

求u=f(x,y,z)在条件{ϕ(x,y,z)=0ψ(x,y,z)=0的最值1.构造辅助函数F(x,y,z,λ,μ)=f(x,y,z)+λϕ(x,y,z)+μψ(x,y,z)2.得{Fx′=fx′+λϕx′+μψx′=0Fy′=fy′+λϕy′+μψy′=0Fz′=fz′+λϕz′+μψz′=0Fλ′=ϕ(x,y,z)=0Fμ′=ψ(x,y,z)=03.解方程得备选点Pi,i=1,2,3,⋯,n4.求f(Pi),取最大值为umax,最小值为umin\begin{aligned} & 求 u = f(x,y,z) 在条件\begin{cases} \phi(x,y,z) =0 \\ \psi(x,y,z) = 0 \end{cases} 的最值 \\\\\\ 1.&~~~ 构造辅助函数~~ F(x,y,z,\lambda, \mu) = f(x,y,z) + \lambda \phi(x,y,z) + \mu \psi(x,y,z) \\\\ 2.&~~~ 得 \begin{cases} F_x' = f_x' + \lambda\phi _x' +\mu \psi_x' = 0 \\ F_y' = f_y' + \lambda\phi _y' +\mu \psi_y' = 0 \\ F_z' = f_z' + \lambda\phi _z' +\mu \psi_z' = 0 \\ F_{\lambda}' = \phi(x,y,z) = 0 \\ F_{\mu}' = \psi(x,y,z) = 0 \\ \end{cases} \\\\ 3.& ~~~解方程得备选点 P_i, i=1,2,3, \cdots,n \\\\ 4.& ~~~求f(P_i) ,取最大值为 u_{max},最小值为u_{min} \end{aligned} 1.2.3.4.​求u=f(x,y,z)在条件{ϕ(x,y,z)=0ψ(x,y,z)=0​的最值   构造辅助函数  F(x,y,z,λ,μ)=f(x,y,z)+λϕ(x,y,z)+μψ(x,y,z)   得⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧​Fx′​=fx′​+λϕx′​+μψx′​=0Fy′​=fy′​+λϕy′​+μψy′​=0Fz′​=fz′​+λϕz′​+μψz′​=0Fλ′​=ϕ(x,y,z)=0Fμ′​=ψ(x,y,z)=0​   解方程得备选点Pi​,i=1,2,3,⋯,n   求f(Pi​),取最大值为umax​,最小值为umin​​

多重积分的应用

空间曲面的面积

A=∬D1+(∂z∂x)2+(∂z∂y)2dxdy\begin{aligned} & \\ & A = \iint\limits_D \sqrt{1+(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2} ~ dxdy \end{aligned} ​A=D∬​1+(∂x∂z​)2+(∂y∂z​)2​ dxdy​

微分方程

一阶线性微分方程

y′+p(x)y=q(x)其中p(x),q(x)为连续函数⟹y=e−∫p(x)dx(∫e∫p(x)dx⋅q(x)dx+C)\begin{aligned} & y' + p(x)y = q(x) ~~~~~其中p(x),q(x)为连续函数 \implies \\\\ &y = e^{-\int p(x)dx} (\int e^{\int p(x)dx} \cdot q(x) dx + C) \end{aligned} ​y′+p(x)y=q(x)     其中p(x),q(x)为连续函数⟹y=e−∫p(x)dx(∫e∫p(x)dx⋅q(x)dx+C)​

二阶常系数齐次线性微分方程的通解

y′′+py′+qy=0p,q为常数⇒特征方程为λ2+pλ+q=0⟹{p2−4q>0,⇒通解为y=C1eλ1x+C2eλ2xp2−4q=0,⇒通解为y=(C1+C2x)eλxp2−4q<0,λ1,2=α±iβ⇒通解为y=eαx(C1cos⁡βx+C2sin⁡βx)\begin{aligned} & y'' + py' + qy =0 ~~~~~~~~p,q为常数 \\ \\ \xRightarrow{特征方程为} & ~~ \lambda^2 + p\lambda + q = 0 \\ \\ \implies & \begin{cases} p^2 - 4q>0 , \xRightarrow{通解为} y=C_1 e^{\lambda _1x} + C_2 e^{\lambda _2 x} \\ \\ p^2 - 4q=0 , \xRightarrow{通解为} y = (C_1+C_2x)e^{\lambda x}\\ \\ p^2 - 4q<0 , \lambda_{1,2}=\alpha \pm i\beta ~~~ \xRightarrow{通解为} y = e^{\alpha x} (C_1 \cos \beta x + C_2\sin \beta x) \end{cases} \end{aligned} 特征方程为​⟹​y′′+py′+qy=0        p,q为常数  λ2+pλ+q=0⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧​p2−4q>0,通解为​y=C1​eλ1​x+C2​eλ2​xp2−4q=0,通解为​y=(C1​+C2​x)eλxp2−4q<0,λ1,2​=α±iβ   通解为​y=eαx(C1​cosβx+C2​sinβx)​​

三阶常系数齐次线性微分方程的通解

y′′′+py′′+qy′+ry=0p,q,r为常数⇒特征方程为λ3+pλ2+qλ+r=0⟹{λ1,λ2,λ3∈R,且λ1≠λ2≠λ3,⇒通解为y=C1eλ1x+C2eλ2x+C3eλ3xλ1,λ2,λ3∈R,且λ1=λ2≠λ3⇒通解为y=(C1+C2x)eλ1x+C3eλ3xλ1,λ2,λ3∈R,且λ1=λ2=λ3⇒通解为y=(C1+C2x+C3x2)eλ1xλ1∈R,λ2,3=α±iβ⇒通解为y=C1eλ1x+eαx(C2cos⁡βx+C3sin⁡βx)\begin{aligned} & y''' + py'' + qy' +ry =0 ~~~~~~~~p,q,r为常数 \\ \\ \xRightarrow{特征方程为} & ~~ \lambda^3 + p\lambda^2 + q\lambda + r = 0 \\ \\ \implies & \begin{cases} \lambda_1,\lambda_2,\lambda_3\in R, 且\lambda_1 \ne \lambda_2 \ne \lambda_3, \xRightarrow{通解为} y=C_1 e^{\lambda _1x} + C_2 e^{\lambda _2 x} + C_3 e^{\lambda _3 x} \\ \\ \lambda_1,\lambda_2,\lambda_3\in R, 且\lambda_1 = \lambda_2 \ne \lambda_3 \xRightarrow{通解为} y = (C_1+C_2x)e^{\lambda_1 x} + C_3 e^{\lambda_3 x}\\ \\ \lambda_1,\lambda_2,\lambda_3\in R, 且\lambda_1 = \lambda_2 = \lambda_3 \xRightarrow{通解为} y = (C_1+C_2x + C_3x^2)e^{\lambda_1 x}\\ \\ \lambda_1 \in R, \lambda_{2,3}=\alpha \pm i\beta ~~~ \xRightarrow{通解为} y = C_1e^{\lambda_1x} + e^{\alpha x} (C_2 \cos \beta x + C_3\sin \beta x) \end{cases} \end{aligned} 特征方程为​⟹​y′′′+py′′+qy′+ry=0        p,q,r为常数  λ3+pλ2+qλ+r=0⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧​λ1​,λ2​,λ3​∈R,且λ1​​=λ2​​=λ3​,通解为​y=C1​eλ1​x+C2​eλ2​x+C3​eλ3​xλ1​,λ2​,λ3​∈R,且λ1​=λ2​​=λ3​通解为​y=(C1​+C2​x)eλ1​x+C3​eλ3​xλ1​,λ2​,λ3​∈R,且λ1​=λ2​=λ3​通解为​y=(C1​+C2​x+C3​x2)eλ1​xλ1​∈R,λ2,3​=α±iβ   通解为​y=C1​eλ1​x+eαx(C2​cosβx+C3​sinβx)​​

二阶常系数非齐次线性微分方程的特解

y′′+py′+qy=f(x)(1)自由项f(x)=Pn(x)eax时,特解为y∗=eaxQn(x)xk其中{eax照抄Qn(x)为x的n次一般多项式k={0,a≠λ1,a≠λ21,a=λ1或a=λ22,a=λ1=λ2(2)自由项f(x)=eax[Pm(x)cos⁡βx+Pn(x)sin⁡βx]时,y∗=eax[Ql(1)(x)cos⁡βx+Ql(2)(x)sin⁡βx]xk其中,{eax照抄l=max{m,n},Ql(1)(x),Ql(2)(x)分别为x的两个不同的l次一般多项式k={0,a±βi不是特征根1,a±βi是特征根\begin{aligned} & y'' + py'+qy = f(x) \\ \\ (1)& 自由项f(x)=P_n(x)e^{ax} ~时,特解为 ~ y^*= e^{ax}Q_n(x) x^k \\ \\ 其中 & \begin{cases} e^{ax} ~~照抄 \\ Q_n(x) 为x的n次一般多项式 \\ k = \begin{cases} 0,~~~ a\ne \lambda_1, a \ne \lambda_2 \\ 1,~~~ a = \lambda_1 或a=\lambda_2 \\ 2,~~~ a = \lambda_1 = \lambda_2 \end{cases} \end{cases} \\ \\ \\ (2) & 自由项~ f(x) = e^{ax}[P_m(x) \cos \beta x + P_n(x) \sin \beta x] ~时, \\ \\ & y^* = e^{ax} [ Q_l^{(1)}(x) \cos \beta x + Q_l^{(2)}(x)\sin \beta x]x^k \\ \\ 其中,& \begin{cases} e^{ax} ~~照抄 \\ l=max\{ m, n \} ,Q_l^{(1)}(x), Q_l^{(2)}(x)分别为x的两个不同的l次一般多项式 \\ \\ k = \begin{cases} 0,~~~ a \pm \beta i ~不是特征根 \\ 1,~~~ a \pm \beta i ~是特征根 \\ \end{cases} \end{cases} \end{aligned} (1)其中(2)其中,​y′′+py′+qy=f(x)自由项f(x)=Pn​(x)eax 时,特解为 y∗=eaxQn​(x)xk⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧​eax  照抄Qn​(x)为x的n次一般多项式k=⎩⎪⎨⎪⎧​0,   a​=λ1​,a​=λ2​1,   a=λ1​或a=λ2​2,   a=λ1​=λ2​​​自由项 f(x)=eax[Pm​(x)cosβx+Pn​(x)sinβx] 时,y∗=eax[Ql(1)​(x)cosβx+Ql(2)​(x)sinβx]xk⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧​eax  照抄l=max{m,n},Ql(1)​(x),Ql(2)​(x)分别为x的两个不同的l次一般多项式k={0,   a±βi 不是特征根1,   a±βi 是特征根​​​

“算子法”求二阶常系数非齐次线性微分方程的特解

y(n)+a1y(n−1)+a2y(n−2)+⋯+any=f(x)记:ddx=D,D表示求导,1D表示积分F(D)=Dn+a1Dn−1+a2Dn−2+⋯+an−1D+an则,特解y∗=1F(D)f(x)(1)y′′+py′+qy=aekx则y∗=1D2+pD+qaekx=1k2+pk+qaekx(将D换成k)=x12k+paekx(上式分母为零,提x,求导)以此类推(2)y′′+py′+qy=sin⁡ax(或cos⁡ax)则y∗=1D2+pD+qsin⁡ax=1−a2+pD+qsin⁡ax(将D2换成−a2,若为0与(1)一样,提x求导)=pD−(q−a2)p2D2−(q−a2)2sin⁡αx(若分母包含D,则通过(a+b)(a−b)得出D2)(3)y′′+a1y′+a2y=Pn(x)y∗=1D2+a1D+a2Pn(x)=1Du11−(kD)mPn(x)(大概化成这种形式)=1Du(1+kD+(kD)2+⋯)Pn(x)(11−(kD)m泰勒展开)=Qn(x)(4)y′′+a1y′+a2y=ekxf(x)=ekx1F(D+k)f(x)(然后看右边,根据f(x)的形式,转(1)(2)(3)方法求解)\begin{aligned} & y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \cdots + a_n y = f(x) \\\\\\ 记:& \frac{d}{dx} = D, ~~~D表示求导,\frac{1}{D} 表示积分 \\ \\ & F(D) = D^n + a_1D^{n-1} + a_2D^{n-2} + \cdots + a_{n-1}D + a_n \\\\ 则,特解~~~& y^* = \frac{1}{F(D)} f(x) \\ \\ \\ & (1) ~~~ y'' + py' + qy = ae^{kx} \\\\ & 则 ~~y^*= \frac{1}{D^2 + pD + q} ae^{kx} \\\\ & = \frac{1}{k^2+pk+q} ae^{kx} ~~~~~(将D换成k) \\ \\ & = x \frac{1}{2k+p} ae^{kx} ~~~~~~(上式分母为零,提x,求导) ~~ 以此类推 \\ \\ \\ & (2)~~~ y'' + py' + qy = \sin a x (或\cos a x) \\\\ & 则 ~~y*= \frac{1}{D^2 + pD + q} \sin a x \\\\ & = \frac{1}{-a^2+pD+q} \sin a x ~~~~~~(将D^2换成-a^2,若为0与(1)一样,提x求导) \\ \\ & = \frac{pD-(q-a^2)}{p^2D^2 - (q-a^2)^2} \sin \alpha x ~~~~~~(若分母包含D,则通过(a+b)(a-b)得出D^2) \\ \\ \\ & (3) ~~~ y '' + a_1 y ' + a_2 y = P_n(x) \\\\ & y^* = \frac{1}{D^2 + a_1D + a_2} P_n(x) \\\\ & = \frac{1}{D^u} \frac{1}{1 - (kD)^m} P_n(x) ~~(大概化成这种形式)\\\\ & = \frac{1}{D^u} (1 + kD + (kD)^2 + \cdots)P_n(x) ~~~~~~(\frac{1}{1 - (kD)^m}泰勒展开)\\\\ & = Q_n(x) \\\\\\ & (4)~~~~ y'' + a_1y' + a_2y = e^{kx} f(x) \\\\ & = e^{kx} \frac{1}{F(D+k)} f(x) ~~~~~~~(然后看右边,根据f(x)的形式,转(1)(2)(3)方法求解) \end{aligned} 记:则,特解   ​y(n)+a1​y(n−1)+a2​y(n−2)+⋯+an​y=f(x)dxd​=D,   D表示求导,D1​表示积分F(D)=Dn+a1​Dn−1+a2​Dn−2+⋯+an−1​D+an​y∗=F(D)1​f(x)(1)   y′′+py′+qy=aekx则  y∗=D2+pD+q1​aekx=k2+pk+q1​aekx     (将D换成k)=x2k+p1​aekx      (上式分母为零,提x,求导)  以此类推(2)   y′′+py′+qy=sinax(或cosax)则  y∗=D2+pD+q1​sinax=−a2+pD+q1​sinax      (将D2换成−a2,若为0与(1)一样,提x求导)=p2D2−(q−a2)2pD−(q−a2)​sinαx      (若分母包含D,则通过(a+b)(a−b)得出D2)(3)   y′′+a1​y′+a2​y=Pn​(x)y∗=D2+a1​D+a2​1​Pn​(x)=Du1​1−(kD)m1​Pn​(x)  (大概化成这种形式)=Du1​(1+kD+(kD)2+⋯)Pn​(x)      (1−(kD)m1​泰勒展开)=Qn​(x)(4)    y′′+a1​y′+a2​y=ekxf(x)=ekxF(D+k)1​f(x)       (然后看右边,根据f(x)的形式,转(1)(2)(3)方法求解)​

情况3可以用多项式除法求解:例题见下图,就是画圈的那个可以变成 (-1/3 - 2/9D …)。用1除以分母,分母从低次幂到高次幂写。(先将就下吧,马上考试了,考完试再整理,md政治还没背

线性代数

行列式

∣A∣=∣AT∣∣kA∣=kn∣A∣∣AB∣=∣A∣∣B∣Aij=(−1)i+jMij\begin{aligned} & |A| = |A^T| \\ \\ & |kA| = k^n|A| \\ \\ & |AB| = |A||B| \\ \\ & A_{ij} = (-1)^{i+j}M_{ij} \\ \\ \end{aligned} ​∣A∣=∣AT∣∣kA∣=kn∣A∣∣AB∣=∣A∣∣B∣Aij​=(−1)i+jMij​​

几个重要的行列式

∣a110…00a22…0⋮⋮⋮00…ann∣=∣a110…0a21a22…0⋮⋮⋮an1an2…ann∣=∣a11a12…a1n0a22…a2n⋮⋮⋮00…ann∣=∏i=1naii∣0…0a1n0…a2,n−10⋮⋮⋮an1…00∣=∣0…0a1n0…a2,n−1⋮an1∣=∣a1na2,n−10⋮⋮an1…00∣=(−1)n(n−1)2a1na2,n−1…an1∣11⋯1x1x2⋯xnx12x22⋯xn2⋮⋮⋮x1n−1x2n−1⋯xnn−1∣=∏1≤i<j≤n(xj−xi)∣abb⋯bbab⋯bbba⋯b⋮⋮⋮⋮bbb⋯a∣=[a+(n−1)b](a−b)n−1∣AOOB∣=∣ACOB∣=∣AOCB∣=∣A∣∣B∣∣OAn×nBm×mO∣=∣OABC∣=∣CABO∣=(−1)mn∣A∣∣B∣\begin{aligned} & \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix} = \prod_{i=1}^na_{ii} \\ \\ \\ & \begin{vmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & a_{2,n-1} & 0 \\ \vdots & & \vdots & \vdots \\ a_{n1} & \dots & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & a_{2,n-1} & \\ \vdots & & & \\ a_{n1} & & & \end{vmatrix} = \begin{vmatrix} & & & a_{1n} \\ & & a_{2,n-1} & 0 \\ & & \vdots & \vdots \\ a_{n1} & \dots & 0 & 0 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}\dots a_{n1} \\ \\ \\ & \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \\ \end{vmatrix} = \prod_{1\le i <j \le n}(x_j-x_i) \\ \\ \\ & \begin{vmatrix} a & b & b & \cdots & b \\ b & a & b & \cdots & b \\ b & b & a & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & a \\ \end{vmatrix} = [a+(n-1)b](a-b)^{n-1} \\ \\ \\ & \begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = |A||B| \\ \\ \\ & \begin{vmatrix} O & A_{n\times n} \\ B_{m\times m} & O \end{vmatrix} = \begin{vmatrix} O & A \\ B & C \end{vmatrix} = \begin{vmatrix} C & A \\ B & O \end{vmatrix} = (-1)^{mn}|A||B| \end{aligned} ​∣∣∣∣∣∣∣∣∣​a11​0⋮0​0a22​⋮0​………​00⋮ann​​∣∣∣∣∣∣∣∣∣​=∣∣∣∣∣∣∣∣∣​a11​a21​⋮an1​​0a22​⋮an2​​………​00⋮ann​​∣∣∣∣∣∣∣∣∣​=∣∣∣∣∣∣∣∣∣​a11​0⋮0​a12​a22​⋮0​………​a1n​a2n​⋮ann​​∣∣∣∣∣∣∣∣∣​=i=1∏n​aii​∣∣∣∣∣∣∣∣∣​00⋮an1​​………​0a2,n−1​⋮0​a1n​0⋮0​∣∣∣∣∣∣∣∣∣​=∣∣∣∣∣∣∣∣∣​00⋮an1​​……​0a2,n−1​​a1n​​∣∣∣∣∣∣∣∣∣​=∣∣∣∣∣∣∣∣∣​an1​​…​a2,n−1​⋮0​a1n​0⋮0​∣∣∣∣∣∣∣∣∣​=(−1)2n(n−1)​a1n​a2,n−1​…an1​∣∣∣∣∣∣∣∣∣∣∣​1x1​x12​⋮x1n−1​​1x2​x22​⋮x2n−1​​⋯⋯⋯⋯​1xn​xn2​⋮xnn−1​​∣∣∣∣∣∣∣∣∣∣∣​=1≤i<j≤n∏​(xj​−xi​)∣∣∣∣∣∣∣∣∣∣∣​abb⋮b​bab⋮b​bba⋮b​⋯⋯⋯⋯​bbb⋮a​∣∣∣∣∣∣∣∣∣∣∣​=[a+(n−1)b](a−b)n−1∣∣∣∣​AO​OB​∣∣∣∣​=∣∣∣∣​AO​CB​∣∣∣∣​=∣∣∣∣​AC​OB​∣∣∣∣​=∣A∣∣B∣∣∣∣∣​OBm×m​​An×n​O​∣∣∣∣​=∣∣∣∣​OB​AC​∣∣∣∣​=∣∣∣∣​CB​AO​∣∣∣∣​=(−1)mn∣A∣∣B∣​

矩阵

(AT)T=A(kA)T=kAT(A+B)T=AT+BT(AB)T=BTATAA∗=A∗A=∣A∣E∣A∗∣=∣A∣n−1A−1=1∣A∣A∗A=∣A∣(A∗)−1(A−1)−1=A(kA)−1=k−1A−1(AB)−1=B−1A−1(AT)−1=(A−1)T(AT)∗=(A∗)T(A−1)∗=(A∗)−1(AB)∗=B∗A∗(A∗)∗=∣A∣n−2A∣A−1∣=∣A∣−1[A∣E]→初等行变换[E∣A−1][A∣B]→初等行变换[E∣A−1B]\begin{aligned} & (A^T)^T = A \\ \\ & (kA)^T = kA^T \\ \\ & (A+B)^T = A^T + B^T \\ \\ & (AB)^T = B^TA^T \\ \\ & AA^* = A^*A = |A|E \\ \\ & |A^*|=|A|^{n-1} \\ \\ & A^{-1} = \frac{1}{|A|}A^* \\ \\ & A = |A|(A^*)^{-1} \\ \\ & (A^{-1})^{-1} = A \\ \\ & (kA)^{-1} = k^{-1}A^{-1} \\ \\ & (AB)^{-1} =B^{-1}A^{-1} \\ \\ & (A^T)^{-1} = (A^{-1})^T \\ \\ & (A^T)^* = (A^*)^T \\ \\ & (A^{-1})^* = (A^*)^{-1} \\ \\ & (AB)^* = B^*A^* \\ \\ & (A^*)^* = |A|^{n-2}A \\ \\ & |A^{-1}| = |A|^{-1} \\ \\ & [A|E] \xrightarrow{初等行变换}[E|A^{-1}] \\\\ & [A|B] \xrightarrow{初等行变换}[E|A^{-1}B] \\\\ \end{aligned} ​(AT)T=A(kA)T=kAT(A+B)T=AT+BT(AB)T=BTATAA∗=A∗A=∣A∣E∣A∗∣=∣A∣n−1A−1=∣A∣1​A∗A=∣A∣(A∗)−1(A−1)−1=A(kA)−1=k−1A−1(AB)−1=B−1A−1(AT)−1=(A−1)T(AT)∗=(A∗)T(A−1)∗=(A∗)−1(AB)∗=B∗A∗(A∗)∗=∣A∣n−2A∣A−1∣=∣A∣−1[A∣E]初等行变换​[E∣A−1][A∣B]初等行变换​[E∣A−1B]​

分块矩阵

[AOOB]n=[AnOOBn]\begin{aligned} \begin{bmatrix} A & O \\ O & B \end{bmatrix}^n = \begin{bmatrix} A^n & O \\ O & B^n \end{bmatrix} \end{aligned} [AO​OB​]n=[AnO​OBn​]​

正交矩阵

A是正交矩阵⟺AT=A−1⟺ATA=AAT=E⟺A的行(列)向量组是标准正交向量组⟹∣A∣=±1⟹λ=±1\begin{aligned} & A是正交矩阵 \\\\ \iff & A^T =A^{-1} \\ \\ \iff & A^T A = AA^T = E \\ \\ \iff & A的行(列)向量组是标准正交向量组 \\ \\ \implies & |A| = \pm 1 \\ \\ \implies & \lambda = \pm 1 \\ \\ \end{aligned} ⟺⟺⟺⟹⟹​A是正交矩阵AT=A−1ATA=AAT=EA的行(列)向量组是标准正交向量组∣A∣=±1λ=±1​

施密特正交化

β1=α1β2=α2−(α2,β1)(β1,β1)β1β3=α3−(α3,β2)(β2,β2)β2−(α3,β1)(β1,β1)β1⋯⋯βn=αn−(αn,βn−1)(βn−1,βn−1)βn−1−(αn,βn−2)(βn−2,βn−2)βn−2−⋯−(αn,β1)(β1,β1)β1η1=β1∣∣β1∣∣,η2=β2∣∣β2∣∣,⋯,ηn=βn∣∣βn∣∣其中:(α,β)=αTβ=βTα=∑i=1naibi(α,α)=a12+a22+⋯+an2=∑i=1nai2∣∣β∣∣=(β,β)=b12+b22+⋯+bn2\begin{aligned} & \beta_1 = \alpha_1 \\ \\ & \beta_2 = \alpha_2 - \frac{(\alpha_2,\beta_1)}{(\beta_1, \beta_1)}\beta_1 \\ \\ & \beta_3 = \alpha_3 - \frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2 - \frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1 \\ \\ & \cdots\cdots \\\\ & \beta_n = \alpha_n - \frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1},\beta_{n-1})}\beta_{n-1} - \frac{(\alpha_n,\beta_{n-2})}{(\beta_{n-2},\beta_{n-2})}\beta_{n-2} - \cdots - \frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1 \\ \\ \\ & \eta_1 = \frac{\beta_1}{||\beta_1||}, \eta_2 = \frac{\beta_2}{||\beta_2||}, \cdots , \eta_n = \frac{\beta_n}{||\beta_n||} \\\\\\ 其中:& (\alpha, \beta) = \alpha^T\beta = \beta^T\alpha=\sum_{i=1}^na_ib_i \\ \\ & (\alpha,\alpha) = a_1^2 + a_2^2 + \cdots +a_n^2 = \sum_{i=1}^n a_i^2 \\ \\ & || \beta || = \sqrt{(\beta,\beta)} = \sqrt{b_1^2+b_2^2 + \cdots + b_n^2 } \end{aligned} 其中:​β1​=α1​β2​=α2​−(β1​,β1​)(α2​,β1​)​β1​β3​=α3​−(β2​,β2​)(α3​,β2​)​β2​−(β1​,β1​)(α3​,β1​)​β1​⋯⋯βn​=αn​−(βn−1​,βn−1​)(αn​,βn−1​)​βn−1​−(βn−2​,βn−2​)(αn​,βn−2​)​βn−2​−⋯−(β1​,β1​)(αn​,β1​)​β1​η1​=∣∣β1​∣∣β1​​,η2​=∣∣β2​∣∣β2​​,⋯,ηn​=∣∣βn​∣∣βn​​(α,β)=αTβ=βTα=i=1∑n​ai​bi​(α,α)=a12​+a22​+⋯+an2​=i=1∑n​ai2​∣∣β∣∣=(β,β)​=b12​+b22​+⋯+bn2​​​

可逆矩阵

A可逆⟺∣A∣≠0⟺A的行(列)向量组线性无关⟺Ax=0有唯一零解⟺Ax=b有唯一解⟺r(A)=n⟺特征值λi≠0\begin{aligned} & A可逆 \\\\ \iff & |A| \ne 0 \\ \\ \iff & A的行(列)向量组线性无关 \\\\ \iff & Ax=0 有唯一零解 \\\\ \iff & Ax=b 有唯一解 \\\\ \iff & r(A)=n \\\\ \iff & 特征值 \lambda_i \ne 0 \end{aligned} ⟺⟺⟺⟺⟺⟺​A可逆∣A∣​=0A的行(列)向量组线性无关Ax=0有唯一零解Ax=b有唯一解r(A)=n特征值λi​​=0​

等价矩阵

A,B等价⟺A≅B⟺PAQ=B,P,Q可逆⟺r(A)=r(B){α1,α2,⋯,αs}≅{β1,β2,⋯,βt}⟺{α1,α2,⋯,αs}与{β1,β2,⋯,βt}可以互相表出⟺r(α1,α2,⋯,αs)=r(β1,β2,⋯,βt),且可单方向表出⟺r(α1,α2,⋯,αs)=r(β1,β2,⋯,βt)=r(α1,α2,⋯,αs,β1,β2,⋯,βt)\begin{aligned} & A, B等价 \\\\ \iff & A \cong B \\ \\ \iff & PAQ = B , ~~~~~P,Q可逆 \\ \\ \iff & r(A) = r(B) \\\\\\ & \{\alpha_1,\alpha_2, \cdots, \alpha_s\} \cong \{\beta_1,\beta_2, \cdots, \beta_t \} \\ \\ \iff & \{\alpha_1,\alpha_2, \cdots, \alpha_s\} 与 \{\beta_1,\beta_2, \cdots, \beta_t \} 可以互相表出 \\ \\ \iff & r(\alpha_1,\alpha_2, \cdots, \alpha_s) = r(\beta_1,\beta_2, \cdots, \beta_t ),且可单方向表出 \\ \\ \iff & r(\alpha_1,\alpha_2, \cdots, \alpha_s) = r(\beta_1,\beta_2, \cdots, \beta_t ) = r(\alpha_1,\alpha_2, \cdots, \alpha_s, \beta_1,\beta_2, \cdots, \beta_t) \\ \\ \end{aligned} ⟺⟺⟺⟺⟺⟺​A,B等价A≅BPAQ=B,     P,Q可逆r(A)=r(B){α1​,α2​,⋯,αs​}≅{β1​,β2​,⋯,βt​}{α1​,α2​,⋯,αs​}与{β1​,β2​,⋯,βt​}可以互相表出r(α1​,α2​,⋯,αs​)=r(β1​,β2​,⋯,βt​),且可单方向表出r(α1​,α2​,⋯,αs​)=r(β1​,β2​,⋯,βt​)=r(α1​,α2​,⋯,αs​,β1​,β2​,⋯,βt​)​

秩相关公式

A是m×n矩阵,则:r(A)≤min{m,n}r(A)=r(AT)r(kA)=r(A)(k≠0)r(A+B)≤r(A)+r(B)r(AB)≤min{r(A),r(B)}r(A)+r(B)−n≤r(AB)r(A)+r(B)≤n(其中,AB=O,n是A的列数或B的行数)r(AOOB)=r(A)+r(B)r(A)+r(B)≤r(AOCB)≤r(A)+r(B)+r(C)r(A)=r(ATA)r(A)=1⟹∃非零α,β,使得A=αβTr(ααT)=1{r(A)=n⟹r(A∗)=nr(A)=n−1⟹r(A∗)=1r(A)<n−1⟹r(A∗)=0\begin{aligned} & A是m\times n矩阵,则:\\\\ & r(A) \le min\{m,n\} \\ \\ & r(A) = r(A^T) \\ \\ & r(kA) = r(A) ~~(k\ne0)\\ \\ & r(A+B) \le r(A) + r(B) \\ \\ & r(AB) \le min\{r(A), r(B)\} \\ \\ & r(A) + r(B) -n \le r(AB) \\ \\ & r(A) + r(B) \le n ~~~~(其中,AB=O,n是A的列数或B的行数) \\\\ & r\begin{pmatrix} A & O \\ O & B \end{pmatrix} = r(A) + r(B) \\ \\ & r(A) + r(B) \le r\begin{pmatrix} A & O \\ C & B \end{pmatrix} \le r(A) + r(B) + r(C) \\\\ & r(A) = r(A^T A) \\ \\ & r(A) = 1 \implies \exists 非零 \alpha, \beta ,使得 A = \alpha\beta^T \\ \\ & r(\alpha \alpha^T) = 1 \\ \\ & \begin{cases} r(A) = n ~~~~~~~~~~ \implies ~~~ r(A^*) = n \\ r(A) = n - 1 ~~~ \implies ~~~ r(A^*) = 1 \\ r(A) < n - 1 ~~~ \implies ~~~ r(A^*) = 0 \\ \end{cases} \\\\ \end{aligned} ​A是m×n矩阵,则:r(A)≤min{m,n}r(A)=r(AT)r(kA)=r(A)  (k​=0)r(A+B)≤r(A)+r(B)r(AB)≤min{r(A),r(B)}r(A)+r(B)−n≤r(AB)r(A)+r(B)≤n    (其中,AB=O,n是A的列数或B的行数)r(AO​OB​)=r(A)+r(B)r(A)+r(B)≤r(AC​OB​)≤r(A)+r(B)+r(C)r(A)=r(ATA)r(A)=1⟹∃非零α,β,使得A=αβTr(ααT)=1⎩⎪⎨⎪⎧​r(A)=n          ⟹   r(A∗)=nr(A)=n−1   ⟹   r(A∗)=1r(A)<n−1   ⟹   r(A∗)=0​​

特征值与特征向量

∑i=1nλi=∑i=1naii∏i=1nλi=∣A∣\begin{aligned} & \sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii} \\ \\ & \prod_{i=1}^n \lambda_i = |A| \\\\ \end{aligned} ​i=1∑n​λi​=i=1∑n​aii​i=1∏n​λi​=∣A∣​

矩阵AkAAkf(A)A−1A∗A−1+f(A)特征值λkλλkf(λ)λ−1∣A∣λ1λ+f(λ)对应的特征向量ξξξξξξξ\def\arraystretch{2} \begin{array}{c:c:c:c:c:c:c:c} 矩阵 & A & kA & A^k & f(A) & A^{-1} & A^* & A^{-1} + f(A) \\ \hline 特征值 & \lambda & k\lambda & \lambda^k & f(\lambda) & \lambda^{-1} & \frac{|A|}{\lambda} & \frac{1}{\lambda} + f(\lambda) \\ \hline 对应的特征向量 & \xi & \xi&\xi&\xi&\xi&\xi&\xi \end{array} 矩阵特征值对应的特征向量​Aλξ​kAkλξ​Akλkξ​f(A)f(λ)ξ​A−1λ−1ξ​A∗λ∣A∣​ξ​A−1+f(A)λ1​+f(λ)ξ​​

相似矩阵

A∼B⟺P−1AP=B⟺λE−A∼λE−B⟺μE−A≅μE−B(其中μ为任意实数,即r(μE−A)=r(μE−B))⟹r(A)=r(B)⟹∣A∣=∣B∣⟹∣λE−A∣=∣λE−B∣⟹r(λE−A)=r(λE−B)⟹A,B特征值相同,且相同特征值对应的线性无关的特征向量个数相同⟹∑aii=∑bii⟹A与B均可对角化,或均不可对角化⟹A⋍B(A,B合同)⟹Am∼Bm⟹AT∼BT⟹f(A)∼f(B)⟹A−1∼B−1⟹f(A−1)∼f(B−1)\begin{aligned} & A \sim B \\ \\ \iff & P^{-1}AP = B \\\\ \iff & \lambda E-A \sim \lambda E-B \\\\ \iff & \mu E-A \cong \mu E-B (其中\mu 为任意实数,即 r(\mu E-A) = r(\mu E-B)) \\\\\\ \implies & r(A) = r(B) \\ \\ \implies & |A| = |B| \\ \\ \implies & |\lambda E-A| = |\lambda E-B| \\ \\ \implies & r(\lambda E-A) = r(\lambda E-B) \\ \\ \implies & A,B特征值相同,且相同特征值对应的线性无关的特征向量个数相同 \\ \\ \implies & \sum a_{ii} = \sum b_{ii} \\ \\ \implies & A与B均可对角化,或均不可对角化 \\ \\ \implies & A\backsimeq B ~~~(A,B合同) \\\\ \implies & A^m \sim B^m \\ \\ \implies & A^T \sim B^T \\ \\ \implies & f(A) \sim f(B) \\ \\ \implies & A^{-1} \sim B^{-1} \\ \\ \implies & f(A^{-1}) \sim f(B^{-1}) \\ \\ \end{aligned} ⟺⟺⟺⟹⟹⟹⟹⟹⟹⟹⟹⟹⟹⟹⟹⟹​A∼BP−1AP=BλE−A∼λE−BμE−A≅μE−B(其中μ为任意实数,即r(μE−A)=r(μE−B))r(A)=r(B)∣A∣=∣B∣∣λE−A∣=∣λE−B∣r(λE−A)=r(λE−B)A,B特征值相同,且相同特征值对应的线性无关的特征向量个数相同∑aii​=∑bii​A与B均可对角化,或均不可对角化A⋍B   (A,B合同)Am∼BmAT∼BTf(A)∼f(B)A−1∼B−1f(A−1)∼f(B−1)​

相似对角化

A∼Λ⟺A有n个线性无关的特征向量⟺A的ri重特征值有ri个线性无关的特征向量A=AT(A是实对称矩阵)⟹A的特征值为实数,特征向量为实向量⟹A∼Λ⟹A的属于不同特征值的特征向量相互正交\begin{aligned} & A \sim \Lambda \\ \\ \iff & A有n个线性无关的特征向量 \\\\ \iff & A的r_i重特征值有r_i个线性无关的特征向量 \\ \\ \\ \\ & A = A^T ~~~~~(A是实对称矩阵) \\ \\ \implies & A的特征值为实数,特征向量为实向量 \\ \\ \implies & A \sim \Lambda \\\\ \implies & A的属于不同特征值的特征向量相互正交 \\ \\ \end{aligned} ⟺⟺⟹⟹⟹​A∼ΛA有n个线性无关的特征向量A的ri​重特征值有ri​个线性无关的特征向量A=AT     (A是实对称矩阵)A的特征值为实数,特征向量为实向量A∼ΛA的属于不同特征值的特征向量相互正交​

矩阵合同

A,B合同⟺A⋍B⟺∃可逆矩阵C,使得CTAC=B⟺A,B正负惯性指数相同⟹r(A)=r(B)=不能推出⇏A,B相似合同判别法:A,B均为实对称矩阵,A,B合同的充分必要条件是A,B的正负惯性指数相同\begin{aligned} & A,B合同 \\\\ \iff & A \backsimeq B \\\\ \iff & \exist 可逆矩阵 C,使得 C^TAC=B \\\\ \iff & A,B正负惯性指数相同 \\\\\\ \implies & r(A) = r(B) \\\\ \xlongequal{不能推出}\nRightarrow & A,B相似 \\\\\\ 合同判别法:& A,B均为实对称矩阵,A,B合同的充分必要条件是A,B的正负惯性指数相同 \end{aligned} ⟺⟺⟺⟹不能推出⇏合同判别法:​A,B合同A⋍B∃可逆矩阵C,使得CTAC=BA,B正负惯性指数相同r(A)=r(B)A,B相似A,B均为实对称矩阵,A,B合同的充分必要条件是A,B的正负惯性指数相同​

正定二次型

f=xTAx正定⟺对任意x≠0,xTAx>0⟺f的正惯性指数p=n⟺∃可逆阵D,使A=DTD⟺A⋍E⟺A与一正定矩阵合同⟺∃可逆矩阵P,使PTAP=E⟺A的所有特征值λi>0⟺A的全部顺序主子式>0⟹aii>0⟹∣A∣>0⟹kA,AT,Ak,A−1,A∗,f(A)正定(AOOB)正定⟺A,B正定\begin{aligned} & f=x^TAx正定 \\\\ \iff & 对任意x \ne 0, x^TAx>0 \\ \\ \iff & f的正惯性指数 p = n \\ \\ \iff & \exists 可逆阵D,使 A = D^TD \\ \\ \iff & A \backsimeq E \\ \\ \iff & A与一正定矩阵合同 \\ \\ \iff & \exists 可逆矩阵P,使 P^TAP = E \\\\ \iff & A的所有特征值 \lambda_i>0 \\ \\ \iff & A的全部顺序主子式 > 0 \\ \\ \implies & a_{ii} >0 \\ \\ \implies & |A| > 0 \\ \\ \implies & kA, A^T,A^k, A^{-1}, A^*, f(A)正定 \\ \\ \\ & \begin{pmatrix} A & O \\ O & B \end{pmatrix} 正定 \iff A,B正定 \end{aligned} ⟺⟺⟺⟺⟺⟺⟺⟺⟹⟹⟹​f=xTAx正定对任意x​=0,xTAx>0f的正惯性指数p=n∃可逆阵D,使A=DTDA⋍EA与一正定矩阵合同∃可逆矩阵P,使PTAP=EA的所有特征值λi​>0A的全部顺序主子式>0aii​>0∣A∣>0kA,AT,Ak,A−1,A∗,f(A)正定(AO​OB​)正定⟺A,B正定​

二次型配方法(通法)

情形1:二次型含有平方项,即∃aii≠0,不妨设a11≠01.记f1=12∂f∂x12.令f(x1,x2,x3,...)=1a11(f1)2+g,此时g中不含x1情形2:二次型不含平方项,即任意aii=0,但至少存在一个a1j≠0,不妨设a12≠01.记f1=12∂f∂x1,f2=12∂f∂x22.令f(x1,x2,x3,...)=1a12[(f1+f2)2−(f1−f2)2]+ϕ,此时,ϕ不含x1,x2根据当前未配出的多项式,根据情况进行相应处理\begin{aligned} 情形1:& 二次型含有平方项,即\exist a_{ii} \neq 0,不妨设a_{11}\neq 0 \\\\ & 1. 记 f_1 = \frac{1}{2} \frac{\partial f}{\partial x_1} \\\\ & 2. 令 f(x_1, x_2, x_3, ...) = \frac{1}{a_{11}} (f_1)^2 +g,此时g中不含x1 \\\\ 情形2:&二次型不含平方项,即任意 a_{ii} = 0,但至少存在一个 a_{1j} \neq 0,不妨设 a_{12} \neq 0 \\ \\ & 1. 记 f_1 = \frac{1}{2} \frac{\partial f}{\partial x_1},~~f_2 = \frac{1}{2} \frac{\partial f}{\partial x_2} \\ \\ & 2. 令 f(x_1,x_2,x_3,...) = \frac{1}{a_{12}} [(f_1+f_2)^2 - (f_1-f_2)^2] + \phi, 此时,\phi不含x_1,x_2 \\ \\ \\ & 根据当前未配出的多项式,根据情况进行相应处理 \end{aligned} 情形1:情形2:​二次型含有平方项,即∃aii​​=0,不妨设a11​​=01.记f1​=21​∂x1​∂f​2.令f(x1​,x2​,x3​,...)=a11​1​(f1​)2+g,此时g中不含x1二次型不含平方项,即任意aii​=0,但至少存在一个a1j​​=0,不妨设a12​​=01.记f1​=21​∂x1​∂f​,  f2​=21​∂x2​∂f​2.令f(x1​,x2​,x3​,...)=a12​1​[(f1​+f2​)2−(f1​−f2​)2]+ϕ,此时,ϕ不含x1​,x2​根据当前未配出的多项式,根据情况进行相应处理​

考研必备数学公式大全(数学二)相关推荐

  1. 考研必备数学公式大全(数学二)(基础回顾篇)

    由于公式太多,汇总成一篇容易打不开,所以分三篇.整篇链接:https://blog.csdn.net/zhaohongfei_358/article/details/106039576 章节 链接 基 ...

  2. 【计算机考研复习计划】数学二+英语二+政治+408相关科目的复习建议

    时间段1:3~4月 数学二 书籍:基础阶段推荐李永乐等几位老师一起出的复习全书,边看视频边做对应习题 <660>:如果觉得全书上的题不够做的话,这个就可以作为补充题.如果数学二目标130+ ...

  3. 考研高等数学公式(数学一)

    文章目录 初等数学 因式分解 经典不等式 数列 等差 等比 其他 三角 倍角 和差 降阶 平方 和差化积 积化和差 几何 幂指函数化简 极限 泰勒展开式(幂级数)(8+4) 重要极限 一元微分 导数定 ...

  4. 考研高等数学公式总结(二)

    想要原版的可以购买我的资源,CSDN有些公式无法显示,且有篇幅限制,PDF资源或下载到本地可完美显示 不定积分公式 ∫xkdx=1k+1xk+1+C,k≠−1\int x^kdx = \cfrac { ...

  5. 高等数学公式大全(二)

    一元函数积分学的概念与计算 章节概括 概念 不定积分 原函数与不定积分 原函数(不定积分存在定理) 定积分 定积分概念 定积分存在定理 定积分性质 变限积分 变限积分的概念 变限积分的性质 变限积分的 ...

  6. 计算机考数学二英语二的学校,2020考研答疑:数学二和英语二,该怎么提前准备呢_工作和考研要如何选择-聚创考研网...

    考研问答在线答疑,聚创为你解答那些~~~考研一定要知道的事情~~ [第122期答疑] 1.跨考人力资源管理,哪些学校比较好? Q:你好,我想问一下跨考人力资源管理,哪些学校比较好(本科中央民族大学,行 ...

  7. 计算机考研数学考一还是二,考研我不知道自己考数一还是数学二

    考研我不知道自己考数一还是数学二以下文字资料是由(历史新知网www.lishixinzhi.com)小编为大家搜集整理后发布的内容,让我们赶快一起来看一下吧! 考研我不知道自己考数一还是数学二 数一主 ...

  8. 计算机考研数学考数学二的专业,考研常识:哪些专业考数学二?

    作为一枚考研新手,在复习前你是否了解以下的几件事了呢?建议同学们在考研前要了解这些考研常识,对整年的复习做一个详细的规划哦--以下是"考研常识:哪些专业考数学二?",对大家有帮助. ...

  9. 计算机考研数学考数学几,2018考研数学:数学一、数学二、数学三分别都考什么?...

    2018考研复习,首先大家必须要了解自己的考试科目,区分考试难度,考研数学分数学一.数学二和数学三,大家先了解后规划. ▶一.区别 数学分为三类,最大的区别在于知识面的要求上:数学一最广,数学三其次, ...

最新文章

  1. 那个抗血栓机器人_礼来抗血栓药物普拉格雷(Effient)不及波利维(Plavix)
  2. 《我的视频我做主:Premiere Pro CS5实战精粹》——第一部分 基础篇 第1章 非线性剪辑基础 1.1 认识非线性剪辑...
  3. 9.5---所有字符串的排列组合(CC150)
  4. matlab 数据拟合相关
  5. 大数据产品推荐:金蜂巢大数据集成与脱敏系统
  6. 从零学习VH6501(八) —— 采样点测试
  7. 基于python爬虫的岗位数据分析以拉勾网为例_爬虫小实例-拉勾网数据分析岗位...
  8. 针对宝宝肠胃保护,五大国际医生组织推荐使用爱乐乐益生菌
  9. 我开发了一个女朋友陪聊系统【全天24小时推送问候,自动回复女友的微信消息】
  10. iphone 热点 android,苹果的个人热点功能android手机能用吗
  11. UIQ 3 概念认识
  12. 学术论文等级与分类标准——JCR
  13. 全球各国网站后缀(域名)
  14. python3视频教程合集
  15. word问题:内存或磁盘空间不足,word无法显示所请求的字体
  16. windows10 microsoft store 无网络问题
  17. 宁盾DKEY短信动态密码身份认证系统
  18. 【题解】【AcWing】1587. 链表重复数据删除
  19. 利用aspose添加水印,亲试可行
  20. 稀土掘金这个平台有什么问题?

热门文章

  1. iPhone的Push(推送通知)功能原理浅析[转]
  2. 施工员简历英语计算机水平,土建施工员电子版英文简历模板-20210325070255.docx-原创力文档...
  3. SSM框架视频点播网站-视频播放网站-电影在线观看网站-电视剧在线欣赏网站 (idea开发javaweb-php-asp.netC#-j2ee-springboot)
  4. executescalar mysql_ExecuteScalar()
  5. 收藏! 38个Python数据科研库
  6. 不用拍摄,简单易学!熬夜制作绘画视频,一个月赚2万多
  7. EasyExcel基本使用
  8. 編程的本質:编程也应像其他科学和工程领域一样基于坚实的数学基础
  9. 程序报错:OSError: [E050] Can‘t find model ‘en_core_web_sm‘. It doesn‘t seem to be a Python package or a
  10. 电商宝SCRM:一款基于零售行业大数据驱动的自动化营销平台