Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的“高墙”,墙外面的人想进去,墙里面的人却想出来。

GC收集器

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。

Java虚拟机规范中对垃圾收集器应该如何实现并没有任何规定,因此不同的厂商、不同版本的虚拟机所提供的垃圾收集器都可能会有很大差别,并且一般都会提供参数供用户根据自己的应用特点和要求组合出各个年代所使用的收集器。下图中展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。虚拟机所处的区域,则表示它是属于新生代收集器还是老年代收集器。

一、Serial收集器

Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。

特性:
这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。Stop The World

优势:
简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。

二、ParNew收集器

特性:
ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。

优势:
除了多线程收集以外,跟Serial收集器一样,很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作。CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作,所以在JDK 1.5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。

Serial收集器 VS ParNew收集器:
ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。
然而,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。

三、Parallel Scavenge收集器


特性:
Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器。Parallel Scavenge收集器的目标是达到一个可控的吞吐量,可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

Parallel Scavenge收集器 VS ParNew收集器:

Parallel Scavenge收集器与ParNew收集器的一个重要区别是它具有自适应调节策略。Parallel Scavenge收集器有一个参数-XX:+UseAdaptiveSizePolicy。当这个参数打开之后,就不需要手工指定新生代的大小、Eden与Survivor区的比例、晋升老年代对象年龄等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics)。

四、Serial Old收集器

特性:
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记-整理算法。它主要有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。

五、Parallel Old收集器

特性:
Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。

优势:
在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。这个收集器是在JDK 1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old收集器外别无选择。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合“给力”。直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合。

六、CMS收集器


特性:
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤:

初始标记(CMS initial mark) 初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,需要“Stop The World”。

并发标记(CMS concurrent mark) 并发标记阶段就是进行GC Roots Tracing的过程。

重新标记(CMS remark) 重新标记阶段是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短,仍然需要“Stop
The World”。

并发清除(CMS concurrent sweep) 并发清除阶段会清除对象。

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。

优点:
CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿。

缺点:
CMS收集器对CPU资源非常敏感
其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。
CMS默认启动的回收线程数是(CPU数量+3)/ 4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大。

CMS收集器无法处理浮动垃圾
CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。

由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。
也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。

CMS收集器会产生大量空间碎片
CMS是一款基于“标记—清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。

空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。

七、G1收集器

特性:
G1(Garbage-First)是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点。
并行与并发
G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。

分代收集
与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。

空间整合
与CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。

可预测的停顿
这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒。

在G1之前的其他收集器进行收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。

G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region(这也就是Garbage-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。

执行过程:
G1收集器的运作大致可划分为以下几个步骤:

初始标记(Initial Marking)
初始标记阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的Region中创建新对象,这阶段需要停顿线程,但耗时很短。

并发标记(Concurrent Marking)
并发标记阶段是从GCRoot开始对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。

最终标记(Final Marking)
最终标记阶段是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。

筛选回收(Live Data Counting and Evacuation)
筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划,这个阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。

总结

关于GC的种类归纳,推荐查看HotSpot VM GC 的种类 这篇博客,有细致的分类和总结。

JDK7,JDK8中JVM内存变化

Java7中已经将运行时常量池从永久代移除,在Java 堆(Heap)中开辟了一块区域存放运行时常量池。
Java8中,已经彻底没有了永久代,将方法区直接放在一个与堆不相连的本地内存区域,这个区域被叫做元空间。

JDK1.7之前的版本

其中最上一层是Nursery内存,一个对象被创建以后首先被放到Nursery中的Eden内
存中,如果存活期超两个Survivor之后就会被转移到长时内存中(Old Generation)中。

JDK1.8版本

JDK8中把存放元数据中的永久内存从堆内存中移到了本地内存(native memory)中,这样永久内存就不再占用堆内存,它可以通过自动增长来避免JDK7以及前期版本中常见的永久内存错误(Java.lang.OutOfMemoryError: PermGen)。

JDK8也提供了一个新的设置Matespace内存大小的参数:-XX:MaxMetaspaceSize=128m

注意:如果不设置JVM将会根据一定的策略自动增加本地元内存空间。如果你设置的元内存空间过小,你的应用程序可能得到以下错误:java.lang.OutOfMemoryError: Metadata space

《深入理解Java虚拟机:JVM高级特性与最佳实战》 周志明 著
HotSpot VM GC 的种类
深入理解JVM(5) : Java垃圾收集器
JVM7、8详解及优化

JVM总结(四)GC收集器以及JDK7,JDK8中JVM内存变化相关推荐

  1. 深入JVM虚拟机(四) Java GC收集器

    转载自  深入JVM虚拟机(四) Java GC收集器 1 GC收集器 1.1 Serial串行收集器 串行收集器主要有两个特点:第一,它仅仅使用单线程进行垃圾回收:第二,它独占式的垃圾回收. 在串行 ...

  2. 谈谈JVM GC 收集器

    前言: 目前已经发展到jdk11了.很多资料上的垃圾收集器还停留在1.7以前.本文基于收集器的发展路线,从前到后汇总和简单分析一下JVM垃圾收集器的roadmap.本文暂且从对内存区管理和回收特色方面 ...

  3. JVM的GC回收算法、GC收集器以及内存分配策略

    目录 •写在前面 •标记-清除算法 •复制算法 •标记-整理算法 •HotSpot上的算法实现保障 •GC收集器 •内存分配策略 •写在前面 JVM的垃圾回收算法.收集器以及内存分配策略放在一起了解和 ...

  4. JVM学习四:垃圾收集器与内存回收策略

    一.经典垃圾收集器 如果垃圾收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的实践者.<Java虚拟机规范>对于垃圾收集器的实现没有任何规定. 这里介绍的经典垃圾收集器," ...

  5. 深入理解java虚拟机gc_jvm GC收集器与内存分配(深入理解java虚拟机第三章)

    jvm GC收集器与内存分配(深入理解java虚拟机第三章) 本篇是<深入理解java虚拟机第三章>的笔记记录. 一 为什么要关注GC和内存分配? 需要排查各种内存溢出.内存泄漏问题时,或 ...

  6. JVM汇总--类加载/收集器

    2019独角兽企业重金招聘Python工程师标准>>> 类加载: 自定义类加载器的核心在于对字节码文件的获取即重写 findClass 方法, 如果是加密的字节码则需要在该类中对文件 ...

  7. 研究了 2 天,终于知道 JDK 8 默认 GC 收集器了!

    JDK 8 到底默认用的是哪款 GC 收集器? 为啥是 JDK8?不是 9 也不是 10?因为 JDK8 还是市场占有率最高的,所以针对这个版本我做了深入的探索. <深入理解 Java 虚拟机& ...

  8. HotSpot VM GC收集器的易混淆的名称问题

    最近分析HotSpot VM GC日志,就各种收集器的名称搞晕掉了,幸好参考R大(RednaxelaFX )一些回复和文章.整理在此文,以方便自已日后查阅,也可让有需要的同学少走弯路,追本溯源,一切从 ...

  9. jvm系列二之GC收集器

    目录 参考 概念理解 并发和并行 吞吐量 GC垃圾收集器 Serial New收集器 Parallel New(并行)收集器 Parallel Scavenge(并行)收集器 Serial Old(串 ...

最新文章

  1. copper实现图片的裁剪和上传(1)
  2. 几何画板论坛_伯中班主任论坛丨用爱守护生命的成长
  3. Android--常驻BroadReceiver实现短信提醒
  4. 如何使用Docker安装Mycat中间件 | 实现主从的读写分离,搭建属于你的Mysql 集群 | 来看看这篇吧
  5. PHP配置vhost
  6. dedecms提取某栏目及子栏目名称到首页怎么弄
  7. PX4代码解析(1)
  8. useradd或adduser命令
  9. 用友erpU8V10服务器数据库整体迁移解决方法采用数据库附加方法
  10. EGLImage使用记录
  11. ft232r usb uart驱动_构建基于USB的高精度温度传感器电路
  12. 在登陆Fedora 9时选择语言
  13. 网络负载率计算公式 linux,如何理解Linux CPU负载率的计算方式
  14. 阿里云商标注册入口(附商标申请流程)
  15. 服务器台式机装win7系统,服务器主机装win7系统安装
  16. 多个路由器相连接的方式(以及配置成交换机的方式)
  17. c语言输出宽度右对齐,输出宽度设置
  18. word实现转换成图片的实现
  19. google GMS
  20. DES加解密算法原理详解与实现

热门文章

  1. cv2.VideoCapture(0)
  2. swap (虚拟内存)
  3. htc one x android5.0,终于来了 HTC One M8升级Android 5.0体验
  4. 用cocos2dx做一个简单的单机捕鱼达人游戏(6)结束告辞
  5. Web Components 的使用,从入门到基础
  6. iphone文稿和数据怎么迁移到iCloud云端
  7. 20 October in ss
  8. 爱普生 RS330 打印机墨水连供装置墨盒吸墨复位方法
  9. 教师资格证科目二备考重点总结
  10. JS对XML格式化与美化