同步阻塞IO

在这个模型中,应用程序(application)为了执行这个read操作,会调用相应的一个system call,将系统控制权交给kernel,然后就进行等待(这其实就是被阻塞了)。kernel开始执行这个system call,执行完毕后会向应用程序返回响应,应用程序得到响应后,就不再阻塞,并进行后面的工作。

例如,“在调用 read 系统调用时,应用程序会阻塞并对内核进行上下文切换。然后会触发读操作,当响应返回时(从我们正在从中读取的设备中返回),数据就被移动到用户空间的缓冲区中。然后应用程序就会解除阻塞(read 调用返回)。”

举一个浅显的例子,就好比你去一个银行柜台存钱。首先,你会将存钱的单子填好,然后交给柜员。这里,你就好比是application,单子就是 调用的 system call,柜员就是kernel。提交好单子后,你就坐在柜台前等,相当于开始进行等待。柜员办好以后会给你一个回执,表示办好了,这就是 response。然后你就可以拿着回执干其它的事了。注意,这个时候,如果你办完之后马上去查账,存的钱已经打到你的账户上了。后面你会发现,这点很重 要。

同步非阻塞IO

在linux下,应用程序可以通过设置文件描述符的属性O_NONBLOCK,I/O操作可以立即返回,但是并不保证I/O操作成功。

也就是说,当应用程序设置了O_NONBLOCK之后,执行write操作,调用相应的system call,这个system call会从内核中立即返回。但是在这个返回的时间点,数据可能还没有被真正的写入到指定的地方。也就是说,kernel只是很快的返回了这个 system call(这样,应用程序不会被这个IO操作blocking),但是这个system call具体要执行的事情(写数据)可能并没有完成。而对于应用程序,虽然这个IO操作很快就返回了,但是它并不知道这个IO操作是否真的成功了,如果想 知道,需要应用程序主动地去问kernel。

这次不是去银行存钱,而是去银行汇款。同样的,你也需要填写汇款单然后交给柜员,柜员进行一些简单的手续处理就能够给你回执。但是,你拿到回执并 不意味着钱已经打到了对方的账上。事实上,一般汇款的周期大概是24个小时,如果你要以存钱的模式来汇款的话,意味着你需要在银行等24个小时,这显然是 不现实的。所以,同步非阻塞IO在实际生活中也是有它的意义的。

异步阻塞IO

和之前一样,应用程序要执行read操作,因此调用一个system call,这个system call被传递给了kernel。但在应用程序这边,它调用system call之后,并不等待kernel返回response,这一点是和前面两种机制不一样的地方。这也是为什么它被称为异步的原因。但是为什么称其为阻塞 呢?这是因为虽然应用程序是一个异步的方式,但是select()函数会将应用程序阻塞住,一直等到这个system call有结果返回了,再通知应用程序。也就是说,“在这种模型中,配置的是非阻塞 I/O,然后使用阻塞 select 系统调用来确定一个 I/O 描述符何时有操作。”

所以,从IO操作的实际效果来看,异步阻塞IO和第一种同步阻塞IO是一样的,应用程序都是一直等到IO操作成功之后(数据已经被写入或者读取),才开始进行下面的工作。异步阻塞IO的好处在于一个select函数可以为多个描述符提供通知,提高了并发性。

关于提高并发性这点,我们还以银行为例说明。比如说一个银行柜台,现在有10个人想存钱。按照现在银行的做法,一个个排队。第一个人先填存款单, 然后提交,然后柜员处理,然后给回执,成功后再轮到下一个人。大家应该都在银行排过对,这样的流程是很痛苦的。如果按照异步阻塞的机制,10个人都填好存 款单,然后都提交给柜台,提交完之后所有的10个人就在银行大厅等待。这时候会专门有个人,他会了解存款单处理的情况,一旦有存款单处理完毕,他会将回执 交给相应的正在大厅等待的人,这个拿到回执的人就可以去干其他的事情了。而前面提到的这个专人,就对应于select函数。

异步非阻塞IO

如图所示,应用程序提交read请求的system call,然后,kernel开始处理相应的IO操作,而同时,应用程序并不等kernel返回响应,就会开始执行其他的处理操作(应用程序没有被IO操 作所阻塞)。当kernel执行完毕,返回read的响应,就会产生一个信号或执行一个基于线程的回调函数来完成这次 I/O 处理过程。

比如银行存钱。现在某银行新开通了一项存钱业务。用户之需要将存款单交给柜台,然后无需等待就可以离开了。柜台办好以后会给用户发送一条短信,告知交易成功。这样用户不需要在柜台前进行长时间的等待,同时,也能够得到确切的消息知道交易完成。

从前面的介绍中可以看出,所谓的同步和异步,在这里指的是application和kernel之间的交互方式。如果application不需 要等待 kernel的回应,那么它就是异步的。如果application提交完IO请求后,需要等待“回执”,那么它就是同步的。

而阻塞和非阻塞,指的是application是否等待IO操作的完成。如果application必须等到IO操作实际完成以后再执行下面的操作,那么它是阻塞的。反之,如果不等待IO操作的完成就开始执行其它操作,那么它是非阻塞的。

linux 同步与异步--阻塞与非阻塞型I/O相关推荐

  1. 【Linux网络编程学习】阻塞、非阻塞、同步、异步以及五种I/O模型

    文章目录 1. 基本概念 1.1 阻塞与非阻塞 1.2 同步与异步 1.3 为什么没有"异步阻塞" 2. 五种IO模型 2.1 阻塞 blocking 2.2 非阻塞 non-bl ...

  2. Linux IO - 同步,异步,阻塞,非阻塞

    From:http://blog.csdn.net/historyasamirror/article/details/5778378 同步/异步,阻塞/非阻塞概念深度解析:http://blog.cs ...

  3. linux socket 阻塞与非阻塞,同步与异步

    在进行网络编程时,我们常常见到同步(Sync)/异步(Async),阻塞(Block)/非阻塞(Unblock)四种调用方式: 同步/异步主要针对C端:  同步:       所谓同步,就是在c端发出 ...

  4. linux 中阻塞与非阻塞 同步与异步

    简单点说: 阻塞就是干不完不准回来, 非阻塞就是你先干,我先看看有其他事没有,完了告诉我一声. 我们拿最常用的send和recv两个函数来说吧.比如你调用send函数发送一定的Byte,在系统内部se ...

  5. 同步与异步,阻塞与非阻塞的区别

    1.概念剖析 相信很多从事linux后台开发工作的都接触过同步&异步.阻塞&非阻塞这样的概念,也相信都曾经产生过误解,比如认为同步就是阻塞.异步就是非阻塞,下面我们先剖析下这几个概念分 ...

  6. 这次,让我们捋清:同步、异步、阻塞、非阻塞

    继上一篇说透I/O模型后,我们来谈谈网络 I/O 经常会伴随的几个容易令人混淆的概念:同步.异步.阻塞.非阻塞的区别. 这篇写完之后铺垫就差不多了,之后就正式开始 Netty 深度剖析了,敬请期待,嘻 ...

  7. 阻塞、非阻塞、多路复用、同步、异步、BIO、NIO、AIO 一锅端

    承接上文的操作系统,关于IO会涉及到阻塞.非阻塞.多路复用.同步.异步.BIO.NIO.AIO等几个知识点.知识点虽然不难但平常经常容易搞混,特此Mark下,与君共勉. 1 阻塞跟非阻塞 1.1 阻塞 ...

  8. python gevent模块 下载_Python协程阻塞IO非阻塞IO同步IO异步IO

    Python-协程-阻塞IO-非阻塞IO-同步IO-异步IO 一.协程 协程又称为微线程 CPU 是无法识别协程的,只能识别是线程,协程是由开发人员自己控制的.协程可以在单线程下实现并发的效果(实际计 ...

  9. IO:同步,异步,阻塞,非阻塞

    IO - 同步,异步,阻塞,非阻塞 都是老生常谈的东西,多通读几遍,理解透彻! 实际上同步与异步是针对应用程序与内核的交互而言的.同步过程中进程触发IO操作并等待(也就是我们说的阻塞)或者轮询的去查看 ...

最新文章

  1. Java怎么定义图片公共路径_【Java】springboot配置图片访问路径
  2. java mysql failover_MySQL MMM 双主在Failover时挂起
  3. java split()方法_Java 性能优化的 50 个细节(珍藏版)
  4. [MATLAB调试笔记]Update magnetic field in one step
  5. Virtual Box上的Ubuntu与Win7共享文件夹
  6. 推荐一简单易用的脑图制作工具
  7. 6-6-1:STL之map和set——set的基本使用
  8. EntityFramework 6.x和EntityFramework Core关系映射中导航属性必须是public?
  9. 小D课堂 - 零基础入门SpringBoot2.X到实战_第1节零基础快速入门SpringBoot2.0_4、快速创建SpringBoot应用之自动创建web应用...
  10. C/C++[codeup 1929,]日期处理
  11. Google Earth自动生成地形
  12. 卸载vuecli3_针对遇到安装或卸载vue-cli失败的解决方案
  13. 学习java.awt
  14. 微软商店和防火墙打不开解决方法
  15. python平行四边形的构造_css平行四边形与菱形变换
  16. 设计模式3-软件设计原则
  17. stl C++文件读写
  18. Android 系统开机logo的修改
  19. free(): invalid next size (fast):错误及解决方案
  20. Codeforces Round #702 (Div. 3)——A. Dense Array

热门文章

  1. Linux下通过源码编译安装程序
  2. 第五个页面:更多电影页面
  3. 使用Linux的lsblk命令列出块设备信息
  4. cobertura-maven-plugin
  5. BigPipe学习研究
  6. CSS核心内容整理 - (中)
  7. SCCM 2007系列5 播发操作系统下
  8. 基于nginx的tomcat负载均衡和集群(超简单)
  9. 2018-01-02 JavaScript实现ZLOGO: 用语法树实现多层循环...
  10. QT之计算器代码重构(六)