第十次作业参考答案

01第一题


第一小题中的求解除了(14)(15)小题之外,其他的各题都可以在MATLAB中使用MATLAB的符号计算帮助求解,一边检查求解的结果正确性。
使用MATLAB求解第一小题可以参见下面的链接:

  • 利用MATLAB帮助求解作业中的Laplace变换和Z变换


求解:

(1)
L[1−e−at]=1s−1s+a=as(s+a)L\left[ {1 - e^{ - at} } \right] = {1 \over s} - {1 \over {s + a}} = {a \over {s\left( {s + a} \right)}}L[1−e−at]=s1​−s+a1​=s(s+a)a​

(2)
L[sin⁡(t)+2cos⁡(t)]=1s2+1+2ss2+1=2s+1s2+1L\left[ {\sin \left( t \right) + 2\cos \left( t \right)} \right] = {1 \over {s^2 + 1}} + {{2s} \over {s^2 + 1}} = {{2s + 1} \over {s^2 + 1}}L[sin(t)+2cos(t)]=s2+11​+s2+12s​=s2+12s+1​

(3)
L[t⋅e−2t]=1(s+2)2L\left[ {t \cdot e^{ - 2t} } \right] = {1 \over {\left( {s + 2} \right)^2 }}L[t⋅e−2t]=(s+2)21​

(4) 由:
L[sin⁡(2t)]=2s4+4L\left[ {\sin \left( {2t} \right)} \right] = {2 \over {s^4 + 4}}L[sin(2t)]=s4+42​
再根据s域平移性质,可以得到:

L[e−t⋅sin⁡(2t)]=2(s+1)2+4=2s2+2s+5L\left[ {e^{ - t} \cdot\sin \left( {2t} \right)} \right] = {2 \over {\left( {s + 1} \right)^2 + 4}} = {2 \over {s^2 + 2s + 5}}L[e−t⋅sin(2t)]=(s+1)2+42​=s2+2s+52​

(5) 因为
L[tn]=n!sn+1L\left[ {t^n } \right] = {{n!} \over {s^{n + 1} }}L[tn]=sn+1n!​

所以:L[1+2t]=1s+2s2=s+2s2L\left[ {1 + 2t} \right] = {1 \over s} + {2 \over {s^2 }} = {{s + 2} \over {s^2 }}L[1+2t]=s1​+s22​=s2s+2​

再由s域平移性质,可得:L[(1+2t)⋅e−t]=s+3(s+1)2L\left[ {\left( {1 + 2t} \right) \cdot e^{ - t} } \right] = {{s + 3} \over {\left( {s + 1} \right)^2 }}L[(1+2t)⋅e−t]=(s+1)2s+3​

(6) 由L[1−cos⁡(αt)]=1s−ss2+α2L\left[ {1 - \cos \left( {\alpha t} \right)} \right] = {1 \over s} - {s \over {s^2 + \alpha ^2 }}L[1−cos(αt)]=s1​−s2+α2s​

再由s域平移性质,可得:L{[1−cos⁡(αt)]e−βt}=1s+β−s+β(s+β)2+α2L\left\{ {\left[ {1 - \cos \left( {\alpha t} \right)} \right]e^{ - \beta t} } \right\} = {1 \over {s + \beta }} - {{s + \beta } \over {\left( {s + \beta } \right)^2 + \alpha ^2 }}L{[1−cos(αt)]e−βt}=s+β1​−(s+β)2+α2s+β​

(7) L[t2+2t]=2s3+2s2=2s+2s3L\left[ {t^2 + 2t} \right] = {2 \over {s^3 }} + {2 \over {s^2 }} = {{2s + 2} \over {s^3 }}L[t2+2t]=s32​+s22​=s32s+2​

(8) L[2δ(t)−3e−7t]=2−3s+7L\left[ {2\delta \left( t \right) - 3e^{ - 7t} } \right] = 2 - {3 \over {s + 7}}L[2δ(t)−3e−7t]=2−s+73​

(9) 由L[sinh⁡(βt)]=βs2−β2L\left[ {\sinh \left( {\beta t} \right)} \right] = {\beta \over {s^2 - \beta ^2 }}L[sinh(βt)]=s2−β2β​

再由s域的平移性质,可得:L[e−αtsinh⁡(βt)]=β(s+α)2−β2L\left[ {e^{ - \alpha t} \sinh \left( {\beta t} \right)} \right] = {\beta \over {\left( {s + \alpha } \right)^2 - \beta ^2 }}L[e−αtsinh(βt)]=(s+α)2−β2β​

(10) 因为 cos⁡2(Ωt)=12+12cos⁡(2Ωt)\cos ^2 \left( {\Omega t} \right) = {1 \over 2} + {1 \over 2}\cos \left( {2\Omega t} \right)cos2(Ωt)=21​+21​cos(2Ωt)

所以:L[cos⁡2(Ωt)]=12s+12⋅ss2+4Ω2=12(1s+ss2+4Ω2)L\left[ {\cos ^2 \left( {\Omega t} \right)} \right] = {1 \over {2s}} + {1 \over 2} \cdot {s \over {s^2 + 4\Omega ^2 }} = {1 \over 2}\left( {{1 \over s} + {s \over {s^2 + 4\Omega ^2 }}} \right)L[cos2(Ωt)]=2s1​+21​⋅s2+4Ω2s​=21​(s1​+s2+4Ω2s​)

(11)
L[1β−α(e−αt−e−βt)]=1β−α(1s+α−1s+β)=1(s+α)(s+β)L\left[ {{1 \over {\beta - \alpha }}\left( {e^{ - \alpha t} - e^{ - \beta t} } \right)} \right] = {1 \over {\beta - \alpha }}\left( {{1 \over {s + \alpha }} - {1 \over {s + \beta }}} \right) = {1 \over {\left( {s + \alpha } \right)\left( {s + \beta } \right)}}L[β−α1​(e−αt−e−βt)]=β−α1​(s+α1​−s+β1​)=(s+α)(s+β)1​

(12) 由于:L[e−tcos⁡(ωt)]=s+1(s+1)2+ω2L\left[ {e^{ - t} \cos \left( {\omega t} \right)} \right] = {{s + 1} \over {\left( {s + 1} \right)^2 + \omega ^2 }}L[e−tcos(ωt)]=(s+1)2+ω2s+1​

所以:L[e−(t+a)⋅cos⁡(ωt)]=(s+1)e−a(s+1)2+ω2L\left[ {e^{ - \left( {t + a} \right)} \cdot \cos \left( {\omega t} \right)} \right] = {{\left( {s + 1} \right)e^{ - a} } \over {\left( {s + 1} \right)^2 + \omega ^2 }}L[e−(t+a)⋅cos(ωt)]=(s+1)2+ω2(s+1)e−a​

(13) 因为:
t⋅e−(t−2)u(t−1)=e⋅[(t−1)⋅e−(t−1)+e−(t−1)]⋅u(t−1)t \cdot e^{ - \left( {t - 2} \right)} u\left( {t - 1} \right) = e \cdot \left[ {\left( {t - 1} \right) \cdot e^{ - \left( {t - 1} \right)} + e^{ - \left( {t - 1} \right)} } \right] \cdot u\left( {t - 1} \right)t⋅e−(t−2)u(t−1)=e⋅[(t−1)⋅e−(t−1)+e−(t−1)]⋅u(t−1)

且:L[(t−1)e−(t−1)u(t−1)]=e−s(s+1)2L\left[ {\left( {t - 1} \right)e^{ - \left( {t - 1} \right)} u\left( {t - 1} \right)} \right] = {{e^{ - s} } \over {\left( {s + 1} \right)^2 }}L[(t−1)e−(t−1)u(t−1)]=(s+1)2e−s​L[e−(t−1)u(t−1)]=e−ss+1L\left[ {e^{ - \left( {t - 1} \right)} u\left( {t - 1} \right)} \right] = {{e^{ - s} } \over {s + 1}}L[e−(t−1)u(t−1)]=s+1e−s​

所以:
L[t⋅e−(t−2)u(t−1)]=e⋅[1(s+1)2+1s+1]⋅e−s=(s+2)e−(s−1)(s+1)2L\left[ {t \cdot e^{ - \left( {t - 2} \right)} u\left( {t - 1} \right)} \right] = e \cdot \left[ {{1 \over {\left( {s + 1} \right)^2 }} + {1 \over {s + 1}}} \right] \cdot e^{ - s} = {{\left( {s + 2} \right)e^{ - \left( {s - 1} \right)} } \over {\left( {s + 1} \right)^2 }}L[t⋅e−(t−2)u(t−1)]=e⋅[(s+1)21​+s+11​]⋅e−s=(s+1)2(s+2)e−(s−1)​

(14) 由拉普拉斯变换的s域平移特性:L[e−tf(t)]=F(s+1)L\left[ {e^{ - t} f\left( t \right)} \right] = F\left( {s + 1} \right)L[e−tf(t)]=F(s+1)
由尺度变换性质,得到:
L[e−taf(ta)]=aF(as+1)L\left[ {e^{ - {t \over a}} f\left( {{t \over a}} \right)} \right] = aF\left( {as + 1} \right)L[e−at​f(at​)]=aF(as+1)

(15) 由拉普拉斯变换的尺度特性:L[f(ta)]=aF(as)L\left[ {f\left( {{t \over a}} \right)} \right] = aF\left( {as} \right)L[f(at​)]=aF(as)

再由s域平移性质,可得:L[e−atf(ta)]=aF[a(s+a)]=aF(as+a2)L\left[ {e^{ - at} f\left( {{t \over a}} \right)} \right] = aF\left[ {a\left( {s + a} \right)} \right] = aF\left( {as + a^2 } \right)L[e−atf(at​)]=aF[a(s+a)]=aF(as+a2)

(16) 根据:cos⁡3(3t)=cos⁡(3t)⋅1+cos⁡(6t)2=14cos⁡(9t)+34cos⁡(t)\cos ^3 \left( {3t} \right) = \cos \left( {3t} \right)\cdot{{1 + \cos \left( {6t} \right)} \over 2} = {1 \over 4}\cos \left( {9t} \right) + {3 \over 4}\cos \left( t \right)cos3(3t)=cos(3t)⋅21+cos(6t)​=41​cos(9t)+43​cos(t)

所以:L[cos⁡3(3t)]=14⋅ss2+81+34⋅ss2+9L\left[ {\cos ^3 \left( {3t} \right)} \right] = {1 \over 4} \cdot {s \over {s^2 + 81}} + {3 \over 4} \cdot {s \over {s^2 + 9}}L[cos3(3t)]=41​⋅s2+81s​+43​⋅s2+9s​

再根据s域的微分性质,可得:L[t⋅cos⁡3(3t)]=−dds(14ss2+81+34⋅ss2+9)=14[s2−81(s2+81)2+3s2−27(s2+9)2]L\left[ {t \cdot \cos ^3 \left( {3t} \right)} \right] = - {d \over {ds}}\left( {{1 \over 4}{s \over {s^2 + 81}} + {3 \over 4} \cdot {s \over {s^2 + 9}}} \right) = {1 \over 4}\left[ {{{s^2 - 81} \over {\left( {s^2 + 81} \right)^2 }} + {{3s^2 - 27} \over {\left( {s^2 + 9} \right)^2 }}} \right]L[t⋅cos3(3t)]=−dsd​(41​s2+81s​+43​⋅s2+9s​)=41​[(s2+81)2s2−81​+(s2+9)23s2−27​]
(17) 根据:L[cos⁡(2t)]=ss2+4L\left[ {\cos \left( {2t} \right)} \right] = {s \over {s^2 + 4}}L[cos(2t)]=s2+4s​

连续两次应用s域微分性质,可得:L[t⋅cos⁡(2t)]=s2−4(s2+4)2L\left[ {t \cdot \cos \left( {2t} \right)} \right] = {{s^2 - 4} \over {\left( {s^2 + 4} \right)^2 }}L[t⋅cos(2t)]=(s2+4)2s2−4​

L[t2⋅cos⁡(2t)]=2s2−24s(s2+4)3L\left[ {t^2 \cdot \cos \left( {2t} \right)} \right] = {{2s^2 - 24s} \over {\left( {s^2 + 4} \right)^3 }}L[t2⋅cos(2t)]=(s2+4)32s2−24s​

(18) 根据
L[1−e−αt]=1s−1s+αL\left[ {1 - e^{ - \alpha t} } \right] = {1 \over s} - {1 \over {s + \alpha }}L[1−e−αt]=s1​−s+α1​

再由s域的积分性质,可得:
L[1t(1−e−αt)]=∫s+∞(1s1−1s1+α)ds1=ln⁡(s+α)−ln⁡s=−ln⁡(ss+α)L\left[ {{1 \over t}\left( {1 - e^{ - \alpha t} } \right)} \right] = \int_s^{ + \infty } {\left( {{1 \over {s_1 }} - {1 \over {s_1 + \alpha }}} \right)ds_1 } = \ln \left( {s + \alpha } \right) - \ln s = - \ln \left( {{s \over {s + \alpha }}} \right)L[t1​(1−e−αt)]=∫s+∞​(s1​1​−s1​+α1​)ds1​=ln(s+α)−lns=−ln(s+αs​)

(19) 根据L[e−3t−e−5t]=1s+3−1s+5L\left[ {e^{ - 3t} - e^{ - 5t} } \right] = {1 \over {s + 3}} - {1 \over {s + 5}}L[e−3t−e−5t]=s+31​−s+51​

再由s域的积分性质可得:
L[e−3t−e−5tt]=∫s+∞(1s1+3−1s1+5)ds1=ln⁡(s+5s+3)L\left[ {{{e^{ - 3t} - e^{ - 5t} } \over t}} \right] = \int_s^{ + \infty } {\left( {{1 \over {s_1 + 3}} - {1 \over {s_1 + 5}}} \right)ds_1 } = \ln \left( {{{s + 5} \over {s + 3}}} \right)L[te−3t−e−5t​]=∫s+∞​(s1​+31​−s1​+51​)ds1​=ln(s+3s+5​)

(20) 根据:L[sin⁡(αt)]=αs2+α2L\left[ {\sin \left( {\alpha t} \right)} \right] = {\alpha \over {s^2 + \alpha ^2 }}L[sin(αt)]=s2+α2α​

再由s域的积分性质可得:
L[sin⁡(αt)t]=∫s+∞αs12+α2ds1=∫s+∞1(s1α)2+1d(s1α)=π2−arctan⁡(sα)=arctan⁡(αs)L\left[ {{{\sin \left( {\alpha t} \right)} \over t}} \right] = \int_s^{ + \infty } {{\alpha \over {s_1^2 + \alpha ^2 }}ds_1 } = \int_s^{ + \infty } {{1 \over {\left( {{{s_1 } \over \alpha }} \right)^2 + 1}}d\left( {{{s_1 } \over \alpha }} \right)} = {\pi \over 2} - \arctan \left( {{s \over \alpha }} \right) = \arctan \left( {{\alpha \over s}} \right)L[tsin(αt)​]=∫s+∞​s12​+α2α​ds1​=∫s+∞​(αs1​​)2+11​d(αs1​​)=2π​−arctan(αs​)=arctan(sα​)

02第二题



求解:

(1)解答:
X(z)=∑n=0∞(14)nz−n=4z4z−1=zz−14,∣z∣>14X\left( z \right) = \sum\limits_{n = 0}^\infty {\left( {{1 \over 4}} \right)^n z^{ - n} } = {{4z} \over {4z - 1}} = {z \over {z - {1 \over 4}}},\,\,\left| z \right| > {1 \over 4}X(z)=n=0∑∞​(41​)nz−n=4z−14z​=z−41​z​,∣z∣>41​

(2)解答:
X(z)=∑n=0∞(−13)nz−n=zz+13=3z3z+1,∣z∣>13X\left( z \right) = \sum\limits_{n = 0}^\infty {\left( { - {1 \over 3}} \right)^n z^{ - n} } = {z \over {z + {1 \over 3}}} = {{3z} \over {3z + 1}},\;\;\;\;\left| z \right| > {1 \over 3}X(z)=n=0∑∞​(−31​)nz−n=z+31​z​=3z+13z​,∣z∣>31​

(3)解答:
X(z)=∑n=−∞0(12)nz−n=11−2z,∣z∣<12X\left( z \right) = \sum\limits_{n = - \infty }^0 {\left( {{1 \over 2}} \right)^n z^{ - n} } = {1 \over {1 - 2z}},\,\,\,\,\left| z \right| < {1 \over 2}X(z)=n=−∞∑0​(21​)nz−n=1−2z1​,∣z∣<21​

(4)解答:
X(z)=∑n=−∞0(−12)nz−n=11+2z,∣z∣<12X\left( z \right) = \sum\limits_{n = - \infty }^0 {\left( { - {1 \over 2}} \right)^n z^{ - n} } = {1 \over {1 + 2z}},\,\,\,\,\,\left| z \right| < {1 \over 2}X(z)=n=−∞∑0​(−21​)nz−n=1+2z1​,∣z∣<21​

(5)解答:
X(z)=∑n=−∞−1−(16)n−1z−nu[−n−1]=36z6z−1,∣z∣<16X\left( z \right) = \sum\limits_{n = - \infty }^{ - 1} { - \left( {{1 \over 6}} \right)^{n - 1} z^{ - n} u\left[ { - n - 1} \right]} = {{36z} \over {6z - 1}},\,\,\,\,\left| z \right| < {1 \over 6}X(z)=n=−∞∑−1​−(61​)n−1z−nu[−n−1]=6z−136z​,∣z∣<61​

(6)解答:
X(z)=1z−1,∣z∣>1X\left( z \right) = {1 \over {z - 1}},\,\,\,\,\left| z \right| > 1X(z)=z−11​,∣z∣>1

(7)解答:
X(z)=∑n=03(110)n⋅z−n=1−(110z)31−110z=(10z)3−1(10z)2(10z−1),∣z∣>0X\left( z \right) = \sum\limits_{n = 0}^3 {\left( {{1 \over {10}}} \right)^n \cdot z^{ - n} = {{1 - \left( {{1 \over {10z}}} \right)^3 } \over {1 - {1 \over {10z}}}} = {{\left( {10z} \right)^3 - 1} \over {\left( {10z} \right)^2 \left( {10z - 1} \right)}},\,\,\,\,\,\left| z \right| > 0}X(z)=n=0∑3​(101​)n⋅z−n=1−10z1​1−(10z1​)3​=(10z)2(10z−1)(10z)3−1​,∣z∣>0

(8)解答:
X(z)=zz−15+zz−16=z(60z−11)(5z−1)⋅(6z−1),∣z∣>15X\left( z \right) = {z \over {z - {1 \over 5}}} + {z \over {z - {1 \over 6}}} = {{z\left( {60z - 11} \right)} \over {\left( {5z - 1} \right) \cdot \left( {6z - 1} \right)}},\,\,\,\,\left| z \right| > {1 \over 5}X(z)=z−51​z​+z−61​z​=(5z−1)⋅(6z−1)z(60z−11)​,∣z∣>51​

(9)解答:
X(z)=1−12z−8=2z8−12z8,∣z∣>0X\left( z \right) = 1 - {1 \over 2}z^{ - 8} = {{2z^8 - 1} \over {2z^8 }},\,\,\,\,\left| z \right| > 0X(z)=1−21​z−8=2z82z8−1​,∣z∣>0

03第三题


求双边序列x[n]=(1a)∣n∣,∣a∣>1x\left[ n \right] = \left( {{1 \over a}} \right)^{\left| n \right|} ,\,\,\,\,\left| a \right| > 1x[n]=(a1​)∣n∣,∣a∣>1
的z变换,并表明收敛于及绘制出零极点图。


求解:

将双边序列分成右边和左边序列,分别求出各自的Z变换。
xR[n]=(1a)n,n≥0,xL[n]=(1a)−n=an,n<0x_R \left[ n \right] = \left( {{1 \over a}} \right)^n ,\,\,\,\,\,n \ge 0,\,\,\,\,\,\,x_L \left[ n \right] = \left( {{1 \over a}} \right)^{ - n} = a^n ,\,\,\,\,\,n < 0xR​[n]=(a1​)n,n≥0,xL​[n]=(a1​)−n=an,n<0

Z{xR[n]}=zz−1a,∣z∣>1aZ\left\{ {x_R \left[ n \right]} \right\} = {z \over {z - {1 \over a}}},\,\,\,\,\left| z \right| > {1 \over a}Z{xR​[n]}=z−a1​z​,∣z∣>a1​

Z{xL[n]}=∑n=−∞−1anz−n=∑n=1∞zna−nZ\left\{ {x_L \left[ n \right]} \right\} = \sum\limits_{n = - \infty }^{ - 1} {a^n z^{ - n} } = \sum\limits_{n = 1}^\infty {z^n a^{ - n} }Z{xL​[n]}=n=−∞∑−1​anz−n=n=1∑∞​zna−n=∑n=0∞zna−n−1=11−za−1−1=−zz−a= \sum\limits_{n = 0}^\infty {z^n a^{ - n} } - 1 = {1 \over {1 - za^{ - 1} }} - 1 = {{ - z} \over {z - a}}=n=0∑∞​zna−n−1=1−za−11​−1=z−a−z​

Z{x[n]}=Z{xR[n]+xL[n]}Z\left\{ {x\left[ n \right]} \right\} = Z\left\{ {x_R \left[ n \right] + x_L \left[ n \right]} \right\}Z{x[n]}=Z{xR​[n]+xL​[n]}=zz−1a+−zz−a=(1−a2)zaz2−(1+a2)z+a= {z \over {z - {1 \over a}}} + {{ - z} \over {z - a}} = {{\left( {1 - a^2 } \right)z} \over {az^2 - \left( {1 + a^2 } \right)z + a}}=z−a1​z​+z−a−z​=az2−(1+a2)z+a(1−a2)z​

04第四题



求解:

(1)解答

L−1(1s+2)=e−2t,t≥0L^{ - 1} \left( {{1 \over {s + 2}}} \right) = e^{ - 2t} ,\,\,\,\,t \ge 0L−1(s+21​)=e−2t,t≥0

(2)解答:
L−1(42s+5)=L−1(2s+52)=2⋅e−52tt≥1L^{ - 1} \left( {{4 \over {2s + 5}}} \right) = L^{ - 1} \left( {{2 \over {s + {5 \over 2}}}} \right) = 2 \cdot e^{ - {5 \over 2}t} \,\,\,\,t \ge 1L−1(2s+54​)=L−1(s+25​2​)=2⋅e−25​tt≥1

(3)解答:
2s(2s+3)=23s+−23s+32{2 \over {s\left( {2s + 3} \right)}} = {{{2 \over 3}} \over s} + {{ - {2 \over 3}} \over {s + {3 \over 2}}}s(2s+3)2​=s32​​+s+23​−32​​

L−1(23s+−23s+32)=23u(t)−23e−32t.u(t)L^{ - 1} \left( {{{{2 \over 3}} \over s} + {{ - {2 \over 3}} \over {s + {3 \over 2}}}} \right) = {2 \over 3}u\left( t \right) - {2 \over 3}e^{ - {3 \over 2}t} .u\left( t \right)L−1(s32​​+s+23​−32​​)=32​u(t)−32​e−23​t.u(t)

(4)解答:
1s(s2+3)=13s+−13ss2+3{1 \over {s\left( {s^2 + 3} \right)}} = {{{1 \over 3}} \over s} + {{ - {1 \over 3}s} \over {s^2 + 3}}s(s2+3)1​=s31​​+s2+3−31​s​

L−1(13s−13ss2+3)=13u(t)−13cos⁡3t⋅u(t)L^{ - 1} \left( {{{{1 \over 3}} \over s} - {{{1 \over 3}s} \over {s^2 + 3}}} \right) = {1 \over 3}u\left( t \right) - {1 \over 3}\cos \sqrt 3 t \cdot u\left( t \right)L−1(s31​​−s2+331​s​)=31​u(t)−31​cos3​t⋅u(t)

(5)解答:

3(s+4)(s+3)=3s+3−3s+4{3 \over {\left( {s + 4} \right)\left( {s + 3} \right)}} = {3 \over {s + 3}} - {3 \over {s + 4}}(s+4)(s+3)3​=s+33​−s+43​

L−1[3s+3−3s+4]=3e−3t−3e−4t,t≥0L^{ - 1} \left[ {{3 \over {s + 3}} - {3 \over {s + 4}}} \right] = 3e^{ - 3t} - 3e^{ - 4t} ,\,\,\,\,t \ge 0L−1[s+33​−s+43​]=3e−3t−3e−4t,t≥0

(6)解答:
3s(s+4)(s+3)=−9s+3+12s+4{{3s} \over {\left( {s + 4} \right)\left( {s + 3} \right)}} = {{ - 9} \over {s + 3}} + {{12} \over {s + 4}}(s+4)(s+3)3s​=s+3−9​+s+412​

L−1(−9s+3+12s+4)=−9e−3t+12e−4t,t≥0L^{ - 1} \left( {{{ - 9} \over {s + 3}} + {{12} \over {s + 4}}} \right) = - 9e^{ - 3t} + 12e^{ - 4t} ,\,\,\,\,t \ge 0L−1(s+3−9​+s+412​)=−9e−3t+12e−4t,t≥0

(7)解答:
L−1(1s2+1+1)=sin⁡t+δ(t),t≥0L^{ - 1} \left( {{1 \over {s^2 + 1}} + 1} \right) = \sin t + \delta \left( t \right),\,\,\,\,t \ge 0L−1(s2+11​+1)=sint+δ(t),t≥0

(8)解答:
1s2−3s+2=−1s−1+1s−2{1 \over {s^2 - 3s + 2}} = {{ - 1} \over {s - 1}} + {1 \over {s - 2}}s2−3s+21​=s−1−1​+s−21​

L−1(−1s−1+1s−2)=−et+e2t,t≥0L^{ - 1} \left( {{{ - 1} \over {s - 1}} + {1 \over {s - 2}}} \right) = - e^t + e^{2t} ,\,\,\,\,t \ge 0L−1(s−1−1​+s−21​)=−et+e2t,t≥0

(9)解答:
1s(RCs+1)=1s−1s+1RC{1 \over {s\left( {RCs + 1} \right)}} = {1 \over s} - {1 \over {s + {1 \over {RC}}}}s(RCs+1)1​=s1​−s+RC1​1​

L−1[1s−1s+1RC]=1−e−1RCt,t≥0L^{ - 1} \left[ {{1 \over s} - {1 \over {s + {1 \over {RC}}}}} \right] = 1 - e^{ - {1 \over {RC}}t} ,\,\,\,\,t \ge 0L−1[s1​−s+RC1​1​]=1−e−RC1​t,t≥0

(10)解答:
1−RCss(1+RCs)=1s−2s+1RC{{1 - RCs} \over {s\left( {1 + RCs} \right)}} = {1 \over s} - {2 \over {s + {1 \over {RC}}}}s(1+RCs)1−RCs​=s1​−s+RC1​2​

L−1(1s−2s+1RC)=1−2e−tRC,t≥0L^{ - 1} \left( {{1 \over s} - {2 \over {s + {1 \over {RC}}}}} \right) = 1 - 2e^{ - {t \over {RC}}} ,\,\,\,\,t \ge 0L−1(s1​−s+RC1​2​)=1−2e−RCt​,t≥0

(11)解答:
ω(s2+ω2)⋅1(RCs+1){\omega \over {\left( {s^2 + \omega ^2 } \right)}} \cdot {1 \over {\left( {RCs + 1} \right)}}(s2+ω2)ω​⋅(RCs+1)1​

ωs2+ω2⋅1RCs+1RC=ms+ns2+ω2⋅ls+1RC{\omega \over {s^2 + \omega ^2 }} \cdot {{{1 \over {RC}}} \over {s + {1 \over {RC}}}} = {{ms + n} \over {s^2 + \omega ^2 }} \cdot {l \over {s + {1 \over {RC}}}}s2+ω2ω​⋅s+RC1​RC1​​=s2+ω2ms+n​⋅s+RC1​l​

ms2+mRCs+ns+nRC+ls2+lω2(s2+ω2)(s+1RC)=ωRC(s2+ω2)(s+1RC){{ms^2 + {m \over {RC}}s + ns + {n \over {RC}} + ls^2 + l\omega ^2 } \over {\left( {s^2 + \omega ^2 } \right)\left( {s + {1 \over {RC}}} \right)}} = {{{\omega \over {RC}}} \over {\left( {s^2 + \omega ^2 } \right)\left( {s + {1 \over {RC}}} \right)}}(s2+ω2)(s+RC1​)ms2+RCm​s+ns+RCn​+ls2+lω2​=(s2+ω2)(s+RC1​)RCω​​

(m+l)s2+(n+mRC)s+lω2(s2+ω2)(s+1RC)=ωRC(s2+ω2)(s+1RC){{\left( {m + l} \right)s^2 + \left( {n + {m \over {RC}}} \right)s + l\omega ^2 } \over {\left( {s^2 + \omega ^2 } \right)\left( {s + {1 \over {RC}}} \right)}} = {{{\omega \over {RC}}} \over {\left( {s^2 + \omega ^2 } \right)\left( {s + {1 \over {RC}}} \right)}}(s2+ω2)(s+RC1​)(m+l)s2+(n+RCm​)s+lω2​=(s2+ω2)(s+RC1​)RCω​​

KaTeX parse error: Undefined control sequence: \matrix at position 10: \left\{ {\̲m̲a̲t̲r̲i̲x̲{ {m + l = 0}n+mRC=0{n + {m \over {RC}} = 0}n+RCm​=0nRC+lω2=ωRC{{n \over {RC}} + l\omega ^2 = {\omega \over {RC}}}RCn​+lω2=RCω​

KaTeX parse error: Undefined control sequence: \matrix at position 10: \left\{ {\̲m̲a̲t̲r̲i̲x̲{ {m = {{ - R…n=ω1+(RCω)2{n = {\omega \over {1 + \left( {RC\omega } \right)^2 }}}n=1+(RCω)2ω​l=RCω1+(RCω)2{l = {{RC\omega } \over {1 + \left( {RC\omega } \right)^2 }}}l=1+(RCω)2RCω​

ωs2+ω2⋅1RCs+1=−RCω1+(RCω)2s+ω1+(RCω)2s2+ω2+RCω1+(RCω)2s+1RC{\omega \over {s^2 + \omega ^2 }} \cdot {1 \over {RCs + 1}} = {{{{ - RC\omega } \over {1 + \left( {RC\omega } \right)^2 }}s + {\omega \over {1 + \left( {RC\omega } \right)^2 }}} \over {s^2 + \omega ^2 }} + {{{{RC\omega } \over {1 + \left( {RC\omega } \right)^2 }}} \over {s + {1 \over {RC}}}}s2+ω2ω​⋅RCs+11​=s2+ω21+(RCω)2−RCω​s+1+(RCω)2ω​​+s+RC1​1+(RCω)2RCω​​

−RC1+(RCω)2cos⁡(ωt)+11+(RCω)2sin⁡(ωt)+RCω1+(RCω)2e−tRC,t≥0{{ - RC} \over {1 + \left( {RC\omega } \right)^2 }}\cos \left( {\omega t} \right) + {1 \over {1 + \left( {RC\omega } \right)^2 }}\sin \left( {\omega t} \right) + {{RC\omega } \over {1 + \left( {RC\omega } \right)^2 }}e^{ - {t \over {RC}}} ,\,\,\,\,\,t \ge 01+(RCω)2−RC​cos(ωt)+1+(RCω)21​sin(ωt)+1+(RCω)2RCω​e−RCt​,t≥0

(12)解答:
4s+5s2+5s+6=4s+5(s+2)(s+3)=−3s+2+7s+3{{4s + 5} \over {s^2 + 5s + 6}} = {{4s + 5} \over {\left( {s + 2} \right)\left( {s + 3} \right)}} = {{ - 3} \over {s + 2}} + {7 \over {s + 3}}s2+5s+64s+5​=(s+2)(s+3)4s+5​=s+2−3​+s+37​

L−1(4s+5s2+5s+6)=−e−2t+7e−3t,t≥0L^{ - 1} \left( {{{4s + 5} \over {s^2 + 5s + 6}}} \right) = - e^{ - 2t} + 7e^{ - 3t} ,\,\,\,\,t \ge 0L−1(s2+5s+64s+5​)=−e−2t+7e−3t,t≥0

(13)解答:
100(s+50)s2+201s+200=4900199s+1+15000199s+200{{100\left( {s + 50} \right)} \over {s^2 + 201s + 200}} = {{{{4900} \over {199}}} \over {s + 1}} + {{{{15000} \over {199}}} \over {s + 200}}s2+201s+200100(s+50)​=s+11994900​​+s+20019915000​​

L−1(100(s+50)s2+201s+200)=4900199e−t+15000199e−200t,t≥0L^{ - 1} \left( {{{100\left( {s + 50} \right)} \over {s^2 + 201s + 200}}} \right) = {{4900} \over {199}}e^{ - t} + {{15000} \over {199}}e^{ - 200t} ,\,\,\,\,\,t \ge 0L−1(s2+201s+200100(s+50)​)=1994900​e−t+19915000​e−200t,t≥0

(14)解答:
s+3(s+1)3⋅(s+2)=A(s+1)3+B(s+1)2+Cs+1+Ds+2{{s + 3} \over {\left( {s + 1} \right)^3 \cdot \left( {s + 2} \right)}} = {A \over {\left( {s + 1} \right)^3 }} + {B \over {\left( {s + 1} \right)^2 }} + {C \over {s + 1}} + {D \over {s + 2}}(s+1)3⋅(s+2)s+3​=(s+1)3A​+(s+1)2B​+s+1C​+s+2D​

D=s+3(s+1)3∣s=−2=−1D = \left. {{{s + 3} \over {\left( {s + 1} \right)^3 }}} \right|_{s = - 2} = - 1D=(s+1)3s+3​∣∣∣∣∣​s=−2​=−1

A=s+3s+2∣s=−1=2A = \left. {{{s + 3} \over {s + 2}}} \right|_{s = - 1} = 2A=s+2s+3​∣∣∣∣​s=−1​=2

B=dds(s+3s+2)∣s=−1=1s+2−s+3(s+2)2∣s=−1=−1B = \left. {{d \over {ds}}\left( {{{s + 3} \over {s + 2}}} \right)} \right|_{s = - 1} = \left. {{1 \over {s + 2}} - {{s + 3} \over {\left( {s + 2} \right)^2 }}} \right|_{s = - 1} = - 1B=dsd​(s+2s+3​)∣∣∣∣​s=−1​=s+21​−(s+2)2s+3​∣∣∣∣∣​s=−1​=−1

C=12⋅d2ds2(s+3s+2)∣s=−1=122(s+3)(s+2)3−2(s+2)2∣s=−1=1C = \left. {{1 \over 2} \cdot {{d^2 } \over {ds^2 }}\left( {{{s + 3} \over {s + 2}}} \right)} \right|_{s = - 1} = \left. {{1 \over 2}{{2\left( {s + 3} \right)} \over {\left( {s + 2} \right)^3 }} - {2 \over {\left( {s + 2} \right)^2 }}} \right|_{s = - 1} = 1C=21​⋅ds2d2​(s+2s+3​)∣∣∣∣​s=−1​=21​(s+2)32(s+3)​−(s+2)22​∣∣∣∣∣​s=−1​=1

L−1(s+3(s+1)3(s+2))=t2e−t−te−t+e−t−e−2t,t≥0L^{ - 1} \left( {{{s + 3} \over {\left( {s + 1} \right)^3 \left( {s + 2} \right)}}} \right) = t^2 e^{ - t} - te^{ - t} + e^{ - t} - e^{ - 2t} ,\,\,\,\,\,t \ge 0L−1((s+1)3(s+2)s+3​)=t2e−t−te−t+e−t−e−2t,t≥0

05第五题


求下列函数的拉普拉斯逆变换:
F(s)=ln⁡(ss+9)F\left( s \right) = \ln \left( {{s \over {s + 9}}} \right)F(s)=ln(s+9s​)


求解:

本题应用到Laplace变换的一个性质,如下:
F(s)=∫0−∞f(t)e−stdtF\left( s \right) = \int_{0_ - }^\infty {f\left( t \right)e^{ - st} dt}F(s)=∫0−​∞​f(t)e−stdtF′(s)=dds∫0−∞f(t)e−stdt=∫0−∞−t⋅f(t)e−stdtF'\left( s \right) = {d \over {ds}}\int_{0_ - }^\infty {f\left( t \right)e^{ - st} dt} = \int_{0_ - }^\infty { - t \cdot f\left( t \right)e^{ - st} dt}F′(s)=dsd​∫0−​∞​f(t)e−stdt=∫0−​∞​−t⋅f(t)e−stdtt⋅f(t)=−L−1[dF(s)ds]t \cdot f\left( t \right) = - L^{ - 1} \left[ {{{dF\left( s \right)} \over {ds}}} \right]t⋅f(t)=−L−1[dsdF(s)​]

f(t)=L−1[ln⁡(ss+9)]f\left( t \right) = L^{ - 1} \left[ {\ln \left( {{s \over {s + 9}}} \right)} \right]f(t)=L−1[ln(s+9s​)]

−t⋅f(t)=L−1[ddsln⁡(ss+9)]=L−1(−1s+9+1s)=1−e−9t,t≥0- t \cdot f\left( t \right) = L^{ - 1} \left[ {{d \over {ds}}\ln \left( {{s \over {s + 9}}} \right)} \right] = L^{ - 1} \left( { - {1 \over {s + 9}} + {1 \over s}} \right)\, = 1 - e^{ - 9t} ,\,\,\,\,t \ge 0−t⋅f(t)=L−1[dsd​ln(s+9s​)]=L−1(−s+91​+s1​)=1−e−9t,t≥0

f(t)=−1t+1te−9t,t≥0f\left( t \right) = {{ - 1} \over t} + {1 \over t}e^{ - 9t} ,\,\,\,\,t \ge 0f(t)=t−1​+t1​e−9t,t≥0

如果使用MATLAB进行求解,结果如下:

>>ilaplace(log(s/(s+9)))
ans=(exp(-9*t)-1)/t

06第六题



求解:

(1)x[n]=δ[n]x\left[ n \right] = \delta \left[ n \right]x[n]=δ[n]
(2) x[n]=δ[n+3]x\left[ n \right] = \delta \left[ {n + 3} \right]x[n]=δ[n+3]
(3) x[n]=δ[n−1]x\left[ n \right] = \delta \left[ {n - 1} \right]x[n]=δ[n−1]
(4) x[n]=−2δ[n−2]+δ[n]+2δ[n+1]x\left[ n \right] = - 2\delta \left[ {n - 2} \right] + \delta \left[ n \right] + 2\delta \left[ {n + 1} \right]x[n]=−2δ[n−2]+δ[n]+2δ[n+1]
(5) x[n]=anu[n]x\left[ n \right] = a^n u\left[ n \right]x[n]=anu[n]
(6) x[n]=−anu[−n−1]x\left[ n \right] = - a^n u\left[ { - n - 1} \right]x[n]=−anu[−n−1]

07第七题



求解:

(1)求解:
X(z)=zz+0.5X\left( z \right) = {z \over {z + 0.5}}X(z)=z+0.5z​

由于∣z∣>5\left| z \right| > 5∣z∣>5,所以序列是右边序列,因此序列为:x[n]=(−0.5)nu[n]x\left[ n \right] = \left( { - 0.5} \right)^n u\left[ n \right]x[n]=(−0.5)nu[n]

(2)求解:
X(z)z=z−0.5(z+14)⋅(z+12)=−3z+14+4z+12{{X\left( z \right)} \over z} = {{z - 0.5} \over {\left( {z + {1 \over 4}} \right) \cdot \left( {z + {1 \over 2}} \right)}} = {{ - 3} \over {z + {1 \over 4}}} + {4 \over {z + {1 \over 2}}}zX(z)​=(z+41​)⋅(z+21​)z−0.5​=z+41​−3​+z+21​4​
由于∣z∣>5\left| z \right| > 5∣z∣>5,所以序列是右边序列,因此序列为:x[n]=[−3(−14)n+4(−12)n]⋅u[n]x\left[ n \right] = \left[ { - 3\left( {{{ - 1} \over 4}} \right)^n + 4\left( {{{ - 1} \over 2}} \right)^n } \right] \cdot u\left[ n \right]x[n]=[−3(4−1​)n+4(2−1​)n]⋅u[n]

=(−14)n(−3+2n+2)⋅u[n]= \left( { - {1 \over 4}} \right)^n \left( { - 3 + 2^{n + 2} } \right) \cdot u\left[ n \right]=(−41​)n(−3+2n+2)⋅u[n]

(3)求解:
X(z)=1−12z−11−14z−2=zz+12X\left( z \right) = {{1 - {1 \over 2}z^{ - 1} } \over {1 - {1 \over 4}z^{ - 2} }} = {z \over {z + {1 \over 2}}}X(z)=1−41​z−21−21​z−1​=z+21​z​∣z∣>12\left| z \right| > {1 \over 2}\;\;\;∣z∣>21​x[n]=(−12)n⋅u[n]x\left[ n \right] = \left( { - {1 \over 2}} \right)^n \cdot u\left[ n \right]x[n]=(−21​)n⋅u[n]

(4)求解:
X(z)z=z−az(1−az)=−1a(z−a)z(z−1a)=−az+a−1az−1a{{X\left( z \right)} \over z} = {{z - a} \over {z\left( {1 - az} \right)}} = {{ - {1 \over a}\left( {z - a} \right)} \over {z\left( {z - {1 \over a}} \right)}} = {{ - a} \over z} + {{a - {1 \over a}} \over {z - {1 \over a}}}zX(z)​=z(1−az)z−a​=z(z−a1​)−a1​(z−a)​=z−a​+z−a1​a−a1​​∣z∣>∣1a∣,\left| z \right| > \left| {{1 \over a}} \right|,∣z∣>∣∣∣∣​a1​∣∣∣∣​,x[n]=−aδ[n]+(a−1a)⋅(1a)n⋅u[n]x\left[ n \right] = - a\delta \left[ n \right] + \left( {a - {1 \over a}} \right) \cdot \left( {{1 \over a}} \right)^n \cdot u\left[ n \right]x[n]=−aδ[n]+(a−a1​)⋅(a1​)n⋅u[n]

08第八题


利用三种方法求解下面X(z)X\left( z \right)X(z)的你变换x[n]x\left[ n \right]x[n]。

X(z)=10z(z−1)(z−2),(∣z∣>2)X\left( z \right) = {{10z} \over {\left( {z - 1} \right)\left( {z - 2} \right)}},\,\,\,\,\left( {\left| z \right| > 2} \right)X(z)=(z−1)(z−2)10z​,(∣z∣>2)


求解:

方法1:围线积分方法:
因为∣z∣>2\left| z \right| > 2∣z∣>2,所以信号为右边序列。
x[n]=12πj∮CX(z)⋅zn−1dz=12πj∮C10zn(z−1)(z−2)dzx\left[ n \right] = {1 \over {2\pi j}}\oint\limits_C {X\left( z \right) \cdot z^{n - 1} dz = {1 \over {2\pi j}}\oint\limits_C {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}dz} }x[n]=2πj1​C∮​X(z)⋅zn−1dz=2πj1​C∮​(z−1)(z−2)10zn​dz

x[n]=∑mRes[10zn(z−1)(z−2)]z=zmx\left[ n \right] = \sum\limits_m^{} {{\mathop{\rm Re}\nolimits} s\left[ {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}} \right]} _{z = z_m }x[n]=m∑​Res[(z−1)(z−2)10zn​]z=zm​​

Res[10zn(z−1)(z−2)]z=1=−10{\mathop{\rm Re}\nolimits} s\left[ {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}} \right]_{z = 1} = - 10Res[(z−1)(z−2)10zn​]z=1​=−10Res[10zn(z−1)(z−2)]z=2=10⋅2n{\mathop{\rm Re}\nolimits} s\left[ {{{10z^n } \over {\left( {z - 1} \right)\left( {z - 2} \right)}}} \right]_{z = 2} = 10 \cdot 2^nRes[(z−1)(z−2)10zn​]z=2​=10⋅2n

x[n]=[−10+10⋅2n]⋅u[n]x\left[ n \right] = \left[ { - 10 + 10 \cdot 2^n } \right] \cdot u\left[ n \right]x[n]=[−10+10⋅2n]⋅u[n]

方法2:长除法:

x[n]=10z−1+30z−2+70z−3+⋯x\left[ n \right] = 10z^{ - 1} + 30z^{ - 2} + 70z^{ - 3} + \cdotsx[n]=10z−1+30z−2+70z−3+⋯=10(2n−1)⋅u[n]= 10\left( {2^n - 1} \right) \cdot u\left[ n \right]=10(2n−1)⋅u[n]

>> deconv([10,0,0,0,0,0,0,0,0],[1,-3,2])'
ans=10 30 70 150 310 630 1270

方法3:部分因式分解法:
X(z)z=10(z−1)(z−2)=−10z−1+10z−2{{X\left( z \right)} \over z} = {{10} \over {\left( {z - 1} \right)\left( {z - 2} \right)}} = {{ - 10} \over {z - 1}} + {{10} \over {z - 2}}zX(z)​=(z−1)(z−2)10​=z−1−10​+z−210​X(z)=−10zz−1+10zz−2X\left( z \right) = {{ - 10z} \over {z - 1}} + {{10z} \over {z - 2}}X(z)=z−1−10z​+z−210z​

x[n]=−10⋅u[n]+10⋅2nu[n]x\left[ n \right] = - 10 \cdot u\left[ n \right] + 10 \cdot 2^n u\left[ n \right]x[n]=−10⋅u[n]+10⋅2nu[n]

使用MATLAB对应的变换命令:

>>iztrans(10*z/(z-1)/(z-2))
ans=10*2^n-10

09第九题



求解:

(1)求解:
X(z)z=10z(z−0.5)(z−0.25)=20z−0.5+−10z−0.25{{X\left( z \right)} \over z} = {{10z} \over {\left( {z - 0.5} \right)\left( {z - 0.25} \right)}} = {{20} \over {z - 0.5}} + {{ - 10} \over {z - 0.25}}zX(z)​=(z−0.5)(z−0.25)10z​=z−0.520​+z−0.25−10​X(z)=20zz−0.5+−10zz−0.25X\left( z \right) = {{20z} \over {z - 0.5}} + {{ - 10z} \over {z - 0.25}}X(z)=z−0.520z​+z−0.25−10z​∣z∣>0.5\left| z \right| > 0.5∣z∣>0.5x[n]=[20⋅(0.5)n−10⋅(0.25)n]⋅u[n]x\left[ n \right] = \left[ {20 \cdot \left( {0.5} \right)^n - 10 \cdot \left( {0.25} \right)^n } \right] \cdot u\left[ n \right]x[n]=[20⋅(0.5)n−10⋅(0.25)n]⋅u[n]

>>iztrans(10/(1-0.5/z)/(1-0.25/z))'
ans=20*(1/2)^n-10*(1/4)^n

(2)求解:
X(z)z=10z(z−1)(z+1)=5z−1+5z+1{{X\left( z \right)} \over z} = {{10z} \over {\left( {z - 1} \right)\left( {z + 1} \right)}} = {5 \over {z - 1}} + {5 \over {z + 1}}zX(z)​=(z−1)(z+1)10z​=z−15​+z+15​X(z)=5zz−1+5zz+1X\left( z \right) = {{5z} \over {z - 1}} + {{5z} \over {z + 1}}X(z)=z−15z​+z+15z​∣z∣>1\left| z \right| > 1∣z∣>1x[n]=5⋅[1+(−1)n]⋅u[n]x\left[ n \right] = 5 \cdot \left[ {1 + \left( { - 1} \right)^n } \right] \cdot u\left[ n \right]x[n]=5⋅[1+(−1)n]⋅u[n]

>>iztrans(10*z*z/(z-1)/(z+1))'
ans=5*(-1)^n+5

(3)求解: 根据正弦、余弦单边序列的z变换:
Z[cos⁡(ω0n)u[n]]=z(z−cos⁡ω0)z2−2zcos⁡ω0+1Z\left[ {\cos \left( {\omega _0 n} \right)u\left[ n \right]} \right] = {{z\left( {z - \cos \omega _0 } \right)} \over {z^2 - 2z\cos \omega _0 + 1}}Z[cos(ω0​n)u[n]]=z2−2zcosω0​+1z(z−cosω0​)​Z[sin⁡(ω0n)u[n]]=zsin⁡ω0z2−2zcos⁡ω0+1Z\left[ {\sin \left( {\omega _0 n} \right)u\left[ n \right]} \right] = {{z\sin \omega _0 } \over {z^2 - 2z\cos \omega _0 + 1}}Z[sin(ω0​n)u[n]]=z2−2zcosω0​+1zsinω0​​

X(z)=z2+zz2−2zcos⁡ω+1X\left( z \right) = {{z^2 + z} \over {z^2 - 2z\cos \omega + 1}}X(z)=z2−2zcosω+1z2+z​=z(z−cos⁡ω)z2−2zcos⁡ω+1+1+cos⁡ωsin⁡ωzsin⁡ωz2−2zcos⁡ω+1= {{z\left( {z - \cos \omega } \right)} \over {z^2 - 2z\cos \omega + 1}} + {{1 + \cos \omega } \over {\sin \omega }}{{z\sin \omega } \over {z^2 - 2z\cos \omega + 1}}=z2−2zcosω+1z(z−cosω)​+sinω1+cosω​z2−2zcosω+1zsinω​
x[n]=(cos⁡ωn+1+cos⁡ωsin⁡ωsin⁡ωn)⋅u[n]x\left[ n \right] = \left( {\cos \omega n + {{1 + \cos \omega } \over {\sin \omega }}\sin \omega n} \right) \cdot u\left[ n \right]x[n]=(cosωn+sinω1+cosω​sinωn)⋅u[n]=sin⁡(nω)+sin⁡(n+1)ωsin⁡ω⋅u[n]= {{\sin \left( {n\omega } \right) + \sin \left( {n + 1} \right)\omega } \over {\sin \omega }} \cdot u\left[ n \right]=sinωsin(nω)+sin(n+1)ω​⋅u[n]

>>iztrans((1+1/z)/(1-2*z^-1*cos(w)+z^-2))'
ans=(sin(n*w)*(cos(w)+1))/sin(w)-(cos(n*w)*(cos(w)+1))/cos(w)+(cos(n*w)*(2*cos(w)+1))/cos(w)
>>iztrans((z*z+z)/(z*z-2*z*cos(w)+1))'
ans=(sin(n*w)*(cos(w)+1))/sin(w)-(cos(n*w)*(cos(w)+1))/cos(w)+(cos(n*w)*(2*cos(w)+1))/cos(w)

sin⁡nω(cos⁡ω+1)sin⁡ω−cos⁡nω(cos⁡ω+1)cos⁡ω+cos⁡nω(2cos⁡+1)cos⁡ω{{\sin n\omega \left( {\cos \omega + 1} \right)} \over {\sin \omega }} - {{\cos n\omega \left( {\cos \omega + 1} \right)} \over {\cos \omega }} + {{\cos n\omega \left( {2\cos + 1} \right)} \over {\cos \omega }}sinωsinnω(cosω+1)​−cosωcosnω(cosω+1)​+cosωcosnω(2cos+1)​
(sin⁡nω⋅cos⁡ω−sin⁡ω⋅cos⁡nω)⋅(cos⁡ω+1)+sin⁡ω⋅cos⁡nω⋅(2cos⁡ω+1)sin⁡ω⋅cos⁡ω{{\left( {\sin n\omega \cdot \cos \omega - \sin \omega \cdot \cos n\omega } \right) \cdot \left( {\cos \omega + 1} \right) + \sin \omega \cdot \cos n\omega \cdot (2\cos \omega + 1)} \over {\sin \omega \cdot \cos \omega }}sinω⋅cosω(sinnω⋅cosω−sinω⋅cosnω)⋅(cosω+1)+sinω⋅cosnω⋅(2cosω+1)​

2020年春季学期信号与系统课程作业参考答案-第十次作业相关推荐

  1. 2020年春季学期信号与系统课程作业参考答案-第十五次作业

    信号与系统课程第十五次作业参考答案 ※ 第一题 已知x[n],h[n]x\left[ n \right],h\left[ n \right]x[n],h[n]长度分别是10, 25.设:y1[n]=x ...

  2. 2020年春季学期信号与系统课程作业参考答案-第十四次作业

    信号与系统课程第十四次作业参考答案 ※ 第一题 用闭式表达式写出下面有限长序列的离散傅里叶变换(DFT): (1) x[n]=δ[n]x\left[ n \right] = \delta \left[ ...

  3. 2020年春季学期信号与系统课程作业参考答案-第十三次作业

    信号与系统课程第十三次作业参考答案 ※ 第一题 如下图所示的反馈系统,回答以下各列问题: (1)写出系统的传递函数:H(s)=V2(s)V1(s)H\left( s \right) = {{V_2 \ ...

  4. 2020年春季学期信号与系统课程作业参考答案-第十二次作业

    信号与系统第十二次作业参考答案 ※ 第一题 利用Laplace变换求解下列微分方程: (1)d2dt2y(t)+2ddty(t)+y(t)=δ(t)+2δ′(t){{d^2 } \over {dt^2 ...

  5. 2020年春季学期信号与系统课程作业参考答案-第九次作业

    第九次作业参考答案 01第一题 已知x(t)x\left( t \right)x(t)和X(ω)X\left( \omega \right)X(ω)是一对傅里叶变换,xs(t)x_s \left( t ...

  6. 2020年春季学习信号与系统课程作业参考答案-第十一次作业

    信号与系统第十一次作业参考答案 ※ 第一题 利用三种逆变方法求下列X(z)X\left( z \right)X(z)的逆变换x[n]x\left[ n \right]x[n]. X(z)=10z(z− ...

  7. 2021年春季学期-信号与系统-第六次作业参考答案-第七小题

    本文是 2021年春季学期-信号与系统-第六次作业参考答案 中的小题解答. ▌第七小题 ▌ 7.已知f(t)f\left( t \right)f(t)的傅里叶变换为: 如下图所示. 求:f2(t)f^ ...

  8. 2021年春季学期-信号与系统-第六次作业参考答案

    ▓ 第六次作业各个小题求解: 2021年春季学期-信号与系统-第六次作业参考答案-第一小题 2021年春季学期-信号与系统-第六次作业参考答案-第二小题 2021年春季学期-信号与系统-第六次作业参考 ...

  9. 2021年春季学期-信号与系统-第三次作业参考答案-第九道题

    本文是 2021年春季学期-信号与系统-第三次作业参考答案 中的参考答案. ▌第九道题 9. 已知因果线性时不变系统的输入输出之间的微分方程为: ddty(t)+5y(t)=∫−∞∞x(τ)f(t−τ ...

最新文章

  1. 别再写 main 方法测试了,太 Low!这才是专业 Java 测试方法!
  2. js:进一步关闭(范围:下一个)
  3. 2020-12-3(详解虚拟地址如何转化为物理地址)
  4. 展示使用 boost bind 和 phoenix 处理删除的不同方法的测试程序
  5. boot jersey_Jersey和Spring Boot入门
  6. mysql update nowait_mysql innodb之select for update nowait
  7. js 日期控件laydate使用
  8. 简要说明php数组的类型,php数组的概述及分类与声明代码演示
  9. 无人机无线电干扰原理概论
  10. Android -Recovery
  11. whose UTF8 encoding is longer than the max length 32766
  12. 系统中flvplayer.swf播放器的使用及配置
  13. StarGAN-多领域图像翻译
  14. 16位字长的计算机,十六位字长的计算机是指计算机16位十进制数的计算机吗
  15. 一点关于线程和摇奖机
  16. 计算机应用最普遍的汉字字符编码是什么,计算机中,目前最普遍使用的汉字字符编码是__________...
  17. 开源向左,自研向右,100%自研的QingStor存储再升级
  18. 基于SSH开发的宠物商城
  19. PowerPoint中提示某些文件可能携带有病毒,损害您的计算机
  20. 3D鲨鱼壁纸背景Sharks 3D for Mac

热门文章

  1. sharedUserId
  2. AppData::create pipe(2) failed: Too many open file
  3. curl 命令行下载工具使用方法小结
  4. Linux crontab 命令格式与具体样例
  5. webClient 利用代理连接Rss资源
  6. 英文书也没有那么难,跟着例子做,挺有意思的
  7. 洛谷 3029 [USACO11NOV]牛的阵容Cow Lineup
  8. python-环境准备python,ipython
  9. 使用PHP对数据库输入进行恶意代码清除
  10. 【云图】如何制作附近实体店的地图?-微信微博支付宝