Linux 文件系统剖析

按照分层结构讨论 Linux 文件系统

M. Tim Jones, 顾问工程师, Emulex Corp.

简介: 在文件系统方面,Linux® 可以算得上操作系统中的 “瑞士军刀”。Linux 支持许多种文件系统,从日志型
文件系统到集群文件系统和加密文件系统。对于使用标准的和比较奇特的文件系统以及开发文件系统来说,Linux 是
极好的平台。本文讨论 Linux 内核中的虚拟文件系统(VFS,有时候称为虚拟文件系统交换器),然后介绍将文件

系统连接在一起的主要结构。

基本的文件系统体系结构

Linux 文件系统体系结构是一个对复杂系统进行抽象化的有趣例子。通过使用一组通用的 API 函数,Linux 可以在
许多种存储设备上支持许多种文件系统。例如,read 函数调用可以从指定的文件描述符读取一定数量的字节。read
函数不了解文件系统的类型,比如 ext3 或 NFS。它也不了解文件系统所在的存储媒体,比如 AT Attachment Packet
Interface(ATAPI)磁盘、Serial-Attached SCSI(SAS)磁盘或 Serial Advanced Technology Attachment(SATA)
磁盘。但是,当通过调用 read 函数读取一个文件时,数据会正常返回。本文讲解这个机制的实现方法并介绍 Linux
文件系统层的主要结构。

什么是文件系统?

首先回答最常见的问题,“什么是文件系统”。文件系统是对一个存储设备上的数据和元数据进行组织的机制。由
于定义如此宽泛,支持它的代码会很有意思。正如前面提到的,有许多种文件系统和媒体。由于存在这么多类型,
可以预料到 Linux 文件系统接口实现为分层的体系结构,从而将用户接口层、文件系统实现和操作存储设备的驱动
程序分隔开。

文件系统作为协议

另一种看待文件系统的方式是把它看作一个协议。网络协议(比如 IP)规定了互联网上传输的数据流的意义,同样,
文件系统会给出特定存储媒体上数据的意义。

挂装

在 Linux 中将一个文件系统与一个存储设备关联起来的过程称为挂装(mount)。使用 mount 命令将一个文件系统
附着到当前文件系统层次结构中(根)。在执行挂装时,要提供文件系统类型、文件系统和一个挂装点。
为了说明 Linux 文件系统层的功能(以及挂装的方法),我们在当前文件系统的一个文件中创建一个文件系统。实
现的方法是,首先用 dd 命令创建一个指定大小的文件(使用 /dev/zero 作为源进行文件复制)—— 换句话说,
一个用零进行初始化的文件,见清单 1。
清单 1. 创建一个经过初始化的文件
$ dd if=/dev/zero of=file.img bs=1k count=10000
10000+0 records in
10000+0 records out
$
现在有了一个 10MB 的 file.img 文件。使用 losetup 命令将一个循环设备与这个文件关联起来,让它看起来像一
个块设备,而不是文件系统中的常规文件:
$ losetup /dev/loop0 file.img
$
这个文件现在作为一个块设备出现(由 /dev/loop0 表示)。然后用 mke2fs 在这个设备上创建一个文件系统。这
个命令创建一个指定大小的新的 ext2 文件系统,见清单 2。
清单 2. 用循环设备创建 ext2 文件系统
$ mke2fs -c /dev/loop0 10000
mke2fs 1.35 (28-Feb-2004)
max_blocks 1024000, rsv_groups = 1250, rsv_gdb = 39
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
2512 inodes, 10000 blocks
500 blocks (5.00%) reserved for the super user
...
$
使用 mount 命令将循环设备(/dev/loop0)所表示的 file.img 文件挂装到挂装点 /mnt/point1。注意,文件系统
类型指定为 ext2。挂装之后,就可以将这个挂装点当作一个新的文件系统,比如使用 ls 命令,见清单 3。
清单 3. 创建挂装点并通过循环设备挂装文件系统
$ mkdir /mnt/point1
$ mount -t ext2 /dev/loop0 /mnt/point1
$ ls /mnt/point1
lost+found
$
如清单 4 所示,还可以继续这个过程:在刚才挂装的文件系统中创建一个新文件,将它与一个循环设备关联起来,
再在上面创建另一个文件系统。
清单 4. 在循环文件系统中创建一个新的循环文件系统
$ dd if=/dev/zero of=/mnt/point1/file.img bs=1k count=1000
1000+0 records in
1000+0 records out
$ losetup /dev/loop1 /mnt/point1/file.img
$ mke2fs -c /dev/loop1 1000
mke2fs 1.35 (28-Feb-2004)
max_blocks 1024000, rsv_groups = 125, rsv_gdb = 3
Filesystem label=
...
$ mkdir /mnt/point2
$ mount -t ext2 /dev/loop1 /mnt/point2
$ ls /mnt/point2
lost+found
$ ls /mnt/point1
file.img lost+found
$
通过这个简单的演示很容易体会到 Linux 文件系统(和循环设备)是多么强大。可以按照相同的方法在文件上用循
环设备创建加密的文件系统。可以在需要时使用循环设备临时挂装文件,这有助于保护数据。

文件系统体系结构

既然已经看到了文件系统的构造方法,现在就看看 Linux 文件系统层的体系结构。本文从两个角度考察 Linux 文
件系统。首先采用高层体系结构的角度。然后进行深层次讨论,介绍实现文件系统层的主要结构。

高层体系结构

尽管大多数文件系统代码在内核中(后面讨论的用户空间文件系统除外),但是图 1 所示的体系结构显示了用户空
间和内核中与文件系统相关的主要组件之间的关系。

图 1. Linux 文件系统组件的体系结构

用户空间包含一些应用程序(例如,文件系统的使用者)和 GNU C 库(glibc),它们为文件系统调用(打开、读
取、写和关闭)提供用户接口。系统调用接口的作用就像是交换器,它将系统调用从用户空间发送到内核空间中的
适当端点。
VFS 是底层文件系统的主要接口。这个组件导出一组接口,然后将它们抽象到各个文件系统,各个文件系统的行为
可能差异很大。有两个针对文件系统对象的缓存(inode 和 dentry)。它们缓存最近使用过的文件系统对象。
每个文件系统实现(比如 ext2、JFS 等等)导出一组通用接口,供 VFS 使用。缓冲区缓存会缓存文件系统和相关
块设备之间的请求。例如,对底层设备驱动程序的读写请求会通过缓冲区缓存来传递。这就允许在其中缓存请求,
减少访问物理设备的次数,加快访问速度。以最近使用(LRU)列表的形式管理缓冲区缓存。注意,可以使用 sync 命
令将缓冲区缓存中的请求发送到存储媒体(迫使所有未写的数据发送到设备驱动程序,进而发送到存储设备)。

什么是块设备?

块设备就是以块(比如磁盘扇区)为单位收发数据的设备,它们支持缓冲和随机访问(不必顺序读取块,而是可以
在任何时候访问任何块)等特性。块设备包括硬盘、CD-ROM 和 RAM 盘。与块设备相对的是字符设备,字符设备没
有可以进行物理寻址的媒体。字符设备包括串行端口和磁带设备,只能逐字符地读取这些设备中的数据。
这就是 VFS 和文件系统组件的高层情况。现在,讨论实现这个子系统的主要结构。

主要结构

Linux 以一组通用对象的角度看待所有文件系统。这些对象是超级块(superblock)、inode、dentry 和文件。超
级块在每个文件系统的根上,超级块描述和维护文件系统的状态。文件系统中管理的每个对象(文件或目录)在 Linux
中表示为一个 inode。inode 包含管理文件系统中的对象所需的所有元数据(包括可以在对象上执行的操作)。另
一组结构称为 dentry,它们用来实现名称和 inode 之间的映射,有一个目录缓存用来保存最近使用的 dentry。
dentry 还维护目录和文件之间的关系,从而支持在文件系统中移动。最后,VFS 文件表示一个打开的文件(保存打
开的文件的状态,比如写偏移量等等)。

虚拟文件系统层

VFS 作为文件系统接口的根层。VFS 记录当前支持的文件系统以及当前挂装的文件系统。
可以使用一组注册函数在 Linux 中动态地添加或删除文件系统。内核保存当前支持的文件系统的列表,可以通过
/proc 文件系统在用户空间中查看这个列表。这个虚拟文件还显示当前与这些文件系统相关联的设备。在 Linux 中
添加新文件系统的方法是调用 register_filesystem。这个函数的参数定义一个文件系统结构(file_system_type)
的引用,这个结构定义文件系统的名称、一组属性和两个超级块函数。也可以注销文件系统。
在注册新的文件系统时,会把这个文件系统和它的相关信息添加到 file_systems 列表中(见图 2 和
linux/include/linux/mount.h)。这个列表定义可以支持的文件系统。在命令行上输入 cat /proc/filesystems,
就可以查看这个列表。

图 2. 向内核注册的文件系统

VFS 中维护的另一个结构是挂装的文件系统(见图 3)。这个结构提供当前挂装的文件系统(见
linux/include/linux/fs.h)。它链接下面讨论的超级块结构。

图 3. 挂装的文件系统列表


超级块

超级块结构表示一个文件系统。它包含管理文件系统所需的信息,包括文件系统名称(比如 ext2)、文件系统的大
小和状态、块设备的引用和元数据信息(比如空闲列表等等)。超级块通常存储在存储媒体上,但是如果超级块不
存在,也可以实时创建它。可以在 ./linux/include/linux/fs.h 中找到超级块结构(见图 4)。

图 4. 超级块结构和 inode 操作

超级块中的一个重要元素是超级块操作的定义。这个结构定义一组用来管理这个文件系统中的 inode 的函数。例如,
可以用 alloc_inode 分配 inode,用 destroy_inode 删除 inode。可以用 read_inode 和 write_inode 读写
inode,用 sync_fs 执行文件系统同步。可以在 ./linux/include/linux/fs.h 中找到 super_operations 结构。
每个文件系统提供自己的 inode 方法,这些方法实现操作并向 VFS 层提供通用的抽象。
inode 和 dentry
inode 表示文件系统中的一个对象,它具有惟一标识符。各个文件系统提供将文件名映射为惟一 inode 标识符和
inode 引用的方法。图 5 显示 inode 结构的一部分以及两个相关结构。请特别注意 inode_operations 和
file_operations。这些结构表示可以在这个 inode 上执行的操作。inode_operations 定义直接在 inode 上执行
的操作,而 file_operations 定义与文件和目录相关的方法(标准系统调用)。

图 5. inode 结构和相关联的操作

inode 和目录缓存分别保存最近使用的 inode 和 dentry。注意,对于 inode 缓存中的每个 inode,在目录缓存中
都有一个对应的 dentry。可以在 ./linux/include/linux/fs.h 中找到 inode 和 dentry 结构。


缓冲区缓存

除了各个文件系统实现(可以在 ./linux/fs 中找到)之外,文件系统层的底部是缓冲区缓存。这个组件跟踪来自
文件系统实现和物理设备(通过设备驱动程序)的读写请求。为了提高效率,Linux 对请求进行缓存,避免将所有
请求发送到物理设备。缓存中缓存最近使用的缓冲区(页面),这些缓冲区可以快速提供给各个文件系统。
有趣的文件系统
本文没有讨论 Linux 中可用的具体文件系统,但是值得在这里稍微提一下。Linux 支持许多种文件系统,包括
MINIX、MS-DOS 和 ext2 等老式文件系统。Linux 还支持 ext3、JFS 和 ReiserFS 等新的日志型文件系统。另外,
Linux 支持加密文件系统(比如 CFS)和虚拟文件系统(比如 /proc)。
最后一种值得注意的文件系统是 Filesystem in Userspace(FUSE)。这种文件系统可以将文件系统请求通过 VFS 发
送回用户空间。所以,如果您有兴趣创建自己的文件系统,那么通过使用 FUSE 进行开发是一种不错的方法。


结束语

尽管文件系统的实现并不复杂,但它是可伸缩和可扩展的体系结构的好例子。文件系统体系结构已经发展了许多年,
并成功地支持了许多不同类型的文件系统和许多目标存储设备类型。由于使用了基于插件的体系结构和多层的函数
间接性,Linux 文件系统在近期的发展很值得关注

Linux 文件系统剖析相关推荐

  1. 文件系统:Linux文件系统剖析

    查看原文:http://www.ibm.com/developerworks/cn/linux/l-linux-filesystem/ 在文件系统方面,Linux® 可以算得上操作系统中的 " ...

  2. linux 文件系统原理 书,发个关于文件系统的书《Linux文件系统剖析》

    daqshan 于 2015-08-04 08:20:23发表: 看看 12345a 于 2014-12-22 09:38:06发表: 还有没有别的 12345a 于 2014-12-22 09:37 ...

  3. linux文件系统dentry_NFS 文件系统源代码剖析

    NFS 文件系统概述 NFS(Network File System,网络文件系统)是一种基于网络的文件系统.它可以将远端服务器文件系统的目录挂载到本地文件系统的目录上,允许用户或者应用程序像访问本地 ...

  4. Linux文件系统概览

    一.历史与ext4文件系统 MINIX文件系统 MINIX系统的文件系统 1987年发布(印刷版),教学目的 最多能处理 14 个字符的文件名,并且只能处理 64MB 的存储空间 ext文件系统 19 ...

  5. 实时 Linux 架构剖析

    转自@https://www.ibm.com/developerworks/cn/linux/l-real-time-linux/#resources 本文探索了一些支持实时特性的 Linux 架构, ...

  6. 《Linux内核剖析》(Yanlz+VR云游戏+Unity+SteamVR+云技术+5G+AI+Makefile+块设备驱动+字符设备驱动+数学协处理器+文件系统+内存管理+GDB+立钻哥哥+==)

    <Linux内核剖析> <Linux内核剖析> 版本 作者 参与者 完成日期 备注 YanlzLinux_Kernel0.12_V01_1.0 严立钻 2020.02.06 # ...

  7. Linux文件系统之inode与软硬连接

    一.inode是什么? 理解inode,要从文件储存说起. 文件储存在硬盘上,硬盘的最小存储单位叫做"扇区"(Sector).每个扇区储存512字节(相当于0.5KB). 操作系统 ...

  8. 《Linux游戏编程》——理解Linux文件系统标准

    Linux游戏编程 Programming Linux Games [美]John R. Hall 著 作者:[美]John R. Hall 单位:Loki Software, Inc. 时间:200 ...

  9. Linux文件系统:minix文件系统二进制分析1(格式化)

    文章目录 系列博文 1. minix文件系统二进制分析1:刚刚格式化后的文件系统 1.1 创建硬盘 1.1.1 添加一个16M的块设备 1.1.2 格式化块设备 1.2 minix文件系统的存储结构 ...

最新文章

  1. laravel-admin 使用记录(2) - 快速搭建 CURD
  2. python xmxl 无法启动_/usr/bin/python: can't decompress data; zlib not available 的异常处理
  3. python如何导入自定义模块_【python】导入自定义模块
  4. 大数据时代了解一些问题
  5. HDOJ HDU 1023 1130 1133 1134 2067 ACM 1023 1130 1133 1134 2067 IN HDU ( 卡特兰数 专题 catalan )...
  6. 在uniapp或者vue中,单行文字或者数字无法换行导致后面内容无法展示问题的解决方案
  7. 2个阶乘什么意思_两个阶乘号是什么意思,-双阶乘-数学-滕诓芳同学
  8. 经纬创投中国项目分类清单
  9. 抱薪者说 | 君莫:穿越山海,终成“C链小雷锋”
  10. Memory Leak
  11. core_cm3.h文件报错问题
  12. linux启动jdt服务,Eclipse搭建scala环境(解决“JDT weaving is currently disabled”)
  13. 牛客练习赛46-华华跟奕奕玩游戏(期望+逆元)
  14. JAVA基础编程——IO编程
  15. 易语言 上传文件到远程服务器,易语言与向远程服务器发送文件夹
  16. 几个经典app制作网站
  17. [原创]个人收集有关计算机视觉和模式识别相关的网址
  18. echarts实现多个y轴
  19. FL Studio20.9水果个人工作室必备DAW编曲制作
  20. 2020-1024等于什么?

热门文章

  1. 计算机类英语怎么学,计算机专业英语教程视频
  2. java vagrant_vagrant 做一个java web开发环境
  3. 数据结构题及c语言版答案9.14,十套数据结构试题+答案+难题解析(精校版)
  4. dockefile nginx php,dockerfile自动部署nginx+php7
  5. pipeline和java的区别_总结:四个Pipeline脚本式与声明式语法差异
  6. linux怎么创建用户教程,在Linux中如何手动创建一个用户
  7. Socket:注意事项
  8. (曲率系列3:)PCL:PCL库中的两种曲率表示方法pcl::NormalEstimation和PrincipalCurvaturesEstimation
  9. PCL基础3:点云程序运行时间计时
  10. 基于YOLO的目标检测界面化部署实现(支持yolov1-yolov5、yolop、yolox)