5.9 含并行连结的网络(GoogLeNet)

在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet的网络结构大放异彩 [1]。它虽然在名字上向LeNet致敬,但在网络结构上已经很难看到LeNet的影子。GoogLeNet吸收了NiN中网络串联网络的思想,并在此基础上做了很大改进。在随后的几年里,研究人员对GoogLeNet进行了数次改进,本节将介绍这个模型系列的第一个版本。

5.9.1 Inception 块

GoogLeNet中的基础卷积块叫作Inception块,得名于同名电影《盗梦空间》(Inception)。与上一节介绍的NiN块相比,这个基础块在结构上更加复杂,如图5.8所示。

图5.8 Inception块的结构

由图5.8可以看出,Inception块里有4条并行的线路。前3条线路使用窗口大小分别是1×11\times 11×1、3×33\times 33×3和5×55\times 55×5的卷积层来抽取不同空间尺寸下的信息,其中中间2个线路会对输入先做1×11\times 11×1卷积来减少输入通道数,以降低模型复杂度。第四条线路则使用3×33\times 33×3最大池化层,后接1×11\times 11×1卷积层来改变通道数。4条线路都使用了合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维上连结,并输入接下来的层中去。

Inception块中可以自定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

import time
import torch
from torch import nn, optim
import torch.nn.functional as Fimport sys
sys.path.append("..")
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')class Inception(nn.Module):# c1 - c4为每条线路里的层的输出通道数def __init__(self, in_c, c1, c2, c3, c4):super(Inception, self).__init__()# 线路1,单1 x 1卷积层self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)# 线路2,1 x 1卷积层后接3 x 3卷积层self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)# 线路3,1 x 1卷积层后接5 x 5卷积层self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)# 线路4,3 x 3最大池化层后接1 x 1卷积层self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)def forward(self, x):p1 = F.relu(self.p1_1(x))p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 = F.relu(self.p4_2(self.p4_1(x)))return torch.cat((p1, p2, p3, p4), dim=1)  # 在通道维上连结输出

5.9.2 GoogLeNet模型

GoogLeNet跟VGG一样,在主体卷积部分中使用5个模块(block),每个模块之间使用步幅为2的3×33\times 33×3最大池化层来减小输出高宽。第一模块使用一个64通道的7×77\times 77×7卷积层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第二模块使用2个卷积层:首先是64通道的1×11\times 11×1卷积层,然后是将通道增大3倍的3×33\times 33×3卷积层。它对应Inception块中的第二条线路。

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),nn.Conv2d(64, 192, kernel_size=3, padding=1),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为64+128+32+32=25664+128+32+32=25664+128+32+32=256,其中4条线路的输出通道数比例为64:128:32:32=2:4:1:164:128:32:32=2:4:1:164:128:32:32=2:4:1:1。其中第二、第三条线路先分别将输入通道数减小至96/192=1/296/192=1/296/192=1/2和16/192=1/1216/192=1/1216/192=1/12后,再接上第二层卷积层。第二个Inception块输出通道数增至128+192+96+64=480128+192+96+64=480128+192+96+64=480,每条线路的输出通道数之比为128:192:96:64=4:6:3:2128:192:96:64 = 4:6:3:2128:192:96:64=4:6:3:2。其中第二、第三条线路先分别将输入通道数减小至128/256=1/2128/256=1/2128/256=1/2和32/256=1/832/256=1/832/256=1/8。

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),Inception(256, 128, (128, 192), (32, 96), 64),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第四模块更加复杂。它串联了5个Inception块,其输出通道数分别是192+208+48+64=512192+208+48+64=512192+208+48+64=512、160+224+64+64=512160+224+64+64=512160+224+64+64=512、128+256+64+64=512128+256+64+64=512128+256+64+64=512、112+288+64+64=528112+288+64+64=528112+288+64+64=528和256+320+128+128=832256+320+128+128=832256+320+128+128=832。这些线路的通道数分配和第三模块中的类似,首先含3×33\times 33×3卷积层的第二条线路输出最多通道,其次是仅含1×11\times 11×1卷积层的第一条线路,之后是含5×55\times 55×5卷积层的第三条线路和含3×33\times 33×3最大池化层的第四条线路。其中第二、第三条线路都会先按比例减小通道数。这些比例在各个Inception块中都略有不同。

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),Inception(512, 160, (112, 224), (24, 64), 64),Inception(512, 128, (128, 256), (24, 64), 64),Inception(512, 112, (144, 288), (32, 64), 64),Inception(528, 256, (160, 320), (32, 128), 128),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第五模块有输出通道数为256+320+128+128=832256+320+128+128=832256+320+128+128=832和384+384+128+128=1024384+384+128+128=1024384+384+128+128=1024的两个Inception块。其中每条线路的通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均池化层来将每个通道的高和宽变成1。最后我们将输出变成二维数组后接上一个输出个数为标签类别数的全连接层。

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),Inception(832, 384, (192, 384), (48, 128), 128),d2l.GlobalAvgPool2d())net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))

GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。本节里我们将输入的高和宽从224降到96来简化计算。下面演示各个模块之间的输出的形状变化。

net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))
X = torch.rand(1, 1, 96, 96)
for blk in net.children(): X = blk(X)print('output shape: ', X.shape)

输出:

output shape:  torch.Size([1, 64, 24, 24])
output shape:  torch.Size([1, 192, 12, 12])
output shape:  torch.Size([1, 480, 6, 6])
output shape:  torch.Size([1, 832, 3, 3])
output shape:  torch.Size([1, 1024, 1, 1])
output shape:  torch.Size([1, 1024])
output shape:  torch.Size([1, 10])

5.9.3 获取数据和训练模型

我们使用高和宽均为96像素的图像来训练GoogLeNet模型。训练使用的图像依然来自Fashion-MNIST数据集。

batch_size = 128
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.0087, train acc 0.570, test acc 0.831, time 45.5 sec
epoch 2, loss 0.0032, train acc 0.851, test acc 0.853, time 48.5 sec
epoch 3, loss 0.0026, train acc 0.880, test acc 0.883, time 45.4 sec
epoch 4, loss 0.0022, train acc 0.895, test acc 0.887, time 46.6 sec
epoch 5, loss 0.0020, train acc 0.906, test acc 0.896, time 43.5 sec

小结

  • Inception块相当于一个有4条线路的子网络。它通过不同窗口形状的卷积层和最大池化层来并行抽取信息,并使用1×11\times 11×1卷积层减少通道数从而降低模型复杂度。
  • GoogLeNet将多个设计精细的Inception块和其他层串联起来。其中Inception块的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。
  • GoogLeNet和它的后继者们一度是ImageNet上最高效的模型之一:在类似的测试精度下,它们的计算复杂度往往更低。

参考文献

[1] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., & Anguelov, D. & Rabinovich, A.(2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).

[2] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

[3] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2818-2826).

[4] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 4, p. 12).


注:除代码外本节与原书此节基本相同,原书传送门

5.9_googlenet相关推荐

最新文章

  1. 学python需要什么基础知识-学Python需要什么基础知识?零基础可以学Python吗?
  2. 7天拿到阿里安卓岗位offer,附高频面试题合集
  3. SQL Tuning Advisor使用实例
  4. 周鸿祎重申360不依靠弹窗广告盈利 增值服务是主要模式
  5. Linux操作系统内核源码目录结构详解
  6. macos下安装redis客户端
  7. miui锁屏通知显示android,MIUI10系统又更新了!新增勿扰锁屏通知功能,修复系统Bug...
  8. Shell-cat url-list.txt | xargs wget -c
  9. 483. Smallest Good Base
  10. 传智168期 day61 redis 笔记(2017年8月25日19:16:30)
  11. java免费翻译api接口_多语言翻译api
  12. 我在Facebook干不下去的10个理由
  13. 写给独自站在人生面前的自己1-java加密算法
  14. dd命令创建一个大文件
  15. 一步一回头撞在了南墙上
  16. 无法加载文件 XXX,因为在此系统上禁止运行脚本。有关详细信息,请参阅 https:/go.microsoft问题解决
  17. Vulnhub——JANGOW: 1.0.1
  18. “黑马程序员”视频学习笔记之面向对象基础及调试问题
  19. 抖音音乐号变现能力强不强,超详细运营攻略教程丨国仁网络
  20. Looksery Cup 2015 F - Yura and Developers 单调栈+启发式合并

热门文章

  1. Android访问中央气象台的天气预报API得到天气数据
  2. 智能化市场「分层」开始,软硬「解耦」进入深水区
  3. ES5对象学习-多个对象的创建
  4. java ee jar_javaee.jar下载
  5. 重拾C#日常积累:DateTime日期的格式化和空值设置
  6. 专业、简单、稳定,融云重新定义互联网通信云服务
  7. glu 、glut 、freeglut与glew 作用
  8. C1-见习工程师能力认证-02
  9. C语言程序中调用脚本,C语言调用SHELL脚本
  10. 8月11日 集训测试