最近我们被客户要求撰写关于MCMC的研究报告,包括一些图形和统计输出。

我们将研究两种对分布进行抽样的方法:拒绝抽样和使用 Metropolis Hastings 算法的马尔可夫链蒙特卡洛方法 (MCMC)。像往常一样,我将提供直观的解释、理论和一些带有代码的示例。

相关视频:马尔可夫链原理可视化解释与R语言区制转换Markov regime switching实例

马尔可夫链原理可视化解释与R语言区制转换Markov regime switching实例

,时长07:25

相关视频

马尔可夫链蒙特卡罗方法MCMC原理与R语言实现

,时长08:47

背景

在我们进入主题之前,让我们将马尔可夫链蒙特卡罗(MCMC)这个术语分解为它的基本组成部分:蒙特卡罗方法和马尔可夫链。

马尔可夫链

Markov Chain 是“在状态空间上经历从一种状态到另一种状态的转换的随机过程”。

正如你所看到的,它看起来就像一个有限状态机,只是我们用概率注释了状态转换。例如,我们可以查看今天是否晴天,明天晴天的概率为 0.9,下雨的概率为 0.1。同样在雨天开始。应该清楚的是,从给定的状态,所有传出的转换应该总计 1.0,因为它是一个适当的分布。

表示此信息的另一种方法是通过转移矩阵 P:

将其表示为矩阵的有趣之处在于,我们可以通过矩阵乘法来模拟马尔可夫链。例如,假设我们从阳光明媚的状态开始,我们可以将其表示为行向量:x(0)=[10]。这隐含地表示我们处于晴天状态的概率为 1,因此处于下雨状态的概率为 0。现在,如果我们执行矩阵乘法,我们可以在一步之后找出处于每个状态的概率:

我们可以看到明天有 0.9 的机会晴天(根据我们的简单模型),有 0.1 的机会下雨。实际上,我们可以继续将转换矩阵相乘,以在 k 步之后找到太阳/雨的机会:

我们可以很容易地计算 x(k) 的各种 k 值,使用 numpy

import numpy as npPa = nps.ardraasy([[0.9, 0.1], [0.5, 0.5]])
istsdatea = np.arasdray([1, 0])siasdmulatase_markasdov(istaasdte, P, 10)

我们可以在这里看到一个有趣的现象,当我们在状态机中采取更多步骤时,晴天或下雨的概率似乎会收敛。您可能认为这与我们所处的初始状态有关,但实际上并非如此。如果我们将初始状态初始化为随机值,我们将得到相同的结果:

siasmdulasteds_marksov(nap.arsdray([r, 1 - r]), P, 10)
x^(0) = [0.3653 0.6347]
x^(1) = [0.6461 0.3539]
x^(2) = [0.7584 0.2416]
x^(3) = [0.8034 0.1966]
x^(4) = [0.8214 0.1786]
x^(5) = [0.8285 0.1715]
x^(6) = [0.8314 0.1686]
x^(7) = [0.8326 0.1674]
x^(8) = [0.8330 0.1670]
x^(9) = [0.8332 0.1668]

这种稳态分布称为 stationary distribution 通常用 π 表示。可以通过多种方式找到该稳态向量π。最直接的方法是在 nn 接近无穷大时取极限。

下一种方法就是求解方程。由于根据定义 q是稳态,因此乘以 P 应该返回相同的值:

其中 I 是单位矩阵。如果您扩展我们的向量/矩阵符号,您会发现这只是一个方程组以及 π1,π2,...,πn 总和为 1 (即 π 形成概率分布)。在我们的例子中只有两个状态:π1+π2=1。

然而,并不是每个马尔可夫链都有一个平稳的分布,甚至是唯一的 但是,如果我们向马尔可夫链添加两个额外的约束,我们可以保证这些属性:

  1. 不可约:我们必须能够最终从任何其他状态到达任何一种状态(即期望步数是有限的)。
  2. 非周期性:系统永远不会返回到具有固定周期的相同状态(例如,不会每 5 步确定性地返回开始“晴天”)。

一个重要的定理说,如果马尔可夫链是遍历的,那么它有一个唯一的稳态概率向量 ππ。在 MCMC 的上下文中,我们可以从任何状态跳转到任何其他状态(以一定的有限概率),轻松满足不可约性。

我们将使用的另一个有用的定义是 detailed balance and reversible Markov Chains. 如果存在满足此条件的概率分布 π,则称马尔可夫链是可逆的(也称为详细平衡条件):

换句话说,从长远来看,你从状态 i 转移到状态 j 的次数比例,与你从状态 j 转移到状态 i 的次数比例相同。事实上,如果马尔可夫链是可逆的,那么我们就知道它具有平稳分布(这就是我们使用相同符号 π 的原因)。

马尔可夫链蒙特卡罗方法

马尔可夫链蒙特卡罗 (MCMC) 方法只是一类使用马尔可夫链从特定概率分布(蒙特卡罗部分)中采样的算法。他们通过创建一个马尔可夫链来工作,其中限制分布(或平稳分布)只是我们想要采样的分布。

这是一张可能有助于描述该过程的图片. 想象一下,我们正在尝试制作一个 MCMC 来尝试使用 PDF f(x)对任意一维分布进行采样。在这种情况下,我们的状态将是沿 x 轴的点,而我们的转换概率将是从一种状态到另一种状态的机会。这是情况的简化图:

该图显示了我们试图用粗黑线逼近的密度函数,以及使用从橙色状态过渡的蓝线的马尔可夫链的一部分的可视化。特别是,对于 i=-3,-2,-1,1,2,3,只是从状态 X0 到 Xi 的转换。但是,x 轴线上的每个点实际上都是这个马尔可夫链中的一个势态。请注意,这意味着我们有一个无限的状态空间,因此我们不能再将转换很好地表示为矩阵。MCMC 方法的真正“诀窍”是我们想要设计状态(或 x 轴上的点)之间的转换概率,以便我们将大部分时间花在 f(x) 很大的区域中,并且在它较小的区域中的时间相对较少(即与我们的密度函数成精确比例)。

就我们的人物而言,我们希望将大部分时间花在中心周围,而较少时间花在外面。事实上,如果我们模拟我们的马尔可夫链足够长的时间,状态的限制分布应该近似于我们试图采样的 PDF。因此,使用 MCMC 方法进行采样的基本算法为:

  1. 从任意点 x 开始。
  2. 以一定的转移概率跳转到点 x'(这可能意味着保持相同的状态)。
  3. 转到第 2 步,直到我们转换了 T 时间。
  4. 记录当前状态 x′,进行步骤 2。

现在,我们在每个点 x 轴上花费的比例次数应该是我们试图模拟的 PDF 的近似值,即如果我们绘制 x 值的直方图,我们应该得到相同的形状。

拒绝抽样

现在,在我们进入 MCMC 方法的具体算法之前,我想介绍另一种对概率分布进行采样的方法,我们稍后将使用它,称为 rejection sampling. 主要思想是,如果我们试图从分布 f(x) 中采样,我们将使用另一个工具分布 g(x) 来帮助从 f(x) 中采样。唯一的限制是对于某些 M>1,f(x)<Mg(x)。它的主要用途是当 f(x) 的形式难以直接采样时(但仍然可以在任何点 xx 对其进行评估)。

以下是算法的细分:

  1. 从 g(x) 中采样 x。
  2. 从 U(0,Mg(x)) 中采样 y(均匀分布)。
  3. 如果 y<f(x),则接受 x 作为 f(x) 的样本,否则转到步骤 1。

另一种看待它的方法是我们采样点 x0 的概率。这与从 g 中采样 x0 的概率乘以我们接受的次数的比例成正比,它简单地由 f(x0) 和 Mg(x0) 之间的比率给出:

等式告诉我们对任意点进行采样的概率与 f(x0) 成正比。在对许多点进行采样并找到我们看到 x0 的次数比例之后,常数 M 被归一化,我们得到了 PDF f(x) 的正确结果。

让我们通过一个例子更直观地看一下它。我们要从中采样的目标分布 f(x) 是 double gamma 分布,基本上是一个双边伽马分布。我们将使用正态分布 g(x) 作为我们的包络分布。下面的代码向我们展示了如何找到缩放常数 M,并为我们描绘了拒绝抽样在概念上是如何工作的。


# 目标 = 双伽马分布
dsg = stats.dgamma(a=1)# 生成PDF的样本
x = np.linspace# 绘图
ax = df.plot(style=['--', '-']

从图中,一旦我们找到 g(x)的样本(在这种情况下 x=2),我们从范围等于 Mg(x) 高度的均匀分布中绘制. 如果它在目标 PDF 的高度内,我们接受它(绿色),否则拒绝(拒绝)。

实施拒绝抽样

下面的代码为我们的目标双伽马分布实现拒绝采样。它绘制标准化直方图并将其与我们应该得到的理论 PDF 匹配。

# 从拒绝采样算法生成样本
sdampales = [rejeasdctioan_samplaing for x in range(10000)]# 绘制直方图与目标 PDF
df['Target'].plot

总的来说,我们的拒绝采样器非常适合。与理论分布相比,抽取更多样本会改善拟合。

拒绝抽样的很大一部分是它很容易实现(在 Python 中只需几行代码),但有一个主要缺点:它很慢。

Metropolis-Hastings 算法

这 Metropolis-Hastings Algorithm (MH) 是一种 MCMC 技术,它从难以直接采样的概率分布中抽取样本。与拒绝抽样相比,对 MH 的限制实际上更加宽松:对于给定的概率密度函数 p(x),我们只要求我们有一个  与 p成正比的函数 f(x)f(x) (x)p(x)!这在对后验分布进行采样时非常有用。

Metropolis-Hastings 算法的推导

为了推导出 Metropolis-Hastings 算法,我们首先从最终目标开始:创建一个马尔可夫链,其中稳态分布等于我们的目标分布 p(x)。就马尔可夫链而言,我们已经知道状态空间将是什么:概率分布的支持,即 x 值。因此(假设马尔可夫链的构造正确)我们最终得到的稳态分布将只是 p(x)。剩下的是确定这些 x 值之间的转换概率,以便我们可以实现这种稳态行为。

马尔可夫链的详细平衡条件,这里用另一种方式写成:

这里 p(x)是我们的目标分布,P(x→x′) 是从点 x到点 x′ 的转移概率。所以我们的目标是确定P(x→x′)的形式。既然我们要构建马尔可夫链,让我们从使用等式 5 作为该构建的基础开始。请记住,详细的平衡条件保证我们的马尔可夫链将具有平稳分布(它存在)。此外,如果我们也包括遍历性(不以固定间隔重复状态,并且每个状态最终都能够达到任何其他状态),我们将建立一个具有唯一平稳分布 p(x)的马尔可夫链.

我们可以将方程重新排列为:

这里我们使用 f(x)来表示一个  与 p(x)成正比的函数。这是为了强调我们并不明确需要 p(x),只是需要与它成比例的东西,这样比率才能达到相同的效果。现在这里的“技巧”是我们将把 P(x→x′)分解为两个独立的步骤:一个提议分布 g(x→x′) 和接受分布 A(x→x′)(类似于拒绝抽样的工作原理)。由于它们是独立的,我们的转移概率只是两者的乘积:

此时,我们必须弄清楚 g(x)和 A(x) 的合适选择是什么。由于 g(x) 是“建议分布”,它决定了我们可能采样的下一个点。因此,重要的是它具有与我们的目标分布 p(x)(遍历性条件)相同的支持。这里的一个典型选择是以当前状态为中心的正态分布。现在给定一个固定的提议分布 g(x),我们希望找到一个匹配的 A(x)。

虽然不明显,但满足公式 的 A(x) 的典型选择是:

我们可以通过考虑 f(x′)g(x′→x)小于等于 1 和大于 1 的情况。当小于等于 1 时,它的倒数大于 1,因此 LHS 的分母,A(x′→ x), 等式 8 为 1,而分子等于 RHS。或者,当f(x′)g(x′→x)是大于 1 LHS 的分子是 1,而分母正好是 RHS 的倒数,导致 LHS 等于 RHS。

这样,我们已经证明,我们创建的马尔可夫链的稳定状态将等于我们的目标分布 (p(x)),因为详细的平衡条件通过构造得到满足。所以整体算法将是(与上面的 MCMC 算法非常匹配):

  1. 通过选择一个随机 x 来初始化初始状态。
  2. 根据g(x→x′)找到新的x′。
  3. 根据 A(x→x′) 以均匀概率接受 x′。如果接受到 x' 的转换,否则保持状态 x。
  4. 进行第 2 步,T 次。
  5. 将状态 x 保存为样本,转至步骤 2 对另一个点进行采样。

预烧和相关样本

在我们继续实现之前,我们需要讨论关于 MCMC 方法的两个非常重要的话题。第一个主题与我们选择的初始状态有关。由于我们随机选择 xx 的值,它很可能位于 p(x) 非常小的区域(想想我们的双伽马分布的尾部)。如果从这里开始,它可能会花费不成比例的时间来遍历低密度的 x 值,从而错误地给我们一种感觉,即这些 x 值应该比它们更频繁地出现。所以解决这个问题的方法是“预烧”采样器通过生成一堆样本并将它们扔掉。样本的数量将取决于我们试图模拟的分布的细节。

我们上面提到的第二个问题是两个相邻样本之间的相关性。由于根据我们的转换函数 P(x→x′)的定义,绘制 x′ 取决于当前状态 x。因此,我们失去了样本的一项重要属性:独立性。为了纠正这一点,我们抽取 Tth 个样本,并且只记录最后抽取的样本。假设 T 足够大,样本应该是相对独立的。与预烧一样,T 的值取决于目标和提议分布。

实现 Metropolis-Hastings 算法

让我们使用上面的双伽马分布示例。让我们将我们的提议分布定义为以 x 为中心、标准差为 2、N(x, 2) 的正态分布(记住 x 是当前状态):

给定 f(x) 与我们的基础分布 p(x) 成比例,我们的接受分布如下所示:

由于正态分布是对称的,因此正态分布的 PDF 在其各自点进行评估时会相互抵消。现在让我们看一些代码:


# 模拟与双伽马分布成比例的 f(x)
f = ambd x: g.df(x* mat.i采样器 = mhspler()# 样本
sames = [nex(saper) for x in range(10000)]# 绘制直方图与目标 PDF
df['Target'].plot

来自我们的 MH 采样器的样本很好地近似于我们的双伽马分布。此外,查看自相关图,我们可以看到它在整个样本中非常小,表明它们是相对独立的。如果我们没有为 T 选择一个好的值或没有预烧期,我们可能会在图中看到较大的值。

结论

我希望你喜欢这篇关于使用拒绝抽样和使用 Metropolis-Hastings 算法进行 MCMC 抽样的简短文章。


Python用MCMC马尔科夫链蒙特卡洛、拒绝抽样和Metropolis-Hastings采样算法相关推荐

  1. MCMC+马尔科夫链蒙特卡罗

    MCMC+马尔科夫链蒙特卡罗 为了解决什么问题,所以出现了这一种方法? 后来又因为出现了什么新情况,所以产生了对应的变种?

  2. 蒙特卡洛分析_随机模拟:马尔科夫链蒙特卡洛采样MCMC与EM算法「2.3」

    最近学习了机器学习中的马尔科夫链蒙特卡洛(Markov Chain Monte Carlo, 简称MCMC) 相关的知识. 主要内容包括: [1]蒙特卡洛原则,及其应用于采样的必要性(已经发布在头条) ...

  3. MCMC原理解析(马尔科夫链蒙特卡洛方法)

    马尔科夫链蒙特卡洛方法(Markov Chain Monte Carlo),简称MCMC,MCMC算法的核心思想是我们已知一个概率密度函数,需要从这个概率分布中采样,来分析这个分布的一些统计特性,然而 ...

  4. 用Python中的马尔科夫链进行营销渠道归因

    用Python中的马尔科夫链进行营销渠道归因 --第一部分:"更简单 "的方法 任何积极开展营销活动的企业都应该对确定哪些营销渠道推动了实际转化率感兴趣.投资回报率(ROI)是一个 ...

  5. matlab mcmc工具箱,马尔科夫链蒙特卡洛模拟(MCMC)matlab工具箱

    马尔科夫链蒙特卡洛模拟(MCMC)matlab工具箱 matlab 2021-2-10 下载地址 https://www.codedown123.com/64660.html 马尔科夫链蒙特卡洛模拟( ...

  6. 马尔科夫链蒙特卡洛_蒙特卡洛·马可夫链

    马尔科夫链蒙特卡洛 A Monte Carlo Markov Chain (MCMC) is a model describing a sequence of possible events wher ...

  7. 第十五课.马尔科夫链蒙特卡洛方法

    目录 M-H采样 Metropolis-Hastings采样原理 M-H采样步骤 Gibbs方法 Gibbs核心流程 Gibbs采样的合理性证明 Gibbs采样实验 在 第十四课中讲述了马尔科夫链与其 ...

  8. 马尔科夫链和马尔科夫链蒙特卡洛方法

    前言 译自:<Training Restricted Boltzmann Machines: An Introduction > 马尔科夫链在RBM的训练中占据重要地位,因为它提供了从复杂 ...

  9. 马尔科夫链蒙特卡洛(MCMC)

    在以贝叶斯方法为基础的机器学习技术中,通常需要计算后验概率,然后通过最大后验概率(MAP)等方法进行参数推断和决策.然而,在很多时候,后验分布的形式可能非常复杂,这个时候寻找其中的最大后验估计或者对后 ...

最新文章

  1. SpringMVC之源码分析--LocaleResolver和ThemeResolver应用
  2. php验证安全码,PHP 高自定义性安全验证码的简单示例
  3. 别人总结的一些git教程大全
  4. ccleaner无法更新_CCleaner正在静默更新关闭自动更新的用户
  5. 微软发布Azure Service Fabric Mesh公开预览版
  6. idea 2个配置 实时编译 autowire注解错
  7. [ Java4Android ] Java基本概念
  8. C语言float数据类型介绍、示例和应用经验
  9. java 判断字符串是否汉子_java判断 字符串 是否有汉字
  10. Python基础(while循环/赋值运算符)
  11. Apache 绿色版本官方版本下载
  12. 【UML 建模】在线UML建模工具 ProcessOn 使用详解
  13. HTML5 Audio时代的MIDI音乐文件播放 .
  14. Android cpu降频工具,安卓手机CPU调频/调压工具_手机CPU管理 V16.6.9 安卓版
  15. 兄弟连Linux笔记
  16. android11 rom,第一个Android 11的第三方ROM来了,适用于红米K20 Pro
  17. 配置babel-plugin-import报错的深坑
  18. 牛客 哔哩哔哩校招编程真题 给定一个整数数组,判断其中是否有3个数和为N 二分经典 三数之和
  19. mysql存储手机号
  20. Docker 书籍在线阅读(Docker 从入门到实践)

热门文章

  1. Android 7.0拍照/相册/截取图片FileProvider使用
  2. 《5G时代:生活方式和商业模式的大变革》读书笔记和总结
  3. JavaScript 教程「6」:数组
  4. Drone CI/CD系列(二)——python语言之配置.drone.yml文件
  5. CVE-2015-1635-HTTP.SYS远程执行代码漏洞复现
  6. 【微服务】如何实现微服务集群的高可靠?
  7. 面试:如何应对人事的面试
  8. 软件架构-Nosql之redis
  9. 编程人生 | 一位半路出家的程序员的“天命”之选
  10. 百年烈酒公司William Grant&Sons将通过区块链追踪威士忌产品