1个神经元 传两个神经元

INTRODUCTION

介绍

Consciousness is only made possible by virtue of the brain, and the brain is nothing more than a collection of complex cells called neurons. Like everything else that exists in our world, neurons abide by the same cause-and-effect processes that govern the universe at large. The neuron behaves under a cellular and molecular algorithm, programmed by the physical laws of nature. It is an “incredible electrical device¹ — a contraption of tiny jigs, springs, hinges, rods, sheets, magnets, zippers, and trapdoors.”² The neuron is fundamentally nothing more than a sophisticated organic machine, which makes the brain like a biochemical factory — a bustling cellular mill filled with trillions of moving parts.

意识只能通过大脑来实现,大脑不过是称为神经元的复杂细胞的集合。 像我们世界上存在的所有其他事物一样,神经元也遵守控制整个宇宙的相同因果过程。 神经元在细胞和分子算法的作用下,由自然的自然规律编程。 它是一种“令人难以置信的电气设备”,是微型夹具,弹簧,铰链,杆,床单,磁铁,拉链和活板门的组合。”²神经元从根本上不过是一台复杂的有机机器,它使大脑像生化试剂一样工厂—一个熙熙cellular的蜂窝工厂,里面装满了数万亿个活动部件。

For reasons entirely unclear to us, the inner workings of this complex machine give rise to consciousness. As neuroscientist David Eagleman says: “Who you are depends on what your neurons are up to, moment by moment.”³ This is not to say that the actual experience of consciousness is reducible to the brain (it’s not); it is only to say that consciousness itself is caused by the brain. Without the brain, consciousness cannot exist; damage the brain and one finds that there are corresponding changes to the mind; ingest psychedelics and one undergoes a profound change to the quality of their conscious experience. We may not know how something like consciousness can emerge from something physical like a brain, but we know as a fact that it does.

由于我们完全不清楚的原因,这台复杂机器的内部运作引发了意识。 正如神经科学家戴维·伊格曼(David Eagleman)所说:“你是谁,取决于你的神经元每时每刻在做什么。”³这并不是说意识的实际体验可以还原到大脑(不是)。 只能说意识本身是由大脑引起的。 没有大脑,意识就不会存在。 损害大脑,人们会发现大脑有相应的变化; 摄取迷幻药,人们的意识体验质量发生了深刻变化。 我们可能不知道诸如意识之类的东西如何从诸如大脑之类的物理事物中出现, 但事实上,事实确实如此。

Because the neurons that make up our brains behave in an organized and rule-based fashion, it is possible that we could one day create an artificial neuron that functions precisely like a biological one. It is also possible, then, that we could one day create an entirely artificial brain — one that is functionally indistinguishable from our own. Since we know that biological brains give rise to consciousness, the construction of an artificial brain would imply that consciousness could be supported by artificial means. Whether or not this is true has profound implications for philosophy and for society.

由于构成我们大脑的神经元以一种有组织的,基于规则的方式运行,因此有一天我们可能会创造出一种人造神经元,其功能完全像生物学的神经元。 因此,有一天我们可能会创造出一个完全人造的大脑-在功能上与我们自己的大脑没有区别。 既然我们知道生物大脑会引起意识,那么人工大脑的构建就意味着意识可以通过人工手段得到支持。 这是否成立对哲学和社会都有深远的影响。

This paper is a thought experiment that will explore some of these implications. It starts by establishing the plausibility of an artificial neuron and from there outlines how we might construct an artificial brain. If an artificial brain were actually created, there would be at least two possibilities: consciousness would be preserved, or it would not. This paper discusses the intuitions and ramifications of these scenarios, each of which reaches striking conclusions about the nature of consciousness.

本文是一项思想实验,将探讨其中的某些含义。 它从建立人造神经元的合理性开始,然后概述了如何构造人造大脑。 如果实际创建了一个人工大脑,至少会存在两种可能性:意识将得以保留,或者意识不能得以保存。 本文讨论了这些情景的直觉和后果,每种情景都对意识的本质得出了惊人的结论。

THE SILICON NEURON

硅神经元

The anatomy of a neuron is made up of component parts that look remarkably similar to the component parts of man-made machines. Throughout the scientific literature, neurons are discussed using the vocabulary of electrical engineering: in terms of conductances, electrical potentials, circuits, networks, and systems. For instance, axons and dendrites — the threadlike processes that extend from the neuron — act like electrical wires by allowing for the flow of electrically-charged ions. These “wires” of the neuron are soldered together by small junctions about 20–40 nanometers wide called synapses. Synapses serve as a site for electro-chemical exchanges between different neurons, similar to how nodes within an electrical circuit allow for the exchange of electrical current between different wires. The wires of the neuron are even insulated in a fatty, non-conductive sheath called myelin, which facilitates the speed of current flow and prevents ionic leakage — much in the same way that we use plastic and rubber to insulate electrical wires.

神经元的解剖结构由看起来与人造机器的组成部分非常相似的组成部分组成。 在整个科学文献中,都使用电气工程学的词汇来讨论神经元:涉及电导,电势,电路,网络和系统。 例如,轴突和树突(从神经元延伸的线状过程)通过允许带电的离子流而像电线一样起作用。 神经元的这些“线”通过约20-40纳米宽的称为突触的小结焊接在一起。 突触充当不同神经元之间进行电化学交换的位置,类似于电路中的节点如何允许不同导线之间进行电流交换。 神经元的电线甚至在称为髓磷脂的脂肪非导电护套中绝缘,这促进了电流的流动并防止了离子泄漏-就像我们使用塑料和橡胶来绝缘电线一样。

The neuron is a vastly complex cellular system, but it is fundamentally nothing more than an electrical device — one that functions in ways that are mechanical and replicable. Given the sufficient technology and resources, it would be possible to program the precise biological code of the neuron into our own artificial machines. Biological neurons are computational in nature,⁴ so it’s likely that such a device would run on a silicon substrate. This “silicon neuron” would be functionally indistinguishable from a biological neuron. It would serve all the same functions, play by all the same rules, and fulfill all the same cellular duties — the only distinguishing factor would be the substrate through which it does so.

神经元是一个非常复杂的细胞系统,但从根本上讲,它不过是一种电子设备-一种以机械和可复制的方式起作用的设备。 有了足够的技术和资源,就有可能将神经元的精确生物学代码编程到我们自己的人造机器中。 生物神经元本质上是计算性的,因此此类设备很可能会在硅基板上运行。 这种“硅神经元”在功能上与生物学神经元没有区别。 它将发挥所有相同的功能,发挥所有相同的规则,并履行所有相同的蜂窝功能-唯一的区别因素将是它通过其完成工作的基质。

In the domains of medicine and science, man-made imitations of biological systems are already in widespread use. We see this with artificial organs such as hearts and bladders, as well as with neural prosthetics such as cochlear implants and neuromuscular interfaces.⁵ These devices aren’t perfect replicas, but they demonstrate our ability to successfully recreate biological functioning through artificial means. The brain is orders of magnitude more complex than anything we have yet to create, but it is still fundamentally a physical system — one that could be precisely replicated given sufficient technology and resources.

在医学和科学领域,对生物系统的人工模仿已经广泛使用。 我们在心脏和膀胱等人造器官以及人工耳蜗和神经肌肉接口等神经假体中看到了这种情况。⁵这些设备并不是完美的复制品,但它们展示了我们通过人造手段成功重建生物功能的能力。 大脑比我们尚未创建的任何事物都要复杂几个数量级,但是从根本上说,它仍然是一个物理系统,只要有足够的技术和资源,就可以精确地复制它。

Silicon neurons as they have just been described are beyond the scope of current technology, but we are already in the process of developing some promising prototypes. The following is taken from an article published in Nature that describes one of the most advanced silicon neurons to date:

刚刚描述的硅神经元已经超出了当前技术的范围,但是我们已经在开发一些有希望的原型。 以下内容摘自《 自然》杂志上发表的一篇文章,该文章描述了迄今为止最先进的硅神经元之一:

“By combining neurophysiological principles with silicon engineering, we have produced [a] circuit with the functional characteristics of real nerve cells. Because the physics underlying the conductivity of silicon devices and biological membranes is similar, the ‘silicon neuron’ is able to emulate efficiently the ion currents that cause nerve impulses and control the dynamics of their discharge…The silicon neuron represents a step towards constructing artificial nervous systems…”⁶

“通过将神经生理学原理与硅工程学相结合,我们生产了具有真实神经细胞功能特征的[a]回路。 由于硅器件和生物膜的电导率的物理原理相似,因此“硅神经元”能够有效模拟引起神经冲动的离子流并控制其放电动力学……硅神经元代表了构建人工神经元的一步。系统...”⁶

In other words, we are already in the process of transcribing the biological rulebook of the neuron into our own artificial devices. Such a project faces logistical challenges, but the ability to create a silicon neuron itself is nomologically possible — that is, it is possible under the actual laws of nature.

换句话说,我们已经在将神经元的生物学规则抄录到我们自己的人工设备中。 这样的项目面临着后勤方面的挑战,但是从理论上讲,创建硅神经元本身的能力是可能的,也就是说,在实际的自然法则下这是可能的。

Perhaps a thousand years from now, some future inventor creates a silicon neuron that faithfully preserves the functioning of a biological neuron. She switches out biological neurons in humans with silicon neurons and finds that the replacements are completely uneventful in terms of neural activity — the transaction goes smoothly, and it remains business as usual in the brain.

大约一千年后,未来的发明家创造了一种硅神经元,可以忠实地保留生物神经元的功能。 她用硅神经元取代了人类的生物神经元,发现替代品在神经活动方面完全没有问题-交易进行得很顺利,并且在大脑中仍然照常营业。

After further research and development, suppose our inventor creates a nano-machine capable of synthesizing artificial neurons and performing neuron replacements in vivo. She decides to conduct an experiment on herself and programs the machine to replace all the neurons in her brain with silicon neurons in a piecemeal fashion, switching them out one by one. After implanting the device, there are at least two possibilities:

经过进一步的研究和开发,假设我们的发明人创造了一种纳米机器,能够合成人工神经元并在体内进行神经元替代。 她决定对自己进行实验,并对机器编程,以零碎的方式用硅神经元替换大脑中的所有神经元,然后将它们逐一切换。 植入设备后,至少有两种可能性:

  1. The nature of conscious experience for the inventor does not change, and she continues to live her life completely unaffected by the replacement. Her brain will eventually be outsourced from organic matter to silicon, but the inventor’s conscious experience will be completely preserved.发明人的有意识经验的性质没有改变,她继续过着完全不受替代影响的生活。 她的大脑最终将从有机物外包给硅,但发明人的有意识经历将被完全保留。
  2. The nature of conscious experience for the inventor does change. Although the physical interactions in the inventor’s brain are perfectly preserved, each neuron replacement is a gradual step toward the termination of her conscious experience.发明人的有意识经验的性质确实发生了变化。 尽管发明人大脑中的物理相互作用得到了很好的保留,但每次神经元替换都是朝着终止其有意识的经历迈出的一步。

The rest of this paper explores some of the different implications that follow from each of these scenarios.

本文的其余部分探讨了每种情况下的一些不同含义。

SCENARIO ONE

场景一

It is possible that replacing the inventor’s biological neurons with silicon neurons will have no effect on her conscious experience. After her brain is replaced, consciousness for her will still be of the same quality that consciousness is for you or I. Just as an artificial heart still delivers oxygen to cells in the body, so too does a brain composed of silicon neurons give rise to consciousness. If Scenario One were true, it would show that consciousness emerges as the result of a particularly-organized system, regardless of what substrate that system runs on.

用硅神经元代替发明人的生物神经元可能不会对其有意识的经历产生影响。 更换大脑后,对她的意识将仍然具有与您或我相同的意识。就像人造心脏仍向体内的细胞输送氧气一样,由硅神经元组成的大脑也会产生意识。 如果方案一是正确的,那将表明意识是由一个特别组织的系统产生的,而不管该系统在什么基础上运行。

If this is the case, it challenges a fundamental intuition we have — namely that, for consciousness to exist, biological life must also exist. Many of us feel that other animals have consciousness, or that there may exist other conscious life in the universe; but these beliefs hinge on an assumption that consciousness is biological in nature. If our inventor’s conscious experience was preserved, it would contradict this intuition we have that consciousness must be born of an organic substrate. It would prove that an artificial system could support consciousness just as well as a biological one.

如果是这样,它将挑战我们拥有的基本直觉,即,为了存在意识,生物生命也必须存在。 我们中的许多人感到其他动物有意识,或者宇宙中可能存在其他有意识的生活。 但是这些信念基于一个假设,即意识在本质上是生物的。 如果我们的发明人的意识经历得以保留,那将与这种直觉相矛盾,我们认为意识必须是有机的基础。 这将证明一个人造系统可以像生物系统一样支持意识。

There are challenging implications that follow from this idea. For instance, what if it was possible to construct a fully-functioning silicon brain from scratch, in vitro? By replicating all the connections and activity in the inventor’s silicon brain, we could create a separate silicon brain without replacing biological neurons at all. This brain could conceivably be wired to humanoid bodies as well — just as the biological brain is “wired” to the human body by the peripheral nervous system. If this was the case, it would also be true that conscious entities could be manufactured, potentially at very large scales. It’s not hard to imagine a dystopian future where we mass-produce conscious humanoids — perhaps with some functional tweaks — to outsource unpleasant or dangerous jobs such as garbage collection, coal mining, or removal of hazardous materials. Why use organic humans for these things when we can simply manufacture others to do the job?

这个想法具有挑战性的含义。 例如,如果有可能在体外从头开始构建功能齐全的硅脑, 怎么办? 通过复制发明人硅脑中的所有联系和活动,我们可以创建一个单独的硅脑,而根本不替换生物神经元。 可以想象,该大脑也可以连接到类人动物的身体上,就像生物大脑通过周围的神经系统“连接”到人体上一样。 如果真是这样,那么有意识的实体就可以被制造出来,而且规模可能很大,这也是事实。 不难想象,在反乌托邦的未来,我们将大量生产有意识的类人动物(也许会进行一些功能性调整),以外包不愉快或危险的工作,例如垃圾收集,煤矿开采或清除有害物质。 当我们可以简单地制造别人来做这项工作时,为什么要用有机的人做这些事情呢?

This ability to manufacture consciousness extends to other domains as well. For instance, what if we created life-simulation video games such as The Sims (one of the best-selling video games to date)⁷ that used conscious characters? Video games already run on silicon substrates such as computers and game consoles — if we could create conscious experience from the ground up using silicon systems, what’s to stop us from integrating video games with conscious entities? Nick Bostrum’s theory that we might be living in a computer simulation — in fact, that we are almost certainly living in one — is suddenly much more tenable in light of this possibility.⁸

这种制造意识的能力也延伸到其他领域。 例如,如果我们创建了使用意识角色的模拟人生的电子游戏,如《模拟人生》(迄今为止最畅销的电子游戏之一),该怎么办? 电子游戏已经可以在计算机和游戏机等硅基板上运行,如果我们可以使用硅系统从头开始创造有意识的体验,那么是什么阻止我们将电子游戏与有意识的实体集成在一起? 鉴于这种可能性,尼克·博斯特鲁姆(Nick Bostrum)关于我们可能生活在计算机仿真中的理论(实际上, 几乎可以肯定我们生活在一个计算机仿真中)的观点突然变得更加成立。

Another implication of Scenario One is that we could drastically enhance human cognition. By transitioning the substrate of consciousness from biological matter to the material found in cell phones and computers, there would exist new possible interactions between brains and machines. For instance, what if the limits of our knowledge were expanded to include all the information on the internet? A worldwide database of information would be “learned” in an instant, complex arithmetic operations would be calculated with ease, and we would have open access to the ever-expanding capacities of artificial intelligence.

方案一的另一个含义是,我们可以极大地增强人类的认知能力。 通过将意识的基质从生物物质转变为手机和计算机中发现的物质,大脑和机器之间将存在新的可能的相互作用。 例如,如果我们的知识范围扩展到包括互联网上的所有信息,该怎么办? 可以立即“学习”全球信息数据库,轻松计算复杂的算术运算,并且我们可以自由访问不断扩展的人工智能功能。

The possibility of integrating humans with machines also poses very real questions of mortality. All the things we die from — heart attacks, dementia, strokes, cancers — are effective in that they ultimately lead to the death of brain cells. By creating artificial neurons, we could implement new cellular functions that would be impossible with biological neurons. We could create physical safeguards against common causes of death, correct for neurological disorders, and prolong the lifespan of neurons to our heart’s content. Even farfetched ideas such as “downloading” one’s consciousness onto a silicon medium before death seem plausible if consciousness can be supported on artificial substrates. The age-old quest to attain eternal life may simply be a matter of transferring your silicon brain into a new body or mapping a real-time copy onto the cloud.

将人与机器集成的可能性也提出了非常真实的死亡率问题。 我们死于心脏病,痴呆,中风,癌症等所有事情,都是有效的,因为它们最终会导致脑细胞死亡。 通过创建人工神经元,我们可以实现生物神经元无法实现的新细胞功能。 我们可以建立物理保护措施来防止常见的死亡原因,纠正神经系统疾病,并延长神经元的寿命至我们的心脏状态。 如果可以在人造衬底上支撑意识,那么甚至有些牵强的想法,例如在死亡之前将意识“下载”到硅介质上,似乎也是合理的。 争取永生的古老追求可能仅仅是将您的硅脑转移到新的身体中或将实时副本映射到云中。

Such ideas seem like the stuff of science fiction, but projects to connect brains and machines are already underway. For instance, Elon Musk’s company Neuralink was started with the express purpose of “developing ultra-high bandwidth brain-machine interfaces to connect humans and computers.”⁹ Musk believes it is possible to create “an A.I. extension” of ourselves, which will “enable anyone who wants [it] to have superhuman cognition.”¹⁰ In an interview with Joe Rogan, Musk says, “From a long-term, existential standpoint, that’s the purpose of Neuralink: to create a high-bandwidth interface to the brain such that we can be symbiotic with A.I.”¹¹

这样的想法看起来像是科幻小说中的东西,但是连接大脑和机器的项目已经在进行中。 例如,埃隆·马斯克(Elon Musk)的公司Neuralink最初的明确目标是“开发超高带宽的脑机接口来连接人与计算机。”⁹马斯克认为,有可能创建自己的“人工智能扩展”,这将“使任何想要[超人类]认知的人都可以。”¹⁰在接受Joe Rogan的采访中,马斯克说:“从长远的存在角度来看,Neuralink的目的是:创建与大脑的高带宽接口这样我们就可以与AI共生”¹¹

Neuralink’s mission to merge humans and machines isn’t just philosophical pipe dreaming. They have already made concrete progress toward their goal. The following is from a paper published by Musk in the Journal of Medical Internet Research describing their newly-developed electrode threads, which are capable of carrying active electrical hardware into the membranes of neurons:

Neuralink融合人与机器的使命不仅仅是哲学上的空想。 他们已经朝着自己的目标取得了具体进展。 以下是马斯克(Musk)在《医学互联网研究》杂志上发表的一篇论文,描述了它们新开发的电极线,该电极线能够将有源电硬件携带到神经元的膜中:

“We have built arrays of small and flexible electrode ‘threads’ [and] a neurosurgical robot capable of inserting six threads (192 electrodes) per minute. Each thread can be individually inserted into the brain with micron precision for avoidance of surface vasculature and targeting specific brain regions. […] Neuralink’s approach to BMI [Brain-Machine Interfaces] has unprecedented packaging density and scalability…”¹²

“我们已经建立了许多小而灵活的电极'线'[和]神经外科手术机器人,它们能够每分钟插入六根线(192个电极)。 每条线都可以以微米级的精度单独插入大脑中,以避免表面脉管系统并针对特定的大脑区域。 […] Neuralink的BMI(脑机接口)方法具有前所未有的封装密度和可扩展性……”¹²

By inserting these threads into neurons, Neuralink is able to record from and stimulate neural activity via machine interfaces — thereby connecting the biological brain to artificial devices. These developments mark the early signs of a marriage between man and machine, and the transition of consciousness to a silicon substrate would offer a wealth of new possibilities between the two. While it is not certain that we could mass-produce conscious beings, obtain superhuman cognition, or prevent the death of brain cells, all of these are distinct possibilities if consciousness is preserved in the inventor. We are a long way from replacing biological neurons with silicon, but, if Scenario One proves true, it would open the door to real possibilities that hitherto had been limited to the domain of science fiction.

通过将这些线程插入神经元,Neuralink能够通过机器界面记录并刺激神经活动,从而将生物大脑连接到人工设备。 这些发展标志着人与机器之间结合的早期迹象,意识向硅衬底的转变将在两者之间提供许多新的可能性。 虽然不能确定我们是否可以大量生产有意识的生物,获得超人的认知或防止脑细胞的死亡,但如果在发明家中保持意识,所有这些都是截然不同的可能性。 我们距离用硅代替生物神经元还有很长的路要走,但是,如果方案一证明是正确的,那将为迄今为止仅限于科幻小说领域的真实可能性打开大门。

SCENARIO TWO

场景二

It is also possible that, despite the preservation of functionality in the brain, replacing the inventor’s biological neurons with silicon neurons will have an effect on her conscious experience. The gradual replacement of her neurons may result in the gradual termination of her consciousness.

尽管可能保留了大脑的功能,但用硅神经元代替发明人的生物神经元可能影响她的意识体验。 她的神经元逐渐替换可能导致她的意识逐渐终止。

The plausibility of this scenario is grounded in what amounts to a variation of vitalism. Vitalism is an outdated belief that living things function differently than non-living things due to some non-physical “energy.” With the advent of modern biology and physiology, the principles of vitalism were quickly refuted — the stuff of life is indeed physical, and the same laws of physics apply to living things as they do to any other physical thing in the universe. It is worth noting, however, that the universe itself is propagated by an “energy” reminiscent of vitalism; and it may be that there is something unique about this energy for consciousness. If Scenario Two were true, it would show that consciousness cannot exist unless it emerges from the same vitalistic energy that drives the natural unfolding of the universe as a whole.

这种情况的合理性基于等于活力的变化。 生命主义是一种过时的信念,即由于某种非物质的“能量”,生物的功能与非生物的功能不同。 随着现代生物学和生理学的到来,生命主义的原理被Swift驳斥-生活的确确实是物理的,并且物理定律同样适用于生物,就像它们适用于宇宙中其他物理事物一样。 但是,值得注意的是,宇宙本身是通过让人联想到生命力的“能量”来传播的。 也许这种意识能量具有某些独特之处。 如果第二种情况是正确的,那将表明意识不会存在,除非它来自驱动整个宇宙自然发展的同一种生命力。

This, of course, is not to say that the universe is exempt from the laws of physics — the very structure of the universe depends on them. But the laws of physics themselves are determined by a force that lies beyond any physical explanation. Take gravity for example. Gravity exists as the glue of the cosmos, a force that pulls two entities toward each other. It is the reason apples here on Earth fall at 9.8 m/s2, the reason apples on Mars fall at 3.7 m/s2, and the reason apples on the moon fall at 1.6 m/s2. But what is it that sets the rules for gravity? The best explanation we have comes from Einstein’s theory of relativity, which claims that gravity is a product of different curvatures in the fabric of space-time. But what is it, then, that sets the rules for space and time?

当然,这并不是说宇宙不受物理学定律的约束-宇宙的结构取决于它们。 但是物理定律本身是由超越任何物理解释的力所决定的。 以重力为例。 重力作为宇宙的胶水存在,这种力将两个实体彼此拉近。 这是地球上的苹果下降9.8 m / s2的原因,火星上的苹果下降3.7 m / s2的原因,月球上的苹果下降1.6 m / s2的原因。 但是,什么是引力定律? 我们最好的解释来自爱因斯坦的相对论,该理论声称重力是时空结构中不同曲率的产物。 但是,那是什么设定了时间和空间的规则呢?

One can follow this chain of questions as far down the rabbit hole as they like, but such questions are only concerned with physical logistics. Scenario Two is concerned with an entirely different level of explanation. We could have a complete physical understanding of everything within the cosmos, and it would do nothing to answer the argument made in Scenario Two. Scenario Two asks: Why are the rules of the universe the way they are in the first place, rather than some other way? Why does anything behave in the way it does at all? Is there something unique about a brain that emerges from the natural progression of the universe rather than one that emerges from artificial means?

人们可以随心所欲地追踪这一系列问题,但是这些问题仅与物流有关。 方案二涉及完全不同的解释级别。 我们可以对宇宙中的所有事物有一个完整的物理理解,而它对回答第二种情况下的论点毫无用处。 场景二问:为什么宇宙规则首先以它们原来的方式而不是其他方式出现? 为什么任何行为都表现出根本的作用? 从宇宙的自然发展中产生出来的大脑,而不是从人工手段中产生出来的大脑,是否存在某种独特的事物?

Einstein once said in an interview: “Human beings, vegetables, or cosmic dust, we all dance to a mysterious tune, intoned in the distance by an invisible piper.”¹³ If consciousness was not preserved in the inventor after her brain was replaced, it would show that consciousness can only be present where a brain dances to that mysterious tune of Einstein’s invisible piper; where a brain dances to the artificial tune of silicon, consciousness cannot exist.

爱因斯坦曾在一次采访中说过:“人类,蔬菜或宇宙尘埃,我们都在跳舞,这是一种神秘的音调,在无形的吹笛者的熏陶下,它在远处变暗。” [13]它表明,只有在大脑跳动爱因斯坦那看不见的吹笛手那神秘的曲调时,意识才能出现。 大脑在跳动人造硅的地方跳动,意识就不存在。

CONCLUSION

结论

The ability to create a silicon neuron is entirely possible under the laws of nature, although we are far from making the technological advancements necessary for such a project. But once the feasibility of silicon neurons is acknowledged, it is a short philosophical distance to the idea that neurons in the brain could altogether be replaced by neurons made of silicon. Because such a situation is possible, the considerations in this paper pose legitimate questions about the nature of consciousness.

在自然法则下,创建硅神经元的能力是完全可能的,尽管我们离实现该项目所需的技术进步还很远。 但是,一旦确认了硅神经元的可行性,这与大脑中的神经元完全可以被硅制成的神经元所替代的想法相距很短的哲学距离。 因为这种情况是可能的,所以本文中的考虑提出了关于意识本质的合理问题。

Both Scenario One and Scenario Two offer interesting conclusions in response to this thought experiment. Scenario One suggests that consciousness can exist entirely by artificial means, allowing for the possibility of conscious machines and man-machine hybrids. Scenario Two suggests that consciousness cannot be supported unless it is organized by the forces responsible for organizing our universe at large. These possibilities seem to have the most intuitive traction, and I hope they offer a starting point for future discussions on the possibility, or impossibility, of artificial consciousness

方案1和方案2都针对此思想实验提供了有趣的结论。 方案一表明,意识可以完全通过人为手段存在,从而允许有意识的机器和人机混合的可能性。 方案二表明,意识不能被支撑,除非它是由负责组织整个宇宙的力量所组织的。 这些可能性似乎具有最直观的吸引力,我希望它们为以后关于人工意识的可能性或不可能的讨论提供起点。

REFERENCES

参考资料

Image credit: “Interneurons” by NICHD NIH is licensed under CC BY 2.0

图片来源: NICHD NIH的 “ Interneurons”获得CC BY 2.0的许可

  1. Boyden, E., & TED. (2011, March). A new way to study the brain’s invisible secrets. Retrieved from https://www.ted.com/talks/ed_boyden_a_new_way_to_study_the_brain_s_invisible_secrets?language=en. Within this quote contains both the first and second references. This was done for stylistic purposes and does not take away from the integrity of the quotes.

    E. Boyden和TED。 (2011年3月)。 研究大脑的隐形秘密的新方法。 取自https://www.ted.com/talks/ed_boyden_a_new_way_to_study_the_brain_s_invisible_secrets?language=zh-CN 。 在此引用中包含第一和第二参考。 这样做是出于样式目的,并且不会影响报价的完整性。

  2. Pinker, S. (2015). How the Mind Works. Penguin Books. Note that he was describing here cells in general, not neurons specifically. But since neurons are a type of cell, his quotation applies.

    Pinker,S.(2015年)。 头脑是如何工作的 。 企鹅书。 请注意,他在这里描述的是一般的细胞,而不是特定的神经元。 但是由于神经元是细胞的一种,因此引用了他的话。

  3. Eagleman, D. (2017). The Brain: The Story of You. Knopf Doubleday Publishing Group. pp. 34

    鹰侠,D。(2017)。 大脑:您的故事 。 Knopf Doubleday出版集团。 第34页

  4. For instance, see Koch, C. (2004). Biophysics of computation: information processing in single neurons. Oxford university press.

    例如,参见Koch,C.(2004)。 计算的生物物理学:单个神经元中的信息处理 。 牛津大学出版社。

  5. International Neuromodulation Society. (2018, May 11). Deep Brain Stimulation. Retrieved from https://www.neuromodulation.com/DBS

    国际神经调节学会。 (2018年5月11日)。 深层脑刺激。 取自https://www.neuromodulation.com/DBS

  6. Mahowald, M., & Douglas, R. (1991). A silicon neuron. Nature, 354(6354), 515–518.

    Mahowald,M。和Douglas,R。(1991)。 硅神经元。 自然354 (6354),515-518。

  7. Rhinewald, S., & McElrath-Hart, N. (2016, May 5). 2016 World Video Game Hall of Fame Inductees Announced. Retrieved from https://www.museumofplay.org/press/releases/2016/05/2688-2016-world-video-game-hall-fame-inductees-announced

    莱茵瓦尔德(S.) 2016年世界电子游戏名人堂宣布揭晓。 取自https://www.museumofplay.org/press/releases/2016/05/2688-2016-world-video-game-hall-fame-inductees-announced

  8. Published in Philosophical Quarterly (2003) Vol. 53, №211, pp. 243‐255. (First version: 2001)

    出版在哲学季刊 (2003)卷。 53,№211,第243-255页。 (第一版:2001年)

  9. Neuralink. (n.d.). Neuralink. Retrieved January 14, 2020, from https://www.neuralink.com/

    神经链接。 (nd)。 神经链接。 于2020年1月14日从https://www.neuralink.com/检索

  10. Rogan, J., & Musk, E. (2018, September 6). #1169 — Elon Musk. Retrieved from https://jrelibrary.com/1169-elon-musk/

    Rogan,J.和Musk,E.(2018年9月6日)。 #1169 —伊隆·马斯克(Elon Musk)。 取自https://jrelibrary.com/1169-elon-musk/

  11. Rogan, J., & Musk, E. (2018, September 6). #1169 — Elon Musk. Retrieved from https://jrelibrary.com/1169-elon-musk/

    Rogan,J.和Musk,E.(2018年9月6日)。 #1169 —伊隆·马斯克(Elon Musk)。 取自https://jrelibrary.com/1169-elon-musk/

  12. Musk, E. (2019). An integrated brain-machine interface platform with thousands of channels. Journal of medical Internet research, 21(10), e16194.

    Musk,E.(2019年)。 具有数千个通道的集成式脑机接口平台。 医学互联网研究杂志21 (10),e16194。

  13. Clark, R. (2013). Einstein: The life and times. London: Bloomsbury Reader.

    克拉克河(2013)。 爱因斯坦:生活与时代 。 伦敦:Bloomsbury Reader。

翻译自: https://medium.com/@nathaniscashmoney/the-silicon-neuron-ec28ae212fad

1个神经元 传两个神经元


http://www.taodudu.cc/news/show-3243009.html

相关文章:

  • ps2021没法用神经元滤镜,ps2021版神经滤镜能用吗
  • ps2021神经滤镜不能下载,ps2021没法用神经元滤镜
  • 如何正确地保守一个秘密?来听听书生云的独门绝技
  • 八卦:拿着鸡毛当令箭
  • 第三封
  • 有一种执行力叫做“海娃”
  • 三封“鸡毛信”搅热网络 黄健翔将上网揭秘辞职原因
  • 杨飞致工管院的朋友们及湖南大学教研同仁的一封信[转]
  • 杂谈---大压力下的工作
  • 8年码神写给程序员兄弟们的一封鸡毛信
  • (附源码)ssm跨平台教学系统 毕业设计 280843
  • 【信号去噪】基于EMD、EEMD和CEEMDAN算法实现ECG信号去噪附matlab源码
  • 【BDTC 2017】去年挤不进去的推荐系统论坛又来了!
  • 茅台集团48岁总工程师成中国工程院院士候选人引争议!“白酒院士”会成真吗?...
  • 应用集成的尴尬 (转)
  • 如何做好Linux服务器运维,你可能需要这一份运维工程师书单!
  • 大数据与人工智能:学习资源收藏
  • Peacock:大规模主题模型及其在腾讯业务中的应用
  • 华为鸿蒙生态精英班条件,华为联合西北工业大学开设“鸿蒙生态菁英班”: 50 人左右...
  • 无机化学(第四版)(上册、下册)课后答案 宋天佑 徐家宁 程功臻 王莉版答案解析 高等教育出版社 第5章课后题答案 习题解答
  • 有关家校通的资料
  • 论文的写作方法
  • 写作方法_论文写作方法
  • 计算机著作的写作方法,写作手法概念解析:写作手法大致分为哪几类? -备考资料...
  • 计算机论文写法,计算机专业论文写作方法.ppt
  • 英国Paper写作中有哪些写作手法?
  • 提升Assignment写作质量的两大手法:暗指和互文性
  • 24个SEO优化的写作技巧和写作手法
  • 人工智能论文写作
  • 学习并掌握结构化写作方法,提高写作能力 ——结构化写作学习笔记(2)

1个神经元 传两个神经元_硅神经元相关推荐

  1. el-option传两个值_真正的释家或佛学研究者、爱好者必读文献——南朝梁·释慧皎《高僧传》...

    <高僧传>南朝梁·释慧皎 <高僧传>又称<梁高僧传>,是南朝梁僧释慧皎编撰的一本佛教史书.后有<续高僧传>,包括<唐高僧传><宋高僧传 ...

  2. el-option传两个值_俗话说买房看地段,买窗看K值:如何区分K值、U值和R值

    李嘉诚曾经说过,影响房子价值的三个关键"地段.地段,还是地段",可见一个房子地段的好坏,基本决定这个房子的定价. 对于房子来说,地段就是生活氛围,其中包括交通,商业,休闲娱乐,医疗 ...

  3. 前沿丨DeepMind提出神经元删除法:通过理解每个神经元来理解深度学习

    近日,DeepMind 发表博客介绍其对神经网络可解释性的最新研究成果.受神经科学启发,他们通过删除神经元来探索其对网络性能的影响.研究发现,和过去的经验直觉相反,选择性神经元(如「猫神经元」)对于网 ...

  4. 生物神经元的工作原理对深度学习神经元的启发

    https://www.toutiao.com/a6669391886744027662/ 近年来,"深度学习"AI模型经常被吹捧为"像大脑一样工作",因为它们 ...

  5. 传智python15期_【转载】2018传智播客黑马python人工智能15期视频教程

    ├─01 网络编程 │  ├─01-基本概念 │  │      01-网络通信概述.flv │  │      02-IP地址.flv │  │      03-Linux.windows查看网卡信 ...

  6. 假设你有一个多层感知机网络(MLP),输入层有10个节点、一个单隐层共50个神经元,最后是一个3个神经元的输出层。请问网络的结构是什么样子的使用数学形式进行描述?

    假设你有一个多层感知机网络(MLP),输入层有10个节点.一个单隐层共50个神经元,最后是一个3个神经元的输出层.请问网络的结构是什么样子的使用数学形式进行描述? 输入矩阵X的形状是什么? 隐藏层的权 ...

  7. 有监督学习的算法fit(x,y)传两个参数无监督学习的算法是fit(x),即传一个参数

    有监督学习的算法fit(x,y)传两个参数无监督学习的算法是fit(x),即传一个参数 https://www.jianshu.com/p/55e261ce9b3e

  8. 神经网络结构设计指导原则——输入层:神经元个数=feature维度 输出层:神经元个数=分类类别数,默认只用一个隐层 如果用多个隐层,则每个隐层的神经元数目都一样...

    神经网络结构设计指导原则 原文   http://blog.csdn.net/ybdesire/article/details/52821185 下面这个神经网络结构设计指导原则是Andrew NG在 ...

  9. 插图 引用 同一行两个插图_将图标变成插图的五个简单步骤

    插图 引用 同一行两个插图 Every creative person has probably already been in this situation: A project, be it a ...

最新文章

  1. 在网络通讯中,如何自己分配可用的端口号和获取自己的ip地址
  2. Vuex源码学习(五)加工后的module
  3. linux怎么调用静态库,Linux 静态库的创建和使用
  4. 《网络攻防实践》第七周作业
  5. 打印show attend and tell的解码器网络结构
  6. 〖Python〗-- Django内置Admin
  7. java文件处理之压缩,分割
  8. 数据结构--顺序栈和链式栈
  9. 天津和塘沽两天一夜自由行(第一天)
  10. 从 Windows 换到 Mac,真没有想象中的那么难
  11. Hive union vs union all
  12. C# 使用 Task 替换 ThreadPool ,异步监测所有线程(任务)是否全部执行完毕
  13. P1879 [USACO06NOV]玉米田Corn Fields
  14. TCP/IP 三次握手
  15. mac matlab安装libsvm
  16. 解决redhat vmware安装后鼠标不能使用问题
  17. Simulink-repeating squence
  18. iPhone 屏幕尺寸
  19. IDEA出现error moudle not specified
  20. 【Python网络蜘蛛】:基础 - 爬虫的基本原理

热门文章

  1. html table vtop,10-10-12 分页机制
  2. 上新啦~《2021年中国云安全行业研究报告》(附下载)
  3. 追根朔源java中的集合的toString
  4. 刚刚结束Autodesk 2013 DevDays 北京和上海的会议
  5. 你今天27岁生日,我的好兄弟,让我为你写篇文
  6. 3021什么意思_3021违章代码罚款金额和含义
  7. 用JS写的一个简单的导航栏
  8. 2018X-NUCA------auth2
  9. 6.Linux中vi/vim编辑器详解
  10. 使用系统自带的管理桌面快捷方式工具