乒乓球

solution

注意:以下k=i−j+1表示i,j中间元素的个数,i<j注意:以下~k=i-j+1表示i,j中间元素的个数,i<j注意:以下 k=i−j+1表示i,j中间元素的个数,i<j

考虑拿出顺序,对于i,j来说,它们之间有k个数(0<k<n−1),因此有2!∗k!种,剩下n−k−1个球插空放入(k+3)(k+3)...(n−1)n,且总方案为n!,易得:考虑拿出顺序,对于i,j来说,它们之间有k个数(0<k<n-1),因此有2!*k!种,剩下n-k-1个球插空放入(k+3)(k+3)...(n-1)n,且总方案为n!,易得:考虑拿出顺序,对于i,j来说,它们之间有k个数(0<k<n−1),因此有2!∗k!种,剩下n−k−1个球插空放入(k+3)(k+3)...(n−1)n,且总方案为n!,易得:

∑i=1n−2∑j=3n2!∗k!∗(k+3)(k+3)...(n−1)n∗(wiwj)n!\frac{\sum\limits_{i=1}^{n-2}\sum\limits_{j=3}^{n}2!*k!*(k+3)(k+3)...(n-1)n*(w_iw_j)}{n!}n!i=1∑n−2​j=3∑n​2!∗k!∗(k+3)(k+3)...(n−1)n∗(wi​wj​)​

=∑k=1n−2∑j=3nwiwj2n!(k+1)(k+2)n!=\frac{\sum\limits_{k=1}^{n-2}\sum\limits_{j=3}^{n}w_iw_j\frac{2n!}{(k+1)(k+2)}}{n!}=n!k=1∑n−2​j=3∑n​wi​wj​(k+1)(k+2)2n!​​

=2∑k=1n−2∑j=3nwiwj(k+1)(k+2)=2\sum\limits_{k=1}^{n-2}\sum\limits_{j=3}^{n}\frac{w_iw_j}{(k+1)(k+2)}=2k=1∑n−2​j=3∑n​(k+1)(k+2)wi​wj​​

=2∑j=3nwj∑k=1n−2wj−k−1(k+1)(k+2)=2\sum\limits_{j=3}^{n}w_j\sum\limits_{k=1}^{n-2}{\frac{w_{j-k-1}}{(k+1)(k+2)}}=2j=3∑n​wj​k=1∑n−2​(k+1)(k+2)wj−k−1​​

显然对∑k=1n−2wj−k−1∗1(k+1)(k+2)进行卷积之后分别与wj作积再累加即可.显然对\sum\limits_{k=1}^{n-2}{w_{j-k-1}*\frac{1}{(k+1)(k+2)}}进行卷积之后分别与w_j作积再累加即可.显然对k=1∑n−2​wj−k−1​∗(k+1)(k+2)1​进行卷积之后分别与wj​作积再累加即可.

code

/*SiberianSquirrel*//*CuteKiloFish*/
#include <bits/stdc++.h>
using namespace std;
#define gcd(a,b) __gcd(a,b)
#define Polynomial vector<int>
#define Inv(x) quick_pow(x, mod - 2)
using ll = long long;
using ull = unsigned long long;
const ll mod = 998244353, mod_g = 3, img = 86583718;//NTT, 多项式三角形
const int N = int(6e5 + 10);inline int add(int a, int b) {return a + b < mod? a + b: a + b - mod;
}
inline int sub(int a, int b) {return a - b < 0? a - b + mod: a - b;
}
inline int mul(int a, int b) {return 1ll * a * b % mod;
}void print(Polynomial &a, int len){for(int i = 0; i < len; ++ i)cout << a[i] << ' ';cout << '\n';
}
void exgcd(int a,int b,int &x,int &y){if(!b) {x = 1; y = 0;return;}exgcd(b, a % b, y, x);y -= x * (a / b);
}
int quick_pow(int ans, int p, int res = 1) {for(; p; p >>= 1, ans = 1ll * ans * ans % mod)if(p & 1) res = 1ll * res * ans % mod;return res % mod;
}Polynomial R;
//二进制向上取整,为方便NTT变换准备。
inline int Binary_Rounding(const int &n) {int len = 1; while(len < n) len <<= 1;return len;
}
//预处理R数组,准备变换,在每次NTT之前理论都要调用此函数。
inline int Prepare_Transformation(int n){int L = 0, len;for(len = 1; len < n; len <<= 1) L++;R.clear(); R.resize(len);for(int i = 0; i < len; ++ i)R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));return len;
}
void NTT(Polynomial &a, int f){int n = a.size();for(int i = 0; i < n; ++ i)if(i < R[i])swap(a[i], a[R[i]]);for(int i = 1; i < n; i <<= 1)for(int j = 0, gn = quick_pow(mod_g,(mod - 1) / (i<<1)); j < n; j += (i<<1))for(int k = 0, g = 1, x, y; k < i; ++ k, g = 1ll * g * gn % mod)x = a[j + k], y = 1ll * g * a[i + j + k] % mod,a[j + k] = (x + y) % mod, a[i + j + k] = (x - y + mod) % mod;if(f == -1){reverse(a.begin() + 1, a.end());int inv = Inv(n);for(int i = 0; i < n; ++ i) a[i] = 1ll * a[i] * inv % mod;}
}inline Polynomial operator +(const Polynomial &a, const int &b){int sizea = a.size(); Polynomial ret = a; ret.resize(sizea);for(int i = 0; i < sizea; ++ i)ret[i] = (1ll * a[i] + b + mod) % mod;return ret;
}
inline Polynomial operator -(const Polynomial &a, const int &b){int sizea = a.size(); Polynomial ret = a; ret.resize(sizea);for(int i = 0; i < sizea; ++ i)ret[i] = (1ll * a[i] - b + mod) % mod;return ret;
}
inline Polynomial operator *(const Polynomial &a, const int &b){int sizea = a.size(); Polynomial ret = a; ret.resize(sizea);for(int i = 0; i < sizea; ++ i) ret[i] = (1ll * a[i] * b % mod + mod) % mod;return ret;
}
inline Polynomial operator +(const Polynomial &a, const Polynomial &b){int sizea = a.size(), sizeb = b.size(), size = max(sizea, sizeb);Polynomial ret = a; ret.resize(size);for(int i = 0; i < sizeb; ++ i) ret[i] = (1ll * ret[i] + b[i]) % mod;return ret;
}
inline Polynomial operator -(const Polynomial &a, const Polynomial &b){int sizea = a.size(), sizeb = b.size(), size = max(sizea, sizeb);Polynomial ret = a; ret.resize(size);for(int i = 0; i < sizeb; ++ i) ret[i] = (1ll * ret[i] - b[i] + mod) % mod;return ret;
}
inline Polynomial Inverse(const Polynomial &a){Polynomial ret, inv_a;ret.resize(1);ret[0] = Inv(a[0]); int ed = a.size();for(int len = 2; len <= ed; len <<= 1){int n = Prepare_Transformation(len << 1);inv_a = a; inv_a.resize(n); ret.resize(n);for(int i = len; i < n; ++ i) inv_a[i] = 0;NTT(inv_a, 1); NTT(ret, 1);for(int i = 0; i < n; ++ i)ret[i] = 1ll * (2ll - 1ll * inv_a[i] * ret[i] % mod + mod) % mod * ret[i] % mod;NTT(ret, -1);for(int i = len; i < n; ++ i) ret[i] = 0;}ret.resize(ed);return ret;
}
inline Polynomial operator *(const Polynomial &a, const Polynomial &b){Polynomial lsa = a, lsb = b, ret;int n = lsa.size(), m = lsb.size();n = Prepare_Transformation(n + m);lsa.resize(n); lsb.resize(n); ret.resize(n);NTT(lsa,1); NTT(lsb,1);for(int i = 0; i < n; ++ i) ret[i] = 1ll * lsa[i] * lsb[i] % mod;NTT(ret,-1);return ret;
}
inline Polynomial operator /(const Polynomial &a, const Polynomial &b){Polynomial ret = a, ls = b;reverse(ret.begin(), ret.end());reverse(ls.begin(), ls.end());ls.resize(Binary_Rounding(a.size() + b.size()));ls = Inverse(ls);ls.resize(a.size() + b.size());ret = ret * ls; ret.resize(a.size() - b.size() + 1);reverse(ret.begin(), ret.end());return ret;
}
inline Polynomial operator %(const Polynomial &a, const Polynomial &b){Polynomial ret = a / b;ret = ret * b; ret.resize(a.size() + b.size());ret = a - ret; ret.resize(a.size() + b.size());return ret;
}
inline Polynomial Derivation(const Polynomial &a){int size = a.size(); Polynomial ret; ret.resize(size);for(int i = 1; i < size; ++ i) ret[i - 1] = 1ll * i * a[i] % mod;ret[size - 1] = 0;return ret;
}
inline Polynomial Integral(const Polynomial &a){int size = a.size(); Polynomial ret; ret.resize(size);for(int i = 1; i < size; ++ i) ret[i] = 1ll * Inv(i) * a[i - 1] % mod;ret[0] = 0;return ret;
}
inline Polynomial Composition_Inverse(const Polynomial &a){int n = a.size();Polynomial ret, Cinv = a, Pow;Cinv.resize(n); ret.resize(n); Pow.resize(n); Pow[0] = 1;for(int i = 0; i < n - 1; ++ i) Cinv[i] = Cinv[i + 1]; Cinv[n - 1] = 0;Cinv = Inverse(Cinv);for(int i = 1; i < n; ++ i){Pow = Pow * Cinv; Pow.resize(n);ret[i] = 1ll * Pow[i - 1] * Inv(i) % mod;}return ret;
}
inline Polynomial Logarithmic(const Polynomial &a){Polynomial ln_a = Derivation(a) * Inverse(a);ln_a.resize(a.size());return Integral(ln_a);
}
inline Polynomial Exponential(const Polynomial &a, int Constant = 1){Polynomial ret, D; int ed = a.size();ret.resize(1); ret[0] = Constant;for(int len = 2; len <= ed; len <<= 1){D = Logarithmic(ret); D.resize(len);D[0] = (1ll * a[0] + 1ll - D[0] + mod) % mod;for(int i = 1; i < len; ++i) D[i] = (1ll * a[i] - D[i] + mod) % mod;int n = Prepare_Transformation(len<<1);ret.resize(n); D.resize(n);NTT(ret, 1); NTT(D,1);for(int i = 0; i < n; ++ i) ret[i] = 1ll * ret[i] * D[i] % mod;NTT(ret, -1);for(int i = len; i < (len<<1); ++ i) ret[i] = D[i] = 0;}ret.resize(ed);return ret;
}int fac[int(1e5 + 10)] = {1}, ifac[int(1e5 + 10)] = {1};inline void solve() {int n; cin >> n; vector<int> w(n + 1); for(int i = 1; i <= n; ++ i) cin >> w[i];Polynomial F(n + 1), G(n + 1);for(int i = 1; i < n - 1; ++ i) {F[i] = 1ll * Inv(i + 1) * Inv(i + 2) % mod;}for(int i = 1; i < n - 1; ++ i) G[n - i] = w[n - i - 1];Polynomial H = G * F;ll res = 0;for(int i = 3; i <= n; ++ i) {res = (res + H[i] * w[i] % mod) % mod;}cout << 2ll * res % mod << '\n';
}signed main() {ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#ifdef ACM_LOCALfreopen("input", "r", stdin);
//    freopen("output", "w", stdout);signed test_index_for_debug = 1;char acm_local_for_debug = 0;do {if (acm_local_for_debug == '$') exit(0);if (test_index_for_debug > 20)throw runtime_error("Check the stdin!!!");auto start_clock_for_debug = clock();solve();auto end_clock_for_debug = clock();cout << "Test " << test_index_for_debug << " successful" << endl;cerr << "Test " << test_index_for_debug++ << " Run Time: "<< double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;cout << "--------------------------------------------------" << endl;} while (cin >> acm_local_for_debug && cin.putback(acm_local_for_debug));
#elsesolve();
#endifreturn 0;
}

乒乓球 牛客 NTT相关推荐

  1. 导数卷积 牛客 NTT

    导数卷积 solution f(x)=∑i=0n−1ai∗xif(x)=\sum\limits_{i=0}^{n-1}a_i*x^if(x)=i=0∑n−1​ai​∗xi f(i)(x)=∑j=in− ...

  2. 牛客练习赛50 F tokitsukaze and Another Protoss and Zerg(分治NTT)

    一些废话: 写完上一题(分治FFT)之后记起之前牛客写的这道题,题解是用启发式NTT,每次选两个项数最小的合并,当时没有整理NTT的模板所以就先mark了,今天受到分治FFT的启发,想用分治NTT来解 ...

  3. 牛客小白月赛12 J 月月查华华的手机 (序列自动机模板题)

    链接:https://ac.nowcoder.com/acm/contest/392/J 来源:牛客网 题目描述 月月和华华一起去吃饭了.期间华华有事出去了一会儿,没有带手机.月月出于人类最单纯的好奇 ...

  4. 牛客网【每日一题】4月2日 月月查华华的手机

    牛客网链接 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言524288K 64bit IO Format: %lld 题目描述 月月和华华一起去吃饭了.期间华 ...

  5. [C++] 牛客网:合并两个有序的数组

    主要是体验一下牛客网里的核心代码模式到底是怎么弄的..还有C++这个东西平常用的太少了,试一试. 以外的还体验到了sort()函数的使用. 来源:牛客网 题目链接:合并两个有序的数组 知识点:数组.双 ...

  6. 牛客~~打篮球~~~模拟水题

    链接:https://www.nowcoder.com/acm/contest/118/D 来源:牛客网 题目描述 1, 2, 3在打篮球, 可是二打一总是不公平的, 于是他们决定一对一,另一个人在边 ...

  7. 字节跳动java笔试题目_牛客网--字节跳动面试题--特征提取

    牛客网--字节跳动面试题--特征提取 博客说明 文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢! 来源 链接:特征提取 来源:牛客网 题目 ...

  8. 2019年牛客多校第1场 赛后总结

    A题 :Equivalent Prefixes  题意:就是给你两个有n个不同数的串,然后保证1-p区间内任选一个区间,使得区间中最小值的下标相同,找到最大的p值  思路:我的思路是设置两个单调栈,然 ...

  9. 牛客小白月赛5-F题: 圆(circle)

    题目链接:https://www.nowcoder.com/acm/contest/135/F 题解作者:Stump 题解链接:https://www.nowcoder.com/discuss/878 ...

最新文章

  1. Windows 7 版本知多少(Win 7 N/K/KN/E)
  2. php正则大小写字母,php 常见email,url,英文大小写,字母数字组合等正则表达式详解...
  3. Java StringBuilder getChars()方法与示例
  4. USACO 1.5.4 Checker Challenge
  5. 开源医学图像处理平台NiftyNet简介
  6. AI 又进阶!除了鉴别 PS 图片,还能一键卸妆!
  7. java ftps 证书_FTPS (FTP over SSL) vs. SFTP (SSH 文件传输协议): 我们如何做出选择
  8. 给大家讲解一下 AIDL原理分析
  9. qgis中加载矢量切片
  10. php7isapi,如何选择PHP套件中ISAPI和FastCGI模式的版本?_护卫神
  11. 联通托管服务器为什么打不开网页,为什么有些网页联通宽带打不开,移动4G能打开?...
  12. Python替换月份为英文缩写
  13. css动画怎么暂停,纯CSS代码实现动画的暂停与播放
  14. 游戏加加:科学的算法+公平的引擎=最真实的BenchMark
  15. LICEcap-动态截屏工具
  16. linux数据库哪个难,11 月数据库排名公布:前三难撼动
  17. 五款支持Mac的设计软件
  18. 计算机硬盘写入错误怎么办,永劫无间磁盘写入错误怎么办 磁盘写入错误解决办法...
  19. windows如何创建计划任务并在窗口界面隐藏运行
  20. No fallbackFactory instance of type class com.chongyou.system.api.factory.RemoteUserFallbackFactory

热门文章

  1. 卡尔曼滤波实现java
  2. 史上最全第三代半导体产业发展介绍(附世界各国研究概况解析)
  3. 吉林大学科研人员新发明让秸秆“变废为宝”
  4. 百度移动生态升级一周年:背后的攻与守、破与立
  5. PS透视模型动作插件:Perspective Mockups mac(支持ps2021)
  6. oracle复合数据类型
  7. **在一个字符串中寻找另外一个字符串**
  8. 英语口语116之每日十句口语
  9. 人脸识别、语音识别系统
  10. 华摄氏度和摄氏度的转换小数点处理 单片机