Aerts R., Wallén B. and Malmer N. 1992. Growth-limiting nutrients in Shagnum-dominated bogs subject to low and high atmopsheric nitrogen supply. J. Ecol. 80: 131–140.

Beltman B. and Van den Broek T. 1993. Verzuring van kalkrijke venen — een studie naar effectgerichte maatregelen. Landschap 10: 17–32 (in Dutch).

Berendse F., Van Breeemen N., Rydin H., Buttler A., Heijmans M., Hoosbeek M.R., Lee J.A., Mitchell E., Saarinen T., Vasander H. and Wallén B. 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biol. 7: 591–598.

Bolin B. 1986. How much CO2 will remain in the atmosphere?. In: Bolin B.R., Döös B., Jäger J. and Warrick R.A. (eds.), The Greenhouse Effect, Climate Change, and Ecosystems, John Wiley & Sons, Chichester, pp. 93–155.

Bowden R.D. 1991. Inputs, outputs, and accumulation of nitrogen in an early successional moss (Polytrichum) ecosystem. Ecol. Monogr. 61: 207–223.

Bragazza L., Thavanainen T., Kutnar L., Rydin H., Limpens J., Hájek M., Grosvernier P., Hájek T., Hajkova P., Hansen I., Iacumin P. and Gerdol R. 2004. Nutritional constraints in ombotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol. 163: 609–616.

Brock T.C.M. and Bregman R. 1989. Periodicity in growth, productivity, nutrient content and decomposition of Sphagnum recurvum var. mucronatum in a fen woodland. Oecologia 80: 44–52.

Clymo R.S. 1970. The growth of Sphagnum: methods of measurement. J. Ecol. 58: 13–49.

Clymo R.S. 1984. The limits to peat bog growth. Philos. Trans. Roy. Soc. Lond. B303: 605–654.

Clymo R.S. and Hayward P.M. 1982. The ecology of Sphagnum. In: Smith A.J.E. (ed.), Bryophyte Ecology., Chapman and Hall, New York, pp. 229–289.

Coulson J.C. and Butterfield J. 1978. An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J. Ecol. 66: 631–650.

Farquhar G., Ehleringer J.R. and Hubick K.T. 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537.

Field C.B., Jackson R.B. and Mooney H.A. 1995. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ. 18: 1214–1225.

Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1: 182–195.

Heij G.J. and Schneider T. (eds), 1991. Acidification Research in the Netherlands, Studies in Environmental Science 46. Elsevier, Amsterdam.

Heijmans M.M.P.D., Arp W.J. and Berendse F. 2001. Effects of elevated CO2 and vascular plants on evapotranspiration in bog vegetation. Global Change Biol. 7: 817–827.

Heijmans M.M.P.D., Klees H. and Berendse F. 2002. Competition between Sphagnum magellanicum and Eriophorum angustifolium as affected by raised CO2 and increased N deposition. Oikos 97: 415–425.

Hoosbeek M.R., Van Breemen N., Vasander H., Buttler A. and Berendse F. 2002. Potassium limits potential growth of bog vegetation under elevated CO2 and N deposition. Global Change Biol. 8: 1130–1138.

Hornibrook E.R.C., Longstaffe F.J. and Fyfe W.S. 2000. Factors influencing stable isotope ratios in CH4 and CO2 within subenvironments of freshwater wetlands: implications for δ-signatures of emissions. Isotopes Environ. Health Stud. 36: 151–176.

Houghton J.T., Ding Y., Griggs D.J., Noguer M., Van der Linden P.J., Dai X., Maskell K. and Johnson C.A. 2001. In: Climate Change 2001: The Scientific Basis — Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

Jalink M.H. 1996. Indicatorsoorten voor Verdroging, Verzuring en Eutrofiëring in Laagveenmoerassen. Staatsbosbeheer Driebergen, Driebergen (in Dutch).

Jauhiainen J. and Silvola J. 1999. Photosynthesis of Sphagnum fuscum at long-term raised CO2 concentrations. Ann. Bot. Fenn. 36: 11–19.

Jauhiainen J., Vasander H. and Silvola J. 1994. Response of Sphagnum fuscum to N deposition and increased CO2. J. Bryol. 18: 83–95.

Jauhiainen J., Vasander H. and Silvola J. 1998. Nutrient concentration in Sphagna at increased N-deposition rates and raised atmospheric CO2-concentrations. Plant Ecol. 138: 149–160.

Jauhiainen J., Silvola J., Tolonen K. and Vasander H. 1997. Response of Sphagnum fuscum to water levels and CO2 concentration. J. Bryol. 19: 391–400.

Jonasson S. 1988. Evaluation of the point intercept method for the estimation of plant biomass. Oikos 52: 101–106.

Koerselman W. and Verhoeven J.T.A. 1992. Nutrient dynamics in mires of various trophic status: nutrient inputs and outputs and the internal nutrient cycle. In: Verhoeven J.T.A. (ed.), Fens and Bogs in the Netherlands: Vegetation, History, Nutrient Dynamics and Conservation, Kluwer, Dordrecht, pp. 397–432.

Körner C. 2000. Biosphere responses to CO2 enrichment. Ecol. Appl. 10: 1590–1619.

Lamers L.P.M., Farhoush C., Van Groenendael J.M. and Roelofs J.G.M. 1999. Calcareous groundwater raises bogs; the concept of ombotrophy revisited. J. Ecol. 87: 639–648.

Lansdown J.M., Quay P.D. and King S.L. 1992. CH4 production via CO2 reduction in a temperate bog: Asource of 13C-depleted CH4. Geochim. Cosmochim. Acta 56: 3493–3503.

Limpens J. and Berendse F. 2003. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135: 339–345.

Limpens J., Raymakers T.A.G., Baar J., Berendse F. and Zijlstra J.D. 2003. The interaction between epiphytic algae, a parasitic fungus and Sphagnum as affected by N and P. Oikos 103: 59–68.

Makino A. and Mae T. 1999. Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol. 40: 999–1006.

Maltby E. and Immirzi P. 1993. Carbon dynamics in peatlands and other wetland soils: regional and global prespectives. Chemosphere 27: 999–1023.

Miglietta F., Hoosbeek M.R., Foot J., Gigon F., Hassinen A., Heijmans M., Peresotti A., Saarinen T., Van Breemen N. and Wallén B. 2001. Spatial and temporal performance of the MiniFACE (free air CO2 enrichment) system on bog ecosystems in northern and central Europe. Environ. Monitor. Assess. 66: 107–127.

Milla R., Cornelissen J.H.C., Van Logtestijn R.S.P., Toet S. and Aerts R. 2006. Vascular plant responses to elevated CO2 in a temperate lowland Sphagnum peatland. Plant Ecol. DOI: 10.1007/s11258-005-9028-9.

Mitchell E.A.D., Buttler A., Grosvernier P., Rydin H., Siegenthaler A. and Gobat J.-M. 2002. Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. J. Ecol. 90: 529–533.

Mooney H.A., Canadell J., Chapin F.S. III, Ehleringer J.R., Körner Ch., McMurtrie R.E., Parton W.J., Pitelka L.F. and Schulze E.-D. 1999. Ecosystem physiology responses to global change. In: Walker B., Steffen W., Canadell J. and Ingram J. (eds.), The Terrestrial Biosphere and Global Change — Implications for Natural and Managed Ecosystems, Cambridge University Press, Cambridge, pp. 141–189.

Norby R.J., Cotrufo M.F., Ineson P., O’Neill E.G. and Canadell J.G. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127: 153–165.

Pataki D.E., Ellsworth D.S., Evans R.D., Gonzalez-Meler M., King J., Leavitt S.W., Lin G., Matamala R., Pendall E., Siegwolf R., Van Kessel C. and Ehleringer J.R. 2003. Tracing changes in ecosystem function under elevated carbon dioxide conditions. BioScience 53: 805–818.

Pepin S. and Körner C. 2002. Web-FACE: a new canopy free-air CO2 enrichment system for tall trees in mature forests. Oecologia 133: 1–9.

Poorter H. and Navas M.-L. 2003. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol. 157: 175–198.

Rydin H. 1993. Mechanisms of interactions among Sphagnum species along water-level gradients. Adv. Bryol. 5: 153–185.

Saarnio S., Järviö S., Saarinen T., Vasander H. and Silvola J. 2003. Minor changes in vegetation and carbon gas balance in a boreal mire under a raised CO2 or NH4NO3 supply. Ecosystems 6: 46–60.

Silvola J. 1985. CO2 dependence of photosynthesis in certain forest and peat mosses simulated photosynthesis at various actual and hypothetical CO2 concentrations. Lindbergia 11: 86–93.

Smolders A.J.P., Tomassen H.B.M., Pijnappel H.W., Lamers L.P.M. and Roelofs J.G.M. 2001. Substrate-derived CO2 is important in the development of Sphagnum spp. New Phytol. 152: 325–332.

Stitt M. and Krapp A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ. 22: 583–621.

Tuba Z., Proctor M.C.F. and Takács Z. 1999. Dessiccation-tolerant plants under elevated air CO2: a review. Zeitschrift für Naturforschung C 54: 788–796.

Van Breemen N. 1995. How Sphagnum bogs down other plants. Trends Ecol. Evol. 10: 270–275.

Van der Heijden E., Verbeek S.K. and Kuiper P.J.C. 2000a. Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biol. 6: 200–212.

Van der Heijden E., Jauhiainen J., Silvola J., Vasander H. and Kuiper P.J.C. 2000b. Effects of elevated atmospheric CO2 concentration and increased nitrogen deposition on growth and chemical composition of ombotrophic Sphagnum balticum and oligo-mesotrophic Sphagnum papillosum. J. Bryol. 22: 175–182.

Van der Meijden R. 1996. Heukels’ Flora van Nederland 22th ed. Wolters Noordhoff, Groningen (in Dutch).

Verhoeven J.T.A. and Toth E. 1995. Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates. Soil Biol. Biochem. 27: 271–275.

Verhoeven J.T.A. and Liefveld W.M. 1997. The ecological significance of organochemical compounds in Sphagnum. Acta Bot. Neerland. 46: 117–130.

Walbridge M.R. 1994. Plant community composition and surface water chemistry of fen peatlands in West Virginia’s Appalachian plateau. Water Air Soil Pollut. 77: 247–269.

Weltzin J.F., Harth C., Bridgham S.D., Pastor J. and Vonderharr M. 2001. Production and microtopography of bog bryophytes: response to warming and water-table manipulations. Oecologia 128: 557–565.

Weltzin J.F., Pastor J., Harth C., Bridgham S.D., Updegraff K. and Chapin C.T. 2000. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81: 3464–3478.

White J.W.C., Ciais P., Figge R.A., Kenny R. and Markgraf V. 1994. A high-resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature 367: 153–156.

signature=5dd3f675332448cbe48d657ff930a326,Moss responses to elevated CO相关推荐

  1. signature=e48117269aff62d4a3fa5fe5baffd0d1,The BAFF/APRIL System in Autoimmunity

    1. Mackay F, Groom JR, Tangye SG. An important role for B-cell activation factor and B cells in the ...

  2. signature=0ca2720a9af9bfe70731d72325e6c137,Ca2+ signatures

    摘要: Calcium ions (Ca2+) are well known signaling molecules in plant signal transduction pathways inc ...

  3. 文献(7): 在非小细胞肺癌中,浆细胞signature可用于PD-L1免疫治疗的响应预测

    到今天为止,几乎所有的肿瘤类型都已经发表了对应的单细胞图谱.肿瘤单细胞转录组还有必要做吗?还能做出新意吗?今天分享的这篇文献给出了答案:和免疫治疗结合是不错的点. 除了文献整体思路可借鉴程度高,在分析 ...

  4. MOSS工作流 InfoPath+WorkFlow+Moss 开发要点

    项目基本完成了,一期的东西基本都做完了,采用的纯Moss下面的开发,也应该总结一些要点和东西,为了不使自己以后完全忘记,或者说:为了让广大困惑的人,能在此找到一些捷径和关键点,在此能有所用,也就欣慰不 ...

  5. Moss量化模型部署记录

    一.Moss仓库代码下载及环境准备 下载本仓库内容至本地/远程服务器 git clone https://github.com/OpenLMLab/MOSS.git 安装依赖 cd MOSS pip ...

  6. 基于趋动云部署复旦大学MOSS大模型

    首先新建项目: MOSS部署项目,然后选择镜像,直接用官方的镜像就可以. 之后选择数据集: 公开数据集中,MOSS_复旦大学_superx 这个数据集就是了,大小31G多 完成选择后: 点击创建,暂不 ...

  7. 重磅发布,时隔两月——复旦大学MOSS最新0.0.3版本发布

    今天中午吃饭的时候无意间看到一则新闻说的就是复旦大学开发的MOSS也就是国产版的类chatGPT对话模型已经发布了最新版本0.0.3,目前公测期间是完全开源免费的,还是可以上手体验一下的. 官方的博客 ...

  8. 将moss 2007的模板文件导入到moss 2010

    最近公司HR请请将一个moss2007的调查模板文件导入到我们部门的Moss protal 上面. 我想这是举手之劳,就爽快的答应了. 但是导入时却报如下错误: Error Microsoft Sha ...

  9. 解决微信H5获取SDK授权报错提示errMsg: “config:fail,Error: 系统错误,错误码:63002,invalid signature [20200908 22:17:17][]“

    如果常规检查都做过可以仔细看下微信开放文档 这个里面的报错原因 如果都不是那么极有可能是(恭喜你!看样子你的H5页面日活人数还蛮多[呲牙]) 获取腾讯微信平台access_token超过每日默认上限2 ...

最新文章

  1. Linux下查看Nginx,tomcat等的并发连接数和连接状态
  2. (转)关于数据库主键和外键(终于弄懂啦)
  3. android遍历拼接字符串,写个批处理脚本帮忙干活---遍历amp;字符串处理
  4. 七牛上传图片html,使用七牛云上传图片
  5. mariadb mysql版本对应_弹指神通MariaDB——MariaDB与MySQL各版本的区别
  6. Spring AOP 面向切面编程
  7. 面试官:为什么 Spring Boot 的 jar 可以直接运行
  8. NullPointerException的处理新方式,Java14真的太香了
  9. as3 crypto 加密解密des,rsa
  10. java 高性能代码_[Java教程]Javascript高性能代码(一)
  11. 我的Android第一章
  12. windows 下使用 virtualenv 创建虚拟环境
  13. 阶段3 2.Spring_09.JdbcTemplate的基本使用_3 JdbcTemplate在Dao中的使用
  14. (转)被动投资--傻钱的泡沫
  15. Swift 中枚举高级用法及实践
  16. win7激活工具和pdf解密工具
  17. 计算机ram和rom的工作原理,RAM和ROM的作用与区别详细说明
  18. linux log file
  19. 在快乐男声歌唱比赛中,有6位评委给选手打分,分数在0-10分,选手王杰表现的不过,请输入6位评委的打分,输出6位评委的分数
  20. 883. 三维形体投影面积(javascript)883. Projection Area of 3D Shapes

热门文章

  1. java变量重名问题
  2. Matlab 常见错误(1)——提示“数组索引必须为正整数或逻辑值”或者“索引超出数组元素的数目”
  3. html点击弹出登录注册表单提交代码
  4. 【Java基础系列】tob和toc的区别
  5. 使用主密钥和钱包方法加密数据
  6. 2021年Bootstrap实用手册和最强总结以及工具
  7. Discuz对不起,您安装的不是正版应用的解决办法
  8. NOI OJ 1.5 18:鸡尾酒疗法 C语言(包含一维数组的简单讲解)
  9. Oracle 创建分区表操作分区表
  10. transformer在视觉检测的应用