1.

Mackay F, Groom JR, Tangye SG. An important role for B-cell activation factor and B cells in the pathogenesis of Sjogren’s syndrome. Curr Opin Rheumatol 2007;19(5):406–13.

2.

Mackay F, Silveira PA, Brink R. B cells and the BAFF/APRIL axis: fast-forward on autoimmunity and signaling. Curr Opin Immunol 2007;19(3):327–36.

3.

Mackay F, Schneider P, Rennert P, Browning JL. BAFF and APRIL: a tutorial on B cell survival. Ann Rev Immunol 2003;21:231–64.

4.

Mills JA. Systemic Lupus Erythematosus. N Engl J Med 1994;330:1871–9.

5.

Kang YM, Zhang X, Wagner UG, et al. CD8 T cells are required for the formation of ectopic germinal centers in rheumatoid arthritis. J Exp Med 2002;195:1325–36.

6.

Davidson A, Aranow C. Pathogenesis and treatment of systemic lupus eythematosus nephritis. Curr Opin Rheumatol 2006;18:268–475.

7.

Eisenberg D, Rahman A. Systemic lupus erythematosus-2005 annus mirabillis. Nat Clin Pract Rheum 2005;2:145–52.

8.

Carroll MC. A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol 2004;4:825–31.

9.

McGaha TL, Sorrentino B, Ravetch JV. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 2005;307:590–3.

10.

Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006;6:823–35.

11.

Rahman AH, Eisenberg RA. The role of toll-like receptors in systemic lupus erythematosus. Springer Semin Immunopathol 2006;28:131–43.

12.

Hoffman RW. T cells in the pathogenesis of systemic lupus erythematosus. Clin Immunol 2004;113(1):4–13.

13.

Singh RR. SLE: translating lessons from model systems to human disease. Trends Immunol 2005;26:572–9.

14.

Davidson A, Wang X, Mihara M, et al. Co-stimulatory blockade in the treatment of murine systemic lupus erythematosus (SLE). Ann NY Acad Sci 2003;987:188–98.

15.

Kalled SL, Cutler AH, Datta SK, Thomas DW. Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: preservation of kidney function. J Immunol 1998;160(5):2158–65.

16.

Vinuesa CG, Cook MC, Angelucci C, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 2005;435(7041):452–8.

17.

Thatayatikom A, White AJ. Rituximab: a promising therapy in systemic lupus erythematosus. Autoimmun Rev 2006;5:18–24.

18.

Bossen C, Schneider P. BAFF, APRIL and their receptors: structure, function and signaling. Semin Immunol 2006;18:263–75.

19.

Dillon SR, Gross JA, Ansell SM, Novak AJ. An APRIL to remember: novel TNF ligands as therapeuthic targets. Nat Rev Drug Discov 2006;5(3):235–46.

20.

Salzer U, Birmelin J, Bacchelli C, et al. Sequence analysis of TNFRSF13b, encoding TACI, in patients with systemic lupus erythematosus. J Clin Immunol 2007;27(4):372–7.

21.

Nardelli B, Belvedere O, Roschke V, et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 2001;97(1):198–204.

22.

Lopez-Fraga M, Fernandez R, Albar JP, Hahne M. Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase. EMBO 2001;2:945–51.

23.

Moore PA, Belvedere O, Orr A, et al. BlyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999;285:260–3.

24.

Schneider P, Mackay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor (TNF) family, stimulates B-cell growth. J Exp Med 1999;189:1747–56.

25.

Zhukovsky EA, Lee J-L, Villegas M, Chan C, Chu S, Mroske C. Is TALL-1 a trimer or a virus-like cluster? Nature 2004;427:413–4.

26.

Oren DA, Li Y, Volovik Y, et al. Structural basis of BLyS receptor recognition. Nat Struct Biol 2002;9:288–92.

27.

Bossen C, Cachero TG, Tardivel A, et al. TACI, unlike BAFF-R, is solely activated by oligoimeric BAFF and APRIL to support survival of activated B cells and plasmablast. Blood 2008;111(3):1004–12.

28.

Liu Y, Xu L, Opalka N, Kappler J, Shu H-B, Zhang G. Crystal structure of sTALL-1 reveals a virus-like assembly of TNF ligands. Cell 2002;108:383–94.

29.

Hong X, Kappler J, Liu YJ, Xu L, Shu H-B, Zhang G. Is TALL-1 a trimer or a virus-like cluster? Nature 2004;427:414.

30.

Mackay F, Ambrose C. The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev 2003;14:311–24.

31.

Cachero TG, Schwartz IM, Qian F, et al. Formation of virus-like clusters is an intrinsic property of the tumor necrosis factor family member BAFF (B Cell Activating Factor). Biochemistry 2006;45(7):2006–13.

32.

Roschke V, Sosnovtseva S, Ward CD, et al. BLyS and APRIL form biologically active heteromers that are expressed in patients with systemic immune-based rheumatic diseases. J Immunol 2002;169:4314–21.

33.

Gavin AL, AÏt-Azzouzene D, Ware CF, Nemazee D. DBAFF, an alternate splice isoform that regulates receptor binding and biopresentation of the B cell survival cytokine, BAFF. J Biol Chem 2003;278:38220–8.

34.

Gavin AL, Duong B, Skog P, et al. deltaBAFF, a splice isoform of BAFF, opposes full-length BAFF activity in vivo in transgenic mouse models. J Immunol 2005;175(1):319–28.

35.

Krumbholz M, Theil D, Derfuss T, et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 2005;201(2):195–200.

36.

Smirnova AS, Andrade-Oliveira V, Gerbase-DeLima M. Identification of new splice variants of the genes BAFF and BCMA. Mol Immunol 2008;45(4):1179–83.

37.

Pradet-Balade B, Medema JP, Lopez-Fraga M, et al. An endogenous hybrid mRNA encodes TWE-PRIL, a functional cell surface TWEAK-APRIL fusion protein. EMBO J 2002;21:5711–20.

38.

Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg JE, Mariette X. B-cell activating factor of the tumour necrosis factor family expression in blood monocytes and T cells from patients with primary Sjogren’s syndrome. Scand J Immunol 2008;67(2):185–92.

39.

Nardelli B, Belvedere O, Roschke V, et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 2000;97:198–204.

40.

Huard B, Arlettaz L, Ambrose C, et al. BAFF production by antigen-presenting cells provides T cell co-stimulation. Int Immunol 2004;16:467–75.

41.

Scapini P, Carletto A, Nardelli B, et al. Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood 2005;105(2):830–7.

42.

Scapini P, Nardelli B, Nadali G, et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 2003;197:297–302.

43.

Ng LG, Sutherland A, Newton R, et al. BAFF-R is the principal BAFF receptor facilitating BAFF co-stimulation of B and T cells. J Immunol 2004;173:807–17.

44.

Chang SK, Arendt BK, Darce JR, Wu X, Jelinek DF. A role for BLyS in the activation of innate immune cells. Blood 2006;108(8):2687–94.

45.

Morimoto S, Nakano S, Watanabe T, et al. Expression of B-cell activating factor of the tumour necrosis factor family (BAFF) in T cells in active systemic lupus erythematosus: the role of BAFF in T cell-dependent B cell pathogenic autoantibody production. Rheumatology (Oxford, England) 2007;46(7):1083–6.

46.

Hardenberg G, Planelles L, Schwarte CM, et al. Specific TLR ligands regulate APRIL secretion by dendritic cells in a PKR-dependent manner. Eur J Immunol 2007;37(10):2900–11.

47.

Katsenelson N, Kanswal S, Puig M, Mostowski H, Verthelyi D, Akkoyunlu M. Synthetic CpG oligodeoxynucleotides augment BAFF- and APRIL-mediated immunoglobulin secretion. Eur J Immunol 2007;37(7):1785–95.

48.

Martin F, Kearney JF. Marginal-zone B cells. Nat Rev Immunol 2002;2:323–35.

49.

Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007;28(3):138–45.

50.

Thangarajh M, Gomes A, Masterman T, Hillert J, Hjelmstrom P. Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol 2004;152(1–2):183–90.

51.

Thangarajh M, Masterman T, Hillert J, Moerk S, Jonsson R. A proliferation-inducing ligand (APRIL) is expressed by astrocytes and is increased in multiple sclerosis. Scand J Immunol 2007;65(1):92–8.

52.

Huntington ND, Tomioka R, Clavarino C, et al. A BAFF antagonist suppresses experimental autoimmune encephalomyelitis by targeting cell-mediated and humoral immune responses. Int Immunol 2006;18(10):1473–85.

53.

Huard B, Schneider P, Mauri D, Tschopp J, French LE. T cell costimulation by the TNF ligand BAFF. J Immunol 2001;167:6225–31.

54.

Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D, Scott ML. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med 2003;198:937–45.

55.

Zhang X, Park CS, Yoon SO, et al. BAFF supports human B cell differentiation in the lymphoid follicles through distinct receptors. Int Immunol 2005;17(6):779–88.

56.

Tangye SG, Bryant VL, Cuss AK, Good KL. BAFF, APRIL and human B cell disorders. Semin Immunol 2006;18(5):305–17.

57.

Belnoue E, Pihlgren M, McGaha TL, et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 2008;111(5):2755–64.

58.

Stein JV, Lopez-Fraga M, Elustondo FA, et al. APRIL modulates B and T cell immunity. J Clin Invest 2002;109:1587–98.

59.

Hahne M, Kataoka T, Schroter M, et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor growth. J Exp Med 1998;188:1185–90.

60.

Kato A, Truong-Tran AQ, Scott AL, Matsumoto K, Schleimer RP. Airway epithelial cells produce B cell-activating factor of TNF Family by an IFN-beta-dependent mechanism. J Immunol 2006;177(10):7164–72.

61.

Moon EY, Ryu SK. TACI:Fc scavenging B cell activating factor (BAFF) alleviates ovalbumin-induced bronchial asthma in mice. Exp Mol Med 2007;39(3):343–52.

62.

Ng LG, Mackay CR, Mackay F. The BAFF/APRIL system: life beyond B lymphocytes. Mol Immunol 2005;42(7):763–72.

63.

Sutherland AP, Ng LG, Fletcher CA, et al. BAFF augments certain Th1-associated inflammatory responses. J Immunol 2005;174(9):5537–44.

64.

Groom JR, Fletcher CA, Walters SN, et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med 2007;204(8):1959–71.

65.

Nakajima K, Itoh K, Nagatani K, et al. Expression of BAFF and BAFF-R in the synovial tissue of patients with rheumatoid arthritis. Scandinavian J Rheumatol 2007;36(5):365–72.

66.

Ohata J, Zvaifler NJ, Nishio M, et al. Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J Immunol 2005;174(2):864–70.

67.

Tecchio C, Nadali G, Scapini P, et al. High serum levels of B-lymphocyte stimulator are associated with clinical-pathological features and outcome in classical Hodgkin lymphoma. Br J Haematol 2007;137(6):553–9.

68.

Novak AJ, Grote DM, Stenson M, et al. Expression of BLyS and its receptors in B-cell non-Hodgkin lymphoma: correlation with disease activity and patient outcome. Blood 2004;104(8):2247–53.

69.

He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A. Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol 2004;172(5):3268–79.

70.

Planelles L, Castillo-Gutierrez S, Medema JP, Morales-Luque A, Merle-Beral H, Hahne M. APRIL but not BLyS serum levels are increased in chronic lymphocytic leukemia: prognostic relevance of APRIL for survival. Haematologica 2007;92(9):1284–5.

71.

Dejardin E, Droin NM, Delhase M, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002;17(4):525–35.

72.

Hanada T, Yoshida H, Kato S, et al. Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity. Immunity 2003;19(3):437–50.

73.

Brink R. Regulation of B cell self-tolerance by BAFF. Semin Immunol 2006;18(5):276–83.

74.

Day ES, Cachero TG, Qian F, et al. Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry 2005;44(6):1919–31.

75.

Hymowitz SG, Patel DR, Wallweber HJ, et al. Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding. J Biol Chem 2005;280(8):7218–27.

76.

Patel DR, Wallweber HJ, Yin J, et al. Engineering an APRIL-specific B cell maturation antigen. J Biol Chem 2004;279(16):16727–35.

77.

Cancro MP, Kearney JF. B cell positive selection: road map to the primary repertoire? J Immunol 2004;173(1):15–9.

78.

Ye Q, Wang L, Wells AD, et al. BAFF binding to T cell-expressed BAFF-R costimulates T cell proliferation and alloresponses. Eur J Immunol 2004;34(10):2750–9.

79.

Ingold K, Zumsteg A, Tardivel A, et al. Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med 2005;201(9):1375–83.

80.

Hendriks J, Planelles L, de Jong-Odding J, et al. Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation. Cell Death Differ 2005;12(6):637–48.

81.

Bischof D, Elsawa SF, Mantchev G, et al. Selective activation of TACI by syndecan-2. Blood 2006;107(8):3235–42.

82.

Sakurai D, Hase H, Kanno Y, Kojima H, Okumura K, Kobata T. TACI regulates IgA production by APRIL in collaboration with HSPG. Blood 2007;109(7):2961–7.

83.

Seshasayee D, Valdez P, Yan M, Dixit VM, Tumas D, Grewal IS. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 2003;18:279–88.

84.

von Bulow GU, Bram RJ. NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 1997;278:138–41.

85.

Xia X-Z, Treanor J, Senaldi G, et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J Exp Med 2000;192:137–43.

86.

Mackay F, Cancro MP. Travelling with the BAFF/BLyS family: are we there yet? Semin Immunol 2006;18(5):261–2.

87.

Mackay F, Leung H. The role of the BAFF/APRIL system on T cell function. Semin Immunol 2006;18(5):284–9.

88.

Yan M, Brady JR, Chan B, et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 2001;11:1547–52.

89.

Ng LG, Ng CH, Woehl B, et al. BAFF costimulation of Toll-like receptor-activated B-1 cells. Eur J Immunol 2006;36(7):1837–46.

90.

Treml LS, Carlesso G, Hoek KL, et al. TLR stimulation modifies BLyS receptor expression in follicular and marginal zone B cells. J Immunol 2007;178(12):7531–9.

91.

Acosta-Rodriguez EV, Craxton A, Hendricks DW, et al. BAFF and LPS cooperate to induce B cells to become susceptible to CD95/Fas-mediated cell death. Eur J Immunol 2007;37(4):990–1000.

92.

Carter RH, Zhao H, Liu X, et al. Expression and occupancy of BAFF-R on B cells in systemic lupus erythematosus. Arthritis Rheum 2005;52(12):3943–54.

93.

Darce JR, Arendt BK, Wu X, Jelinek DF. Regulated expression of BAFF-binding receptors during human B cell differentiation. J Immunol 2007;179(11):7276–86.

94.

Shivakumar L, Ansell S. Targeting B-lymphocyte stimulator/B-cell activating factor and a proliferation-inducing ligand in hematologic malignancies. Clin Lymphoma Myeloma 2006;7(2):106–8.

95.

Chiu A, Xu W, He B, et al. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood 2007;109(2):729–39.

96.

Batten M, Groom J, Cachero TG, et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 2000;192:1453–65.

97.

Gross JA, Dillon SR, Mudri S, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease: impaired B cell maturation in mice lacking BLyS. Immunity 2001;15:289–302.

98.

Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001;293:2111–4.

99.

Pelletier M, Thompson JS, Qian F, et al. Comparison of soluble decoy IgG fusion proteins of BAFF-R and BCMA as antagonists for BAFF. J Biol Chem 2003;278:33127–33.

100.

Smith SH, Cancro MP. B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J Immunol 2003;170:5820–3.

101.

Varfolomeev E, Kischkel F, Martin F, et al. APRIL-deficient mice have normal immune system development. Mol Cell Biol 2004;24:997–1006.

102.

Walmsley MJ, Ooi SKT, Reynolds LF, et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 2003;302:459–62.

103.

Castigli E, Scott S, Dedeoglu F, et al. Impaired IgA class switching in APRIL-deficient mice. Proc Natl Acad Sci USA 2004;101(11):3903–8.

104.

Hardenberg G, van Bostelen L, Hahne M, Medema JP. Thymus-independent class switch recombination is affected by APRIL. Immunol Cell Biol 2008;86(6):530–4.

105.

Mackay F, Sierro F, Grey ST, Gordon TP. The BAFF/APRIL system: an important player in systemic rheumatic diseases. Curr Dir Autoimmun 2005;8:243–65.

106.

Kalled SL, Ambrose C, Hsu YM. The biochemistry and biology of BAFF, APRIL and their receptors. Curr Dir Autoimmun 2005;8:206–42.

107.

von Bulow GU, Russell H, Copeland NG, Gilbert DJ, Jenkins NA, Bram RJ. Molecular cloning and functional characterization of murine transmembrane activator and CAML interactor (TACI) with chromosomal localization in human and mouse. Mamm Genome 2000;11:628–32.

108.

von Bulow G-U, van Deursen JM, Bram RJ. Regulation of the T-independent humoral response by TACI. Immunity 2001;14:573–82.

109.

Castigli E, Wilson SA, Garibyan L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 2005;37(8):829–34.

110.

Goldacker S, Warnatz K. Tackling the heterogeneity of CVID. Curr Opin Allergy Clin Immunol 2005;5(6):504–9.

111.

Lesley R, Xu Y, Kalled SL, et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 2004;20(4):441–53.

112.

Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004;20(6):785–98.

113.

Ait-Azzouzene D, Gavin AL, Skog P, Duong B, Nemazee D. Effect of cell:cell competition and BAFF expression on peripheral B cell tolerance and B-1 cell survival in transgenic mice expressing a low level of Igkappa-reactive macroself antigen. Eur J Immunol 2006;36(4):985–96.

114.

Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999;190:1697–710.

115.

Khare SD, Sarosi I, Xia X-Z, et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci USA 2000;97:3370–5.

116.

Hardy RR, Hayakawa K. B cell development pathways. Ann Rev Immunol 2001;19:595–621.

117.

Allman D, Srivastava B, Lindsley RC. Alternative route to maturity: branch points and pathways for generating follicular and marginal zone B cells. Immunol Rev 2004;197:147–60.

118.

Carsetti R, Rosado MM, Wardmann H. Peripheral development of B cells in mouse and man. Immunol Rev 2004;197:179–91.

119.

Su TT, Rawlings DJ. Transitional B lymphocyte subsets operate as distinct checkpoints in murine splenic B cell development. J Immunol 2002;168(5):2101–10.

120.

Su TT, Guo B, Wei B, Braun J, Rawlings DJ. Signaling in transitional type 2 B cells is critical for peripheral B-cell development. Immunol Rev 2004;197:161–78.

121.

Allman D, Lindsley RC, DeMuth W, Rudd K, Shinton SA, Hardy RR. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol 2001;167(12):6834–40.

122.

Teague BN, Pan Y, Mudd PA, et al. Cutting edge: transitional T3 B cells do not give rise to mature B cells, have undergone selection, and are reduced in murine lupus. J Immunol 2007;178(12):7511–5.

123.

Meyer-Bahlburg A, Andrews SF, Yu KO, Porcelli SA, Rawlings DJ. Characterization of a late transitional B cell population highly sensitive to BAFF-mediated homeostatic proliferation. J Exp Med 2008;205(1):155–68.

124.

Chen X, Martin F, Forbush KA, Perlmutter RM, Kearney JK. Evidence for selection of a population of multi-reactive B cells into the splenic marginal zone. Int Immunol 1997;9:27–41.

125.

Martin F, Kearney JF. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19 and btk. Immunity 2000;12:39–49.

126.

Cariappa A, Tang M, Parng C, et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by aiolos, Btk, and CD21. Immunity 2001;14:603–15.

127.

Lam KP, kuhn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid death. Cell 1997;90:1073–83.

128.

Berland R, Fernandez L, Kari E, et al. Toll-like receptor 7-dependent loss of B cell tolerance in pathogenic autoantibody knockin mice. Immunity 2006;25(3):429–40.

129.

Wardemann H, Boehm T, Dear N, Carsetti R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J Exp Med 2002;195:771–80.

130.

Gross JA, Johnston J, Mudri S, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000;404:995–9.

131.

Batten M, Fletcher C, Ng L, et al. TNF deficiency fails to protect BAFF transgenic mice against autoimmunity and reveals a predisposition to B cell lymphomas. J Immunol 2004;172:812–22.

132.

Goodnow CC, Cyster JG, Hartley SB, et al. Self-tolerance check points in B cell development. Adv Immunol 1995;59:279–369.

133.

Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science 2003;301(5638):1374–7.

134.

Samuels J, Ng YS, Coupillaud C, Paget D, Meffre E. Impaired early B cell tolerance in patients with rheumatoid arthritis. J Exp Med 2005;201(10):1659–67.

135.

Yurasov S, Wardemann H, Hammersen J, et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med 2005;201(5):703–11.

136.

Levine MH, haberman AM, Sant’Angelo DB, et al. A B-cell receptor-specicfic selection step governs immature to mature B cell differentiation. Proc Natl Acad Sci USA 2000;97:2743–8.

137.

Gaudin E, Hao Y, Rosado MM, Chaby R, Girard R, Freitas AA. Positive selection of B cells expressing low densities of self-reactive BCRs. J Exp Med 2004;199(6):843–53.

138.

Cyster JG, Healy JI, Kishihara K, Mak TW, Thomas ML, Goodnow CC. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature 1996;381(6580):325–8.

139.

Hayakawa K, Asano M, Shinton SA, et al. Positive selection of natural autoreactive B cells. Science 1999;285(5424):113–6.

140.

Balazs M, Martin F, Zhou T, Kearney JF. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent Immune responses. Immunity 2002;17:341–52.

141.

Evans JG, Chavez-Rueda KA, Eddaoudi A, et al. Novel suppressive function of transitional 2 B cells in experimental arthritis. J Immunol 2007;178(12):7868–78.

142.

Kim JM, Rudensky A. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol Rev 2006;212:86–98.

143.

Thompson JS, Bixler SA, Qian F, et al. BAFF-R, a novel TNF receptor that specifically interacts with BAFF. Science 2001;293:2108–11.

144.

Patke A, Mecklenbrauker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med 2006;203(11):2551–62.

145.

Craxton A, Draves KE, Gruppi A, Clark EA. BAFF regulates B cell survival by downregulating the BH3-only family member Bim via the ERK pathway. J Exp Med 2005;202(10):1363–74.

146.

Cyster JG, Hartley SB, Goodnow CC. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature 1994;371:389–95.

147.

Planelles L, Carvalho-Pinto CE, Hardenberg G, et al. APRIL promotes B-1 cell-associated neoplasm. Cancer cell 2004;6(4):399–408.

148.

Berland R, Wortis HH. Origins and functions of B-1 Cells with notes on the role of CD5. Ann Rev Immunol 2002;20:253–300.

149.

Attanavanich K, Kearney JF. Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J Immunol 2004;172:803–11.

150.

Meyer-Bahlburg A, Rawlings DJ. B cell autonomous TLR signaling and autoimmunity. Autoimmun Rev 2008;7(4):313–6.

151.

Yan M, Wang H, Chan B, et al. Activation and accumulation of B cells in TACI-deficient mice. Nature Immunol 2001;2:638–43.

152.

Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007;8(5):487–96.

153.

Pillai S, Cariappa A, Moran ST. Marginal zone B cells. Annu Rev Immunol 2005;23:161–96.

154.

Mayne CG, Amanna IJ, Nashold FE, Hayes CE. Systemic autoimmunity in BAFF-R-mutant A/WySnJ strain mice. Eur J Immunol 2008;38(2):587–98.

155.

Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest 2002;109:59–68.

156.

Zhang J, Roschke V, Baker KP, et al. A role for B lymphocyte stimulator in Systemic Lupus Erythematosus. J Immunol 2001;166:6–10.

157.

Stohl W. Targeting B lymphocyte stimulator in systemic lupus and other autoimmune rheumatic disorders. Expert Opin Ther Tar 2004;8:177–89.

158.

Stohl W, Metyas S, Tan SM, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum 2003;48(12):3475–86.

159.

Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren’s syndrome. Ann Rheum Dis 2003;62(2):168–71.

160.

Hansen A, Odendahl M, Reiter K, et al. Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum 2002;46:2160–71.

161.

Daridon C, Pers JO, Devauchelle V, et al. Identification of transitional type II B cells in the salivary glands of patients with Sjogren’s syndrome. Arthritis Rheum 2006;54(7):2280–8.

162.

Lavie F, Miceli-Richard C, Quillard J, Roux S, Leclerc P, Mariette X. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjogren’s syndrome. J Pathol 2004;202(4):496–502.

163.

Daridon C, Devauchelle V, Hutin P, et al. Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary Sjogren’s syndrome. Arthritis Rheum 2007;56(4):1134–44.

164.

Chu VT, Enghard P, Riemekasten G, Berek C. In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J Immunol 2007;179(9):5947–57.

165.

Mariette X, Ravaud P, Steinfeld S, et al. Inefficacy of infliximab in primary Sjogren’s syndrome: results of the randomized, controlled Trial of Remicade in Primary Sjogren’s Syndrome (TRIPSS). Arthritis Rheum 2004;50(4):1270–6.

166.

Sankar V, Brennan MT, Kok MR, et al. Etanercept in Sjogren’s syndrome: a twelve-week randomized, double-blind, placebo-controlled pilot clinical trial. Arthritis Rheum 2004;50(7):2240–5.

167.

Mavragani CP, Niewold TB, Moutsopoulos NM, Pillemer SR, Wahl SM, Crow MK. Augmented interferon-alpha pathway activation in patients with Sjogren’s syndrome treated with etanercept. Arthritis Rheum 2007;56(12):3995–4004.

168.

Cheema GS, Roschke V, Hilbert DM, Stohl W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 2001;44:1313–9.

169.

Tan S, Xu D, Roschke V, et al. Local production of B lymphocyte stimulator protein and APRIL in arthritic joints of patients with inflammatory arthritis. Arthritis and Rheum 2003;48:982–92.

170.

Fabris M, Quartuccio L, Sacco S, et al. B-Lymphocyte stimulator (BLyS) up-regulation in mixed cryoglobulinaemia syndrome and hepatitis-C virus infection. Rheumatology (Oxford, England) 2007;46(1):37–43.

171.

Sene D, Limal N, Ghillani-Dalbin P, Saadoun D, Piette JC, Cacoub P. Hepatitis C virus-associated B-cell proliferation––the role of serum B lymphocyte stimulator (BLyS/BAFF). Rheumatology (Oxford, England) 2007;46(1):65–9.

172.

Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum 2006;54(1):192–201.

173.

Yu HM, Liu YF, Hou M. BAFF – an essential survival factor for B cells: Links to genesis of ITP and may be of therapeutic target. Med hypotheses 2008;70(1):40–2.

174.

Sellam J, Miceli-Richard C, Gottenberg JE, et al. Decreased B cell activating factor receptor expression on peripheral lymphocytes associated with increased disease activity in primary Sjogren’s syndrome and systemic lupus erythematosus. Ann Rheum Dis 2007;66(6):790–7.

175.

Stohl W, Metyas S, Tan SM, et al. Inverse association between circulating APRIL levels and serological and clinical disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis 2004;63(9):1096–103.

176.

Koyama T, Tsukamoto H, Masumoto K, et al. A novel polymorphism of the human APRIL gene is associated with systemic lupus erythematosus. Rheumatology (Oxford, England) 2003;42(8):980–5.

177.

Nagatani K, Itoh K, Nakajima K, et al. Rheumatoid arthritis fibroblast-like synoviocytes express BCMA and are stimulated by APRIL. Arthritis Rheum 2007;56(11):3554–63.

178.

Seyler TM, Park YW, Takemura S, et al. BLyS and APRIL in rheumatoid arthritis. J Clin Invest 2005;115:3083–92.

179.

Ittah M, Miceli-Richard C, Eric Gottenberg J, et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjogren’s syndrome. Arthritis Res Ther 2006;8(2):R51.

180.

Ittah M, Miceli-Richard C, Gottenberg JE, et al. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur J Immunol 2008;38(4):1058–64.

181.

Bave U, Nordmark G, Lovgren T, et al. Activation of the type I interferon system in primary Sjogren’s syndrome: a possible etiopathogenic mechanism. Arthritis Rheum 2005;52(4):1185–95.

182.

Gottenberg JE, Cagnard N, Lucchesi C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren’s syndrome. Proc Natl Acad Sci USA 2006;103(8):2770–5.

183.

Hjelmervik TO, Petersen K, Jonassen I, Jonsson R, Bolstad AI. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjogren’s syndrome patients from healthy control subjects. Arthritis Rheum 2005;52(5):1534–44.

184.

Litinskiy M, Nardelli B, Hilbert BM, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 2002;3:822–9.

185.

Rose NR. The role of infection in the pathogenesis of autoimmune disease. Semin Immunol 1998;10:5–13.

186.

Ding C, Jones G. Belimumab human genome sciences/Cambridge antibody technology/GlaxoSmithKline. Curr Opin Investig Drugs 2006;7(5):464–72.

187.

Baker KP, Edwards BM, Main SH, et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B Lymphocyte Stimulator. Arthritis Rheum 2003;48:3253–65.

188.

Halpern WG, Lappin P, Zanardi T, et al. Chronic administration of belimumab, a BLyS antagonist, decreases tissue and peripheral blood B-lymphocyte populations in cynomolgus monkeys: pharmacokinetic, pharmacodynamic, and toxicologic effects. Toxicol Sci 2006;91(2):586–99.

189.

Bhat P, Radhakrishnan J. B lymphocytes and lupus nephritis: new insights into pathogenesis and targeted therapies. Kidney Int 2008;73(3):261–8.

190.

Nestorov I, Munafo A, Papasouliotis O, Visich J. Pharmacokinetics and biological activity of atacicept in patients with rheumatoid arthritis. J Clin Pharmacol 2008;48(4):406–17.

191.

Munafo A, Priestley A, Nestorov I, Visich J, Rogge M. Safety, pharmacokinetics and pharmacodynamics of atacicept in healthy volunteers. Eur J Clin Pharmacol 2007;63(7):647–56.

192.

Tak PP, Thurlings RM, Rossier C, et al. Atacicept in patients with rheumatoid arthritis: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single- and repeated-dose study. Arthritis Rheum 2008;58(1):61–72.

193.

Dall’Era M, Chakravarty E, Wallace D, et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum 2007;56(12):4142–50.

194.

Lin WY, Gong Q, Seshasayee D, et al. Anti-BR3 antibodies: a new class of B-cell immunotherapy combining cellular depletion and survival blockade. Blood 2007;110(12):3959–67.

195.

Sabahi R, Anolik JH. B-cell-targeted therapy for systemic lupus erythematosus. Drugs 2006;66(15):1933–48.

196.

Looney RJ. B cell-targeted therapy for rheumatoid arthritis: an update on the evidence. Drugs 2006;66(5):625–39.

197.

Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg JE, Mariette X. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann Rheum Dis 2007;66(5):700–3.

198.

Pers JO, Devauchelle V, Daridon C, et al. BAFF-modulated repopulation of B lymphocytes in the blood and salivary glands of rituximab-treated patients with Sjogren’s syndrome. Arthritis Rheum 2007;56(5):1464–77.

199.

Toubi E, Kessel A, Slobodin G, et al. Changes in macrophage function after rituximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis 2007;66(6):818–20.

200.

Gardam S, Sierro F, Basten A, Mackay F, Brink R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008;28(3):391–401.

201.

Sasaki Y, Derudder E, Hobeika E, et al. Canonical NF-kappaB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 2006;24(6):729–39.

202.

Benson MJ, Dillon SR, Castigli E, et al. Cutting Edge: The Dependence of Plasma Cells and Independence of Memory B Cells on BAFF and APRIL. J Immunol 2008;180(6):3655–9.

203.

Craxton A, Magaletti D, Ryan EJ, Clack EA. Macrophage- and dendritic cell-dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 2003;101:4464–71.

204.

Hase H, Kanno Y, Kojima M, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood 2004;103(6):2257–65.

205.

He B, Raab-Traub N, Casali P, Cerutti A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol 2003;171(10):5215–24.

206.

Phillips TA, Ni J, Hunt JS. Cell-specific expression of B lymphocyte (APRIL, BLyS)- and Th2 (CD30L/CD153)-promoting tumor necrosis factor superfamily ligands in human placentas. J Leukoc Biol 2003;74(1):81–7.

207.

Shu H-B, Hu W-H, Johnson H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J Leuk Biol 1999;65:680–3.

208.

Tao W, Hangoc G, Hawes JW, Si Y, Cooper S, Broxmeyer HE. Profiling of differentially expressed apoptosis-related genes by cDNA arrays in human cord blood CD34+ cells treated with etoposide. Exp Hematol 2003;31(3):251–60.

209.

Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by IL-6 deprivation and dexamethasone. Blood 2004;103(8):3148–57.

210.

Roth W, Wagenknecht B, Klummp A, et al. APRIL, a new member of the tumor necrosis factor family, modulates death-induced apoptosis. Cell Death Differ 2001;8:403–10.

211.

Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004;103(8):3148–57.

212.

Moreaux J, Cremer FW, Reme T, et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005;106(3):1021–30.

213.

Abe M, Kido S, Hiasa M, et al. BAFF and APRIL as osteoclast-derived survival factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia 2006;20(7):1313–5.

214.

Avery DT, Kalled SL, Ellyard JI, et al. BAFF selectively enhances the survival of plasmablasts generated from human memory cells. J Clin Invest 2003;112(2):286–97.

215.

Tarte K, De Vos J, Thykjaer T, et al. Generation of polyclonal plasmablasts from peripheral blood B cells: a normal counterpart of malignant plasmablasts. Blood 2002;100(4):1113–22.

216.

Gorelik L, Cutler AH, Thill G, et al. BAFF regulates CD21/35 and CD23 expression independently of its B cell survival function. J Immunol 2004;172:762–6.

217.

Hsu BL, Harless SM, Lindsley RC, Hilbert DM, Cancro MP. BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol 2002;168:5993–6.

218.

Moreaux J, Hose D, Jourdan M, et al. TACI expression is associated with a mature bone marrow plasma cell signature and C-MAF overexpression in human myeloma cell lines. Haematologica 2007;92(6):803–11.

219.

Castigli E, Wilson SA, Scott S, et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 2005;201(1):35–9.

220.

O‘Connor BP, Raman VS, Erickson LD, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004;199:91–7.

221.

Shulga-Morskaya S, Dobles M, Walsh ME, et al. B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J Immunol 2004;173(4):2331–41.

222.

Yang M, Hase H, Legarda-Addison D, Varughese L, Seed B, Ting AT. B cell maturation antigen, the receptor for a proliferation-inducing ligand and B cell-activating factor of the TNF family, induces antigen presentation in B cells. J Immunol 2005;175(5):2814–24.

223.

Rahman ZSM, Rao SP, Kalled SL, Manser T. Normal induction but attenuated progression of germinal center responses in BAFF and BAFF-R signaling-deficient mice. J Exp Med 2003;198:1157–69.

224.

Vora KA, Wang LC, Rao SP, et al. Germinal centers formed in the absence of B cell-activating factor belonging to the TNF family exhibit impaired maturation and function. J Immunol 2003;171:547–51.

signature=e48117269aff62d4a3fa5fe5baffd0d1,The BAFF/APRIL System in Autoimmunity相关推荐

  1. signature=c4f11bb5142d9f6ce0876b3cc0d888af,PROVISIONAL SIGNATURE SCHEMES

    PRIORITY This is a divisional of application Ser. No. 11/215,550, filed on Aug. 29, 2005, entitled & ...

  2. EF 正在运行转换: System.Reflection.TargetInvocationException: 调用的目标发生了异常。

    错误 1 正在运行转换: System.Reflection.TargetInvocationException: 调用的目标发生了异常. ---> System.IO.FileNotFound ...

  3. AOP编程过程中的Signature接口

    此接口通常用于跟踪或记录应用程序以获取有关连接点的反射信息,下面是官方给的一个使用的例子 aspect Logging {Logger logger = Logger.getLogger(" ...

  4. XML之文档类型定义和合法性(转)

    来至:liang--liang博客:http://www.cnblogs.com/liang--liang/archive/2008/01/15/1039277.html 好牛 XML被作为一种元标记 ...

  5. java ASM 分析类

    2019独角兽企业重金招聘Python工程师标准>>> 实现ClassVisitor接口 package com.uwo.resources.asm.test;import org. ...

  6. android组件权限,Android中Permission权限机制的具体使用

    由上篇Android Permission权限机制引子,我们知道Android 通过在每台设备上实施了基于权限的安全策略来处理安全问题,采用权限来限制安装应用程序的能力.本篇文章继续来探讨和Andro ...

  7. springboot 自定义注解

    先说说注解是什么 注解(也被称为元数据)为我们在代码中添加信息提供了一种形式化的方法,使我们可以在稍后某个时刻非常方便地使用这些数据. 注解是一种标记 class.interface一样,是一种标记, ...

  8. ASM3.0学习(二)

    2019独角兽企业重金招聘Python工程师标准>>> 2.2.2解析类 解析一个已存在的类仅需要ClassReader这个组件.下面让我们以一个实例来展示如何解析类.假设,我们想要 ...

  9. 【Java注解系列】内置注解与AOP实现自定义注解

    Java 注解(Annotation)又称 Java 标注,是 JDK5.0 引入的一种注释机制. Java 语言中的类.方法.变量.参数和包等都可以被标注.和 Javadoc 不同,Java 标注可 ...

最新文章

  1. Redis初学17:集群
  2. 放心,GPT-3不会“杀死”编程
  3. 自定义关机计算机,在win7系统中自定义设置关机壁纸教程介绍
  4. Android 网络编程之Http通信
  5. php数据库可转java数据库,php转java 系列2 Spring boo 链接数据库jdbc
  6. dio拦截器 flutter_详解flutter之网络请求dio,请求,拦截器简单示例
  7. python的文件读写,序列化,复制/删除目录,压缩/解压缩/列出压缩文件目录,计算CRC32和MD5
  8. 将集合类转换成DataTable
  9. 正则表达式修正符的学习
  10. 苏州外壳防护试验IP防尘防水测试IP65 IP66 IP69K
  11. astah——UML类图画法
  12. 【Adobe Illustrator 教程】4. 认识渐变工具
  13. document.querySelector
  14. MATLAB求解3对角系数矩阵方程,实验5.3 用追赶法求解三对角方程组
  15. 人脑VS机器?AI时代经济决策的机遇与挑战?| AI TIME 27
  16. 后半生,你越活越好的7个迹象
  17. 发布新一代微控制器 AURIX 2G 的背后,半导体巨头英飞凌如何应对汽车行业变革?...
  18. 暗时间(普通的一种时间概念)
  19. 现代硬件技术的发展与未来趋势
  20. 我的世界服务器区块修复,MC新人解决区块错误问题教程详解

热门文章

  1. 【P45】JMeter 开关控制器(Switch Controller)
  2. vue 子组件调用父组件方法、值(父传子);父组件调用子组件方法、值(子传父)。
  3. 环境变量的作用和设置方法
  4. html 答题一题一题展示,微信小程序实现随机答题时,点击下一题应该如何使他随机展示出来...
  5. s设计思维:用户痛点,产品,创新点,市场,
  6. linux添加三权,锐捷推SAM运营商版方案 三权分立突破管理瓶颈
  7. C语言中多种指针相关类型详解
  8. L1-081 今天我要赢 - java
  9. 荣耀20发布会鸿蒙,是时候表演真正的技术了,荣耀20系列国内发布还有重大惊喜...
  10. wallpaper调用独立显卡配置