问题描述

有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

为方便讲解和理解,下面讲述的例子均先用具体的数字代入,即:eg:number=4,capacity=8

i(物品编号) 1 2 3 4
w(体积) 2 3 4 5
v(价值) 3 4 5 6

总体思路

根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

动态规划的原理

动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

背包问题的解决过程

在解决问题之前,为描述方便,首先定义一些变量:Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积,定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值,同时背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选)。

1、建立模型,即求max(V1X1+V2X2+…+VnXn);

2、寻找约束条件,W1X1+W2X2+…+WnXn<capacity;

3、寻找递推关系式,面对当前商品有两种可能性:

  • 包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);
  • 还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}。

其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i),但价值增加了v(i);

由此可以得出递推关系式:

  • j<w(i)      V(i,j)=V(i-1,j)
  • j>=w(i)     V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i)}

这里需要解释一下,为什么能装的情况下,需要这样求解(这才是本问题的关键所在!):

可以这么理解,如果要到达V(i,j)这一个状态有几种方式?

肯定是两种,第一种是第i件商品没有装进去,第二种是第i件商品装进去了。没有装进去很好理解,就是V(i-1,j);装进去了怎么理解呢?如果装进去第i件商品,那么装入之前是什么状态,肯定是V(i-1,j-w(i))。由于最优性原理(上文讲到),V(i-1,j-w(i))就是前面决策造成的一种状态,后面的决策就要构成最优策略。两种情况进行比较,得出最优。

4、填表,首先初始化边界条件,V(0,j)=V(i,0)=0;

然后一行一行的填表:

  • 如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;
  • 又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;
  • 如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10……

所以填完表如下图:

5、表格填完,最优解即是V(number,capacity)=V(4,8)=10。

代码实现

为了和之前的动态规划图可以进行对比,尽管只有4个商品,但是我们创建的数组元素由5个。

#include<iostream>
using namespace std;
#include <algorithm>int main()
{int w[5] = { 0 , 2 , 3 , 4 , 5 };         //商品的体积2、3、4、5int v[5] = { 0 , 3 , 4 , 5 , 6 };            //商品的价值3、4、5、6int bagV = 8;                            //背包大小int dp[5][9] = { { 0 } };                    //动态规划表for (int i = 1; i <= 4; i++) {for (int j = 1; j <= bagV; j++) {if (j < w[i])dp[i][j] = dp[i - 1][j];elsedp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);}}//动态规划表的输出for (int i = 0; i < 5; i++) {for (int j = 0; j < 9; j++) {cout << dp[i][j] << ' ';}cout << endl;}return 0;
}

背包问题最优解回溯

通过上面的方法可以求出背包问题的最优解,但还不知道这个最优解由哪些商品组成,故要根据最优解回溯找出解的组成,根据填表的原理可以有如下的寻解方式:

  • V(i,j)=V(i-1,j)时,说明没有选择第i 个商品,则回到V(i-1,j);
  • V(i,j)=V(i-1,j-w(i))+v(i)时,说明装了第i个商品,该商品是最优解组成的一部分,随后我们得回到装该商品之前,即回到V(i-1,j-w(i));
  • 一直遍历到i=0结束为止,所有解的组成都会找到。

就拿上面的例子来说吧:

  • 最优解为V(4,8)=10,而V(4,8)!=V(3,8)却有V(4,8)=V(3,8-w(4))+v(4)=V(3,3)+6=4+6=10,所以第4件商品被选中,并且回到V(3,8-w(4))=V(3,3);
  • 有V(3,3)=V(2,3)=4,所以第3件商品没被选择,回到V(2,3);
  • 而V(2,3)!=V(1,3)却有V(2,3)=V(1,3-w(2))+v(2)=V(1,0)+4=0+4=4,所以第2件商品被选中,并且回到V(1,3-w(2))=V(1,0);
  • 有V(1,0)=V(0,0)=0,所以第1件商品没被选择。

代码实现

背包问题最终版详细代码实现如下:

#include<iostream>
using namespace std;
#include <algorithm>int w[5] = { 0 , 2 , 3 , 4 , 5 };            //商品的体积2、3、4、5
int v[5] = { 0 , 3 , 4 , 5 , 6 };          //商品的价值3、4、5、6
int bagV = 8;                          //背包大小
int dp[5][9] = { { 0 } };                  //动态规划表
int item[5];                            //最优解情况void findMax() {                 //动态规划for (int i = 1; i <= 4; i++) {for (int j = 1; j <= bagV; j++) {if (j < w[i])dp[i][j] = dp[i - 1][j];elsedp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);}}
}void findWhat(int i, int j) {              //最优解情况if (i >= 0) {if (dp[i][j] == dp[i - 1][j]) {item[i] = 0;findWhat(i - 1, j);}else if (j - w[i] >= 0 && dp[i][j] == dp[i - 1][j - w[i]] + v[i]) {item[i] = 1;findWhat(i - 1, j - w[i]);}}
}void print() {for (int i = 0; i < 5; i++) {          //动态规划表输出for (int j = 0; j < 9; j++) {cout << dp[i][j] << ' ';}cout << endl;}cout << endl;for (int i = 0; i < 5; i++)         //最优解输出cout << item[i] << ' ';cout << endl;
}int main()
{findMax();findWhat(4, 8);print();return 0;
}

【动态规划】01背包问题(通俗易懂,超基础讲解)相关推荐

  1. 代码随想录算法训练营day41 | 动态规划 01背包问题基础 01背包问题之滚动数组

    day41 01背包问题基础 问题描述 举个栗子 二维dp数组01背包 1.确定dp数组以及下标的含义 2.确定递推公式 3.dp数组如何初始化 4.确定遍历顺序 5.举例推导dp数组 01背包问题之 ...

  2. 动态规划—01背包问题

    原文作者:弗兰克的猫 原文地址:[动态规划]01背包问题 摘要: 01背包问题:n个物品放入容量为c的背包中. 常见解法: 分治法:递归计算,且存在重复计算的bug 自上而下填表法:从大到小使用递归计 ...

  3. 算法训练Day44 动态规划专题- 背包问题 | 完全背包基础知识;LeetCode518. 零钱兑换(装满背包有多少种方法,组合数);377.组合总和IV(装满背包有多少种方法,排列数)

    前言: 算法训练系列是做<代码随想录>一刷,个人的学习笔记和详细的解题思路,总共会有60篇博客来记录,计划用60天的时间刷完.  内容包括了面试常见的10类题目,分别是:数组,链表,哈希表 ...

  4. 动态规划——01背包问题 看此一篇文章就够了

    本文讲述经典算法--动态规划的 常见问题 01背包  一篇文章带你学会01背包问题,妈妈再也不担心我遇到01背包了!!! 问题描述 有n个物品,它们有各自的体积和价值,现有给定容量m的背包,如何让背包 ...

  5. 详解动态规划01背包问题--JavaScript实现

    对其他动态规划问题感兴趣的,也可以查看 详解动态规划最少硬币找零问题--JavaScript实现 详解动态规划最长公共子序列--JavaScript实现 一开始在接触动态规划的时候,可能会云里雾里,似 ...

  6. 动态规划之背包问题的一些基础简单入门题

    前言 参考视频教程洛谷试练场 普及组 动态规划的背包问题 主要有01背包问题.完全背包问题.分组背包问题. 01背包问题一般从右往左推: 完全背包问题一般从左往右推: 分组背包一般用01的方法但需要记 ...

  7. Leetcode动态规划——01背包问题

    内容参考 https://blog.csdn.net/yoer77/article/details/70943462 https://labuladong.github.io/ebook/动态规划系列 ...

  8. 0-1背包问题 动态规划c语言,详解动态规划01背包问题--JavaScript实现

    一开始在接触动态规划的时候,可能会云里雾里,似乎能理解思路,但是又无法准确地表述或者把代码写出来.本篇将一步一步通过作图的方式帮助初次接触动态规划的同学来理解问题.这一篇将以经典的 01背包 问题为例 ...

  9. 动态规划——0-1背包问题

    文章出处:极客时间<数据结构和算法之美>-作者:王争.该系列文章是本人的学习笔记. 1 0-1背包问题 背包能够承受的总重量一定w,每个物品的总量不同int[] weight表示.怎么放才 ...

最新文章

  1. CVPR-2021收集
  2. CVPR 2020 运行12-in-1遇到的问题及解决办法(持续更新中)
  3. html5新特性:异步上传文件
  4. oracle 存储结构 语法 第一阶段
  5. AsyncTask--源码心得
  6. 【Shiro第四篇】SpringBoot + Shiro实现记住登录状态
  7. Office批量打印精灵4.2入门教程
  8. 软件开发中常各类软件开发文档的英文缩写
  9. bigbluebutton视频直播服务器调用接口
  10. python画正方形-用python画一个正方形
  11. MongoDB分片入门
  12. 双十一淘宝抢购脚本,seleium模块
  13. bootstrap框架 基础样式
  14. 更安全的ftp服务器Pure-FTP搭建(4)
  15. 一次业务逻辑优化,竟然解决了MySQL CPU消耗800%的性能问题!
  16. SEO伪原创文章的一些技巧
  17. [Java]窗口的跳转
  18. python彩虹蛇_一亿年前巨蟒沃那比蛇一口能吞噬恐龙,沃那比蛇灭绝原因
  19. Android 沉浸式状态栏攻略 让你的状态栏变色吧
  20. 用Java求出所有水花仙花数

热门文章

  1. Markdown格式操作基础和快捷键
  2. 最近在学习PHP想做个网站出来耍耍
  3. 层次聚类python实现_聚类算法之层次聚类(Python实现)
  4. 对Request-ID的一些认识
  5. macOS使用BlackHole录制系统声音
  6. 【每日早报】2019/06/27
  7. 我用python,帮朋友写了一个“制作工资条”的自动化程序!
  8. 计算机网络基础——路由算法
  9. CSS3的选择器常用汇总
  10. Node.js各平台安装配置快速开始