第 1 章 RocketMQ概述

一、MQ概述

1 、MQ简介

MQ,Message Queue,是一种提供消息队列服务的中间件,也称为消息中间件,是一套提供了消息生产、存储、消费全过程API的软件系统。消息即数据。一般消息的体量不会很大。

2 、MQ用途

从网上可以查看到很多的关于MQ用途的叙述,但总结起来其实就以下三点。

限流削峰

MQ可以将系统的超量请求暂存其中,以便系统后期可以慢慢进行处理,从而避免了请求的丢失或系统被压垮。

异步解耦

上游系统对下游系统的调用若为同步调用,则会大大降低系统的吞吐量与并发度,且系统耦合度太高。而异步调用则会解决这些问题。所以两层之间若要实现由同步到异步的转化,一般性做法就是,在这两层间添加一个MQ层。

数据收集

分布式系统会产生海量级数据流,如:业务日志、监控数据、用户行为等。针对这些数据流进行实时或批量采集汇总,然后对这些数据流进行大数据分析,这是当前互联网平台的必备技术。通过MQ完成此类数据收集是最好的选择。

3 、常见MQ产品

ActiveMQ

ActiveMQ是使用Java语言开发一款MQ产品。早期很多公司与项目中都在使用。但现在的社区活跃度已
经很低。现在的项目中已经很少使用了。

RabbitMQ

RabbitMQ是使用ErLang语言开发的一款MQ产品。其吞吐量较Kafka与RocketMQ要低,且由于其不是
Java语言开发,所以公司内部对其实现定制化开发难度较大。

Kafka

Kafka是使用Scala/Java语言开发的一款MQ产品。其最大的特点就是高吞吐率,常用于大数据领域的实
时计算、日志采集等场景。其没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud
Netçix,其仅支持RabbitMQ与Kafka。

RocketMQ

RocketMQ是使用Java语言开发的一款MQ产品。经过数年阿里双 11 的考验,性能与稳定性非常高。其
没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud Alibaba,其支持RabbitMQ、
Kafka,但提倡使用RocketMQ。

对比

关键词 ACTIVEMQ RABBITMQ KAFKA ROCKETMQ
开发语言 Java ErLang Java Java
单机吞吐量 万级 万级 十万级 十万级
Topic - - 百级Topic时会影响系统吞吐量 千级Topic时会影响系统吞吐量
社区活跃度

4 、MQ常见协议

一般情况下MQ的实现是要遵循一些常规性协议的。常见的协议如下:

JMS

JMS,Java Messaging Service(Java消息服务)。是Java平台上有关MOM(Message Oriented
Middleware,面向消息的中间件 PO/OO/AO)的技术规范,它便于消息系统中的Java应用程序进行消
息交换,并且通过提供标准的产生、发送、接收消息的接口,简化企业应用的开发。ActiveMQ是该协
议的典型实现。

STOMP

STOMP,Streaming Text Orientated Message Protocol(面向流文本的消息协议),是一种MOM设计
的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理
(Broker)进行交互。ActiveMQ是该协议的典型实现,RabbitMQ通过插件可以支持该协议。

AMQP

AMQP,Advanced Message Queuing Protocol(高级消息队列协议),一个提供统一消息服务的应用
层标准,是应用层协议的一个开放标准,是一种MOM设计。基于此协议的客户端与消息中间件可传递
消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。 RabbitMQ是该协议的典型实
现。

MQTT

MQTT,Message Queuing Telemetry Transport(消息队列遥测传输),是IBM开发的一个即时通讯协
议,是一种二进制协议,主要用于服务器和低功耗IoT(物联网)设备间的通信。该协议支持所有平
台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器的通信协议。 RabbitMQ通
过插件可以支持该协议。

二、RocketMQ概述

1 、RocketMQ简介

RocketMQ是一个统一消息引擎、轻量级数据处理平台。

RocketMQ是一款阿里巴巴开源的消息中间件。 2016 年 11 月 28 日,阿里巴巴向 Apache 软件基金会捐赠RocketMQ,成为 Apache 孵化项目。 2017 年 9 月 25 日,Apache 宣布 RocketMQ孵化成为 Apache 顶级项目(TLP ),成为国内首个互联网中间件在 Apache 上的顶级项目。

官网地址:http://rocketmq.apache.org

2 、RocketMQ发展历程

2007 年,阿里开始五彩石项目,Notify作为项目中交易核心消息流转系统,应运而生。Notify系统是RocketMQ的雏形。

2010 年,B2B大规模使用ActiveMQ作为阿里的消息内核。阿里急需一个具有海量堆积能力的消息系
统。

2011 年初,Kafka开源。淘宝中间件团队在对Kafka进行了深入研究后,开发了一款新的MQ,MetaQ。

2012 年,MetaQ发展到了v3.0版本,在它基础上进行了进一步的抽象,形成了RocketMQ,然后就将其
进行了开源。

2015 年,阿里在RocketMQ的基础上,又推出了一款专门针对阿里云上用户的消息系统Aliware MQ。

2016 年双十一,RocketMQ承载了万亿级消息的流转,跨越了一个新的里程碑。 11 月 28 日,阿里巴巴
向 Apache 软件基金会捐赠 RocketMQ,成为 Apache 孵化项目。

2017 年 9 月 25 日,Apache 宣布 RocketMQ孵化成为 Apache 顶级项目(TLP ),成为国内首个互联
网中间件在 Apache 上的顶级项目。

第 2 章 RocketMQ的安装与启动

一、基本概念

1 消息(Message)

消息是指,消息系统所传输信息的物理载体,生产和消费数据的最小单位,每条消息必须属于一个主题。

2 主题(Topic)

Topic表示一类消息的集合,每个主题包含若干条消息,每条消息只能属于一个主题,是RocketMQ进行消息订阅的基本单位。 topic:message 1:n message:topic 1:1

一个生产者可以同时发送多种Topic的消息;而一个消费者只对某种特定的Topic感兴趣,即只可以订阅和消费一种Topic的消息。 producer:topic 1:n consumer:topic 1:1

3 标签(Tag)

为消息设置的标签,用于同一主题下区分不同类型的消息。来自同一业务单元的消息,可以根据不同业务目的在同一主题下设置不同标签。标签能够有效地保持代码的清晰度和连贯性,并优化RocketMQ提供的查询系统。消费者可以根据Tag实现对不同子主题的不同消费逻辑,实现更好的扩展性。

Topic是消息的一级分类,Tag是消息的二级分类。

Topic:货物

tag=上海

tag=江苏

tag=浙江

------- 消费者 -----

topic=货物 tag = 上海

topic=货物 tag = 上海|浙江

topic=货物 tag = *

4 队列(Queue)

存储消息的物理实体。一个Topic中可以包含多个Queue,每个Queue中存放的就是该Topic的消息。一个Topic的Queue也被称为一个Topic中消息的分区(Partition)。

一个Topic的Queue中的消息只能被一个消费者组中的一个消费者消费。一个Queue中的消息不允许同一个消费者组中的多个消费者同时消费。

在学习参考其它相关资料时,还会看到一个概念:分片(Sharding)。分片不同于分区。在RocketMQ
中,分片指的是存放相应Topic的Broker。每个分片中会创建出相应数量的分区,即Queue,每个
Queue的大小都是相同的。

5 消息标识(MessageId/Key)

RocketMQ中每个消息拥有唯一的MessageId,且可以携带具有业务标识的Key,以方便对消息的查询。不过需要注意的是,MessageId有两个:在生产者send()消息时会自动生成一个MessageId(msgId),当消息到达Broker后,Broker也会自动生成一个MessageId(offsetMsgId)。msgId、offsetMsgId与key都称为消息标识。

  • msgId:由producer端生成,其生成规则为:producerIp + 进程pid + MessageClientIDSetter类的ClassLoader的hashCode +
    当前时间 + AutomicInteger自增计数器

  • offsetMsgId:由broker端生成,其生成规则为:brokerIp + 物理分区的offset(Queue中的偏移量)

  • key:由用户指定的业务相关的唯一标识

二、系统架构

RocketMQ架构上主要分为四部分构成:

1 Producer

消息生产者,负责生产消息。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投
递,投递的过程支持快速失败并且低延迟。

例如,业务系统产生的日志写入到MQ的过程,就是消息生产的过程

再如,电商平台中用户提交的秒杀请求写入到MQ的过程,就是消息生产的过程

RocketMQ中的消息生产者都是以生产者组(Producer Group)的形式出现的。生产者组是同一类生产
者的集合,这类Producer发送相同Topic类型的消息。一个生产者组可以同时发送多个主题的消息。

2 Consumer

消息消费者,负责消费消息。一个消息消费者会从Broker服务器中获取到消息,并对消息进行相关业务
处理。

例如,QoS系统从MQ中读取日志,并对日志进行解析处理的过程就是消息消费的过程。

再如,电商平台的业务系统从MQ中读取到秒杀请求,并对请求进行处理的过程就是消息消费的
过程。

RocketMQ中的消息消费者都是以消费者组(Consumer Group)的形式出现的。消费者组是同一类消
费者的集合,这类Consumer消费的是同一个Topic类型的消息。消费者组使得在消息消费方面,实现
负载均衡(将一个Topic中的不同的Queue平均分配给同一个Consumer Group的不同的Consumer,注意,并不是将消息负载均衡)和容错(一个Consmer挂了,该Consumer Group中的其它Consumer可以接着消费原Consumer消费的Queue)的目标变得非常容易。

消费者组中Consumer的数量应该小于等于订阅Topic的Queue数量。如果超出Queue数量,则多出的
Consumer将不能消费消息。

不过,一个Topic类型的消息可以被多个消费者组同时消费。

注意,
1 )消费者组只能消费一个Topic的消息,不能同时消费多个Topic消息
2 )一个消费者组中的消费者必须订阅完全相同的Topic

3 Name Server

功能介绍

NameServer是一个Broker与Topic路由的注册中心,支持Broker的动态注册与发现。

RocketMQ的思想来自于Kafka,而Kafka是依赖了Zookeeper的。所以,在RocketMQ的早期版本,即在MetaQ v1.0与v2.0版本中,也是依赖于Zookeeper的。从MetaQ v3.0,即RocketMQ开始去掉了
Zookeeper依赖,使用了自己的NameServer。

主要包括两个功能:

  • Broker管理:接受Broker集群的注册信息并且保存下来作为路由信息的基本数据;提供心跳检测
    机制,检查Broker是否还存活。
  • 路由信息管理:每个NameServer中都保存着Broker集群的整个路由信息和用于客户端查询的队列
    信息。Producer和Conumser通过NameServer可以获取整个Broker集群的路由信息,从而进行消
    息的投递和消费。

路由注册

NameServer通常也是以集群的方式部署,不过,NameServer是无状态的,即NameServer集群中的各
个节点间是无差异的,各节点间相互不进行信息通讯。那各节点中的数据是如何进行数据同步的呢?在
Broker节点启动时,轮询NameServer列表,与每个NameServer节点建立长连接,发起注册请求。在
NameServer内部维护着一个Broker列表,用来动态存储Broker的信息。

注意,这是与其它像zk、Eureka、Nacos等注册中心不同的地方。

这种NameServer的无状态方式,有什么优缺点:

优点:NameServer集群搭建简单,扩容简单。

缺点:对于Broker,必须明确指出所有NameServer地址。否则未指出的将不会去注册。也正因为如此,NameServer并不能随便扩容。因为,若Broker不重新配置,新增的NameServer对于Broker来说是不可见的,其不会向这个NameServer进行注册。

Broker节点为了证明自己是活着的,为了维护与NameServer间的长连接,会将最新的信息以心跳包的方式上报给NameServer,每 30 秒发送一次心跳。心跳包中包含 BrokerId、Broker地址(IP+Port)、Broker名称、Broker所属集群名称等等。NameServer在接收到心跳包后,会更新心跳时间戳,记录这
个Broker的最新存活时间。

路由剔除

由于Broker关机、宕机或网络抖动等原因,NameServer没有收到Broker的心跳,NameServer可能会将其从Broker列表中剔除。

NameServer中有一个定时任务,每隔 10 秒就会扫描一次Broker表,查看每一个Broker的最新心跳时间戳距离当前时间是否超过 120 秒,如果超过,则会判定Broker失效,然后将其从Broker列表中剔除。

扩展:对于RocketMQ日常运维工作,例如Broker升级,需要停掉Broker的工作。OP需要怎么做?

OP需要将Broker的读写权限禁掉。一旦client(Consumer或Producer)向broker发送请求,都会收到broker的NO_PERMISSION响应,然后client会进行对其它Broker的重试。

当OP观察到这个Broker没有流量后,再关闭它,实现Broker从NameServer的移除。

OP:运维工程师

SRE:Site Reliability Engineer,现场可靠性工程师

路由发现

RocketMQ的路由发现采用的是Pull模型。当Topic路由信息出现变化时,NameServer不会主动推送给
客户端,而是客户端定时拉取主题最新的路由。默认客户端每 30 秒会拉取一次最新的路由。

扩展:

1 )Push模型:推送模型。其实时性较好,是一个“发布-订阅”模型,需要维护一个长连接。而长连接的维护是需要资源成本的。该模型适合于的场景:

  • 实时性要求较高;
  • Client数量不多,Server数据变化较频繁

2 )Pull模型:拉取模型。存在的问题是,实时性较差。

3 )Long Polling模型:长轮询模型。其是对Push与Pull模型的整合,充分利用了这两种模型的优
势,屏蔽了它们的劣势。

客户端NameServer选择策略

这里的客户端指的是Producer与Consumer

客户端在配置时必须要写上NameServer集群的地址,那么客户端到底连接的是哪个NameServer节点
呢?客户端首先会生产一个随机数,然后再与NameServer节点数量取模,此时得到的就是所要连接的
节点索引,然后就会进行连接。如果连接失败,则会采用round-robin策略,逐个尝试着去连接其它节
点。

首先采用的是随机策略进行的选择,失败后采用的是轮询策略

扩展:Zookeeper Client是如何选择Zookeeper Server的?

简单来说就是,经过两次Shuffe,然后选择第一台Zookeeper Server。

详细说就是,将配置文件中的zk server地址进行第一次shuffe,然后随机选择一个。这个选择出的一般都是一个hostname。然后获取到该hostname对应的所有ip,再对这些ip进行第二次shufæe,从shufæe过的结果中取第一个server地址进行连接。

4 Broker

功能介绍

Broker充当着消息中转角色,负责存储消息、转发消息。Broker在RocketMQ系统中负责接收并存储从
生产者发送来的消息,同时为消费者的拉取请求作准备。Broker同时也存储着消息相关的元数据,包括
消费者组消费进度偏移offset、主题、队列等。

Kafka 0.8版本之后,offset是存放在Broker中的,之前版本是存放在Zookeeper中的。

模块构成

下图为Broker Server的功能模块示意图。

Remoting Module:整个Broker的实体,负责处理来自clients端的请求。而这个Broker实体则由以下模
块构成。

Client Manager:客户端管理器。负责接收、解析客户端(Producer/Consumer)请求,管理客户端。例
如,维护Consumer的Topic订阅信息

Store Service:存储服务。提供方便简单的API接口,处理消息存储到物理硬盘消息查询功能。

HA Service:高可用服务,提供Master Broker 和 Slave Broker之间的数据同步功能。

Index Service:索引服务。根据特定的Message key,对投递到Broker的消息进行索引服务,同时也提
供根据Message Key对消息进行快速查询的功能。

集群部署

为了增强Broker性能与吞吐量,Broker一般都是以集群形式出现的。各集群节点中可能存放着相同
Topic的不同Queue。不过,这里有个问题,如果某Broker节点宕机,如何保证数据不丢失呢?其解决
方案是,将每个Broker集群节点进行横向扩展,即将Broker节点再建为一个HA集群,解决单点问题。

Broker节点集群是一个主从集群,即集群中具有Master与Slave两种角色。Master负责处理读写操作请
求,Slave负责对Master中的数据进行备份。当Master挂掉了,Slave则会自动切换为Master去工作。所以这个Broker集群是主备集群。一个Master可以包含多个Slave,但一个Slave只能隶属于一个Master。Master与Slave 的对应关系是通过指定相同的BrokerName、不同的BrokerId 来确定的。BrokerId为 0 表示Master,非 0 表示Slave。每个Broker与NameServer集群中的所有节点建立长连接,定时注册Topic信息到所有NameServer。

5 工作流程

具体流程

1 )启动NameServer,NameServer启动后开始监听端口,等待Broker、Producer、Consumer连接。

2 )启动Broker时,Broker会与所有的NameServer建立并保持长连接,然后每 30 秒向NameServer定时发送心跳包。

3 )发送消息前,可以先创建Topic,创建Topic时需要指定该Topic要存储在哪些Broker上,当然,在创
建Topic时也会将Topic与Broker的关系写入到NameServer中。不过,这步是可选的,也可以在发送消
息时自动创建Topic。

4 )Producer发送消息,启动时先跟NameServer集群中的其中一台建立长连接,并从NameServer中获取路由信息,即当前发送的Topic消息的Queue与Broker的地址(IP+Port)的映射关系。然后根据算法策略从队选择一个Queue,与队列所在的Broker建立长连接从而向Broker发消息。当然,在获取到路由信息后,Producer会首先将路由信息缓存到本地,再每 30 秒从NameServer更新一次路由信息。

5 )Consumer跟Producer类似,跟其中一台NameServer建立长连接,获取其所订阅Topic的路由信息,然后根据算法策略从路由信息中获取到其所要消费的Queue,然后直接跟Broker建立长连接,开始消费其中的消息。Consumer在获取到路由信息后,同样也会每 30 秒从NameServer更新一次路由信息。不过不同于Producer的是,Consumer还会向Broker发送心跳,以确保Broker的存活状态。

Topic的创建模式

手动创建Topic时,有两种模式:

  • 集群模式:该模式下创建的Topic在该集群中,所有Broker中的Queue数量是相同的。
  • Broker模式:该模式下创建的Topic在该集群中,每个Broker中的Queue数量可以不同。

自动创建Topic时,默认采用的是Broker模式,会为每个Broker默认创建 4 个Queue。

读/写队列

从物理上来讲,读/写队列是同一个队列。所以,不存在读/写队列数据同步问题。读/写队列是逻辑上进行区分的概念。一般情况下,读/写队列数量是相同的。

例如,创建Topic时设置的写队列数量为 8 ,读队列数量为 4 ,此时系统会创建 8 个Queue,分别是0 1 2 3 4 5 6 7。Producer会将消息写入到这 8 个队列,但Consumer只会消费0 1 2 3这 4 个队列中的消息,4 5 6 7 中的消息是不会被消费到的。

再如,创建Topic时设置的写队列数量为 4 ,读队列数量为 8 ,此时系统会创建 8 个Queue,分别是0 1 2 3 4 5 6 7。Producer会将消息写入到0 1 2 3 这 4 个队列,但Consumer只会消费0 1 2 3 4 5 6 7这 8 个队列中的消息,但是4 5 6 7中是没有消息的。此时假设Consumer Group中包含两个Consuer,Consumer1消费0 1 2 3,而Consumer2消费4 5 6 7。但实际情况是,Consumer2是没有消息可消费的。

也就是说,当读/写队列数量设置不同时,总是有问题的。那么,为什么要这样设计呢?

其这样设计的目的是为了,方便Topic的Queue的缩容。

例如,原来创建的Topic中包含 16 个Queue,如何能够使其Queue缩容为 8 个,还不会丢失消息?可以动态修改写队列数量为 8 ,读队列数量不变。此时新的消息只能写入到前 8 个队列,而消费都消费的却是16 个队列中的数据。当发现后 8 个Queue中的消息消费完毕后,就可以再将读队列数量动态设置为 8 。整个缩容过程,没有丢失任何消息。

perm用于设置对当前创建Topic的操作权限: 2 表示只写, 4 表示只读, 6 表示读写。

三、单机安装与启动

1 准备工作

软硬件需求

系统要求是 64 位的,JDK要求是1.8及其以上版本的。

下载RocketMQ安装包


将下载的安装包上传到Linux。

解压。

2 、修改初始内存

修改runserver.sh

使用vim命令打开bin/runserver.sh文件。现将这些值修改为如下:

修改runbroker.sh

使用vim命令打开bin/runbroker.sh文件。现将这些值修改为如下:

3 、启动

启动NameServer

nohup sh bin/mqnamesrv &
tail -f ~/logs/rocketmqlogs/namesrv.log
日志文件在:/root/logs/rocketmqlogs下面

启动broker

nohup sh bin/mqbroker -n 127.0.0.1:9876 &
tail -f ~/logs/rocketmqlogs/broker.log
日志文件在:/root/logs/rocketmqlogs下面

4 、发送/接收消息测试

发送消息

export NAMESRV_ADDR=127.0.0.1:9876
sh bin/tools.sh org.apache.rocketmq.example.quickstart.Producer

接收信息

sh bin/tools.sh org.apache.rocketmq.example.quickstart.Consumer

5 、关闭Server

无论是关闭name server还是broker,都是使用bin/mqshutdown命令。

关闭broker

sh bin/mqshutdown broker

关闭namesrv

sh bin/mqshutdown namesrv

四、 控制台的安装与启动

RocketMQ有一个可视化的dashboard,通过该控制台可以直观的查看到很多数据。

1 下载

下载地址:https://github.com/apache/rocketmq-externals/releases

2 修改配置

修改其src/main/resources中的application.properties配置文件。

  • 原来的端口号为 8080 ,修改为一个不常用的
  • 指定RocketMQ的name server地址

3 添加依赖

在解压目录rocketmq-console的pom.xml中添加如下JAXB依赖。

JAXB,Java Architechture for Xml Binding,用于XML绑定的Java技术,是一个业界标准,是一项可以根据XML Schema生成Java类的技术。

<!-- JAXB,用于XML绑定的Java技术 -->
<dependency> <groupId>javax.xml.bind</groupId> <artifactId>jaxb-api</artifactId> <version>2.3.0</version>
</dependency>
<dependency> <groupId>com.sun.xml.bind</groupId> <artifactId>jaxb-impl</artifactId> <version>2.3.0</version>
</dependency>
<dependency> <groupId>com.sun.xml.bind</groupId> <artifactId>jaxb-core</artifactId> <version>2.3.0</version>
</dependency>
<dependency> <groupId>javax.activation</groupId> <artifactId>activation</artifactId> <version>1.1.1</version>
</dependency>

4 打包

在rocketmq-console目录下运行maven的打包命令。

mvn clean package -Dmaven.test.skip=true

打包成功后,在target文件夹

5 启动

java -jar rocketmq-console-ng-1.0.0.jar
  • 当配置文件不指定port和namesrv的地址时,可以用下面方式启动:
java -jar rocketmq-console-ng-1.0.0.jar --server.port=7777 --rocketmq.config.namesrvAddr=127.0.0.1:9876

6 访问

http://127.0.0.1:7000/#/

五、集群搭建理论

1 数据复制与刷盘策略

复制策略

复制策略是Broker的Master与Slave间的数据同步方式。分为同步复制与异步复制:

  • 同步复制:消息写入master后,master会等待slave同步数据成功后才向producer返回成功ACK
  • 异步复制:消息写入master后,master立即向producer返回成功ACK,无需等待slave同步数据成

异步复制策略会降低系统的写入延迟,RT变小,提高了系统的吞吐量

刷盘策略

刷盘策略指的是broker中消息的落盘方式,即消息发送到broker内存后消息持久化到磁盘的方式。分为同步刷盘与异步刷盘:

  • 同步刷盘:当消息持久化到broker的磁盘后才算是消息写入成功。
  • 异步刷盘:当消息写入到broker的内存后即表示消息写入成功,无需等待消息持久化到磁盘。

1 )异步刷盘策略会降低系统的写入延迟,RT变小,提高了系统的吞吐量

2 )消息写入到Broker的内存,一般是写入到了PageCache

3 )对于异步 刷盘策略,消息会写入到PageCache后立即返回成功ACK。但并不会立即做落盘操
作,而是当PageCache到达一定量时会自动进行落盘。

2 Broker集群模式

根据Broker集群中各个节点间关系的不同,Broker集群可以分为以下几类:

单Master

只有一个broker(其本质上就不能称为集群)。这种方式也只能是在测试时使用,生产环境下不能使
用,因为存在单点问题。

多Master

broker集群仅由多个master构成,不存在Slave。同一Topic的各个Queue会平均分布在各个master节点上。

  • 优点:配置简单,单个Master宕机或重启维护对应用无影响,在磁盘配置为RAID10时,即使机器宕机不可恢复情况下,由于RAID10磁盘非常可靠,消息也不会丢(异步刷盘丢失少量消息,同步刷盘一条不丢),性能最高;
  • 缺点:单台机器宕机期间,这台机器上未被消费的消息在机器恢复之前不可订阅(不可消费),消息实时性会受到影响。

以上优点的前提是,这些Master都配置了RAID磁盘阵列。如果没有配置,一旦出现某Master宕机,则会发生大量消息丢失的情况。

多Master多Slave模式-异步复制

broker集群由多个master构成,每个master又配置了多个slave(在配置了RAID磁盘阵列的情况下,一个master一般配置一个slave即可)。master与slave的关系是主备关系,即master负责处理消息的读写请求,而slave仅负责消息的备份与master宕机后的角色切换。

异步复制即前面所讲的复制策略中的异步复制策略,即消息写入master成功后,master立即向producer返回成功ACK,无需等待slave同步数据成功。

该模式的最大特点之一是,当master宕机后slave能够自动切换为master。不过由于slave从master的同步具有短暂的延迟(毫秒级),所以当master宕机后,这种异步复制方式可能会存在少量消息的丢失问题。

Slave从Master同步的延迟越短,其可能丢失的消息就越少

对于Master的RAID磁盘阵列,若使用的也是异步复制策略,同样也存在延迟问题,同样也可能会丢失消息。但RAID阵列的秘诀是微秒级的(因为是由硬盘支持的),所以其丢失的数据量会更少。

多Master多Slave模式-同步双写

该模式是多Master多Slave模式同步复制实现。所谓同步双写,指的是消息写入master成功后,master会等待slave同步数据成功后才向producer返回成功ACK,即master与slave都要写入成功后才会返回成功ACK,也即双写

该模式与异步复制模式相比,优点是消息的安全性更高,不存在消息丢失的情况。但单个消息的RT略高,从而导致性能要略低(大约低10%)。

该模式存在一个大的问题:对于目前的版本,Master宕机后,Slave不会自动切换到Master。

最佳实践

一般会为Master配置RAID10磁盘阵列,然后再为其配置一个Slave。即利用了RAID10磁盘阵列的高效、安全性,又解决了可能会影响订阅的问题。

1 )RAID磁盘阵列的效率要高于Master-Slave集群。因为RAID是硬件支持的。也正因为如此,所以RAID阵列的搭建成本较高。

2 )多Master+RAID阵列,与多Master多Slave集群的区别是什么?

  • 多Master+RAID阵列,其仅仅可以保证数据不丢失,即不影响消息写入,但其可能会影响到消息的订阅。但其执行效率要远高于多Master多Slave集群
  • 多Master多Slave集群,其不仅可以保证数据不丢失,也不会影响消息写入。其运行效率要低于多Master+RAID阵列

六、磁盘阵列RAID(补充)

1 RAID历史

1988 年美国加州大学伯克利分校的 D. A. Patterson 教授等首次在论文 “A Case of Redundant Array of Inexpensive Disks” 中提出了 RAID 概念 ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。由于当时大容量磁盘比较昂贵, RAID 的基本思想是将多个容量较小、相对廉价的磁盘进行有机组合,从而以较低的成本获得与昂贵大容量磁盘相当的容量、性能、可靠性。随着磁盘成本和价格的不断降低, “廉价” 已经毫无意义。因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定用“ 独立 ” 替代 “ 廉价 ” ,于时 RAID 变成了独立磁盘冗余阵列(Redundant Array of Independent Disks )。但这仅仅是名称的变化,实质内容没有改变。

内存:32m 6.4G(IBM 10.1G)

2 RAID等级

RAID 这种设计思想很快被业界接纳, RAID 技术作为高性能、高可靠的存储技术,得到了非常广泛的应用。 RAID 主要利用镜像数据条带数据校验三种技术来获取高性能、可靠性、容错能力和扩展性,根据对这三种技术的使用策略和组合架构,可以把 RAID 分为不同的等级,以满足不同数据应用的需求。

D. A. Patterson 等的论文中定义了 RAID0 ~ RAID6 原始 RAID 等级。随后存储厂商又不断推出 RAID7、 RAID10、RAID01 、 RAID50 、 RAID53 、 RAID100 等 RAID 等级,但这些并无统一的标准。目前业界与学术界公认的标准是 RAID0 ~ RAID6 ,而在实际应用领域中使用最多的 RAID 等级是 RAID0 、RAID1 、 RAID3 、 RAID5 、 RAID6 和 RAID10。

RAID 每一个等级代表一种实现方法和技术,等级之间并无高低之分。在实际应用中,应当根据用户的数据应用特点,综合考虑可用性、性能和成本来选择合适的 RAID 等级,以及具体的实现方式。

3 关键技术

镜像技术

镜像技术是一种冗余技术,为磁盘提供数据备份功能,防止磁盘发生故障而造成数据丢失。对于 RAID而言,采用镜像技术最典型地的用法就是,同时在磁盘阵列中产生两个完全相同的数据副本,并且分布在两个不同的磁盘上。镜像提供了完全的数据冗余能力,当一个数据副本失效不可用时,外部系统仍可正常访问另一副本,不会对应用系统运行和性能产生影响。而且,镜像不需要额外的计算和校验,故障修复非常快,直接复制即可。镜像技术可以从多个副本进行并发读取数据,提供更高的读 I/O 性能,但不能并行写数据,写多个副本通常会导致一定的 I/O 性能下降。

镜像技术提供了非常高的数据安全性,其代价也是非常昂贵的,需要至少双倍的存储空间。高成本限制了镜像的广泛应用,主要应用于至关重要的数据保护,这种场合下的数据丢失可能会造成非常巨大的损失。

数据条带技术

数据条带化技术是一种自动将 I/O操作负载均衡到多个物理磁盘上的技术。更具体地说就是,将一块连续的数据分成很多小部分并把它们分别存储到不同磁盘上。这就能使多个进程可以并发访问数据的多个不同部分,从而获得最大程度上的 I/O 并行能力,极大地提升性能。

简单来说:就是将不同的数据,存放到不同的磁盘,实现并发访问,提高性能。

数据校验技术

数据校验技术是指, RAID 要在写入数据的同时进行校验计算,并将得到的校验数据存储在 RAID 成员磁盘中。校验数据可以集中保存在某个磁盘或分散存储在多个不同磁盘中。当其中一部分数据出错时,就可以对剩余数据和校验数据进行反校验计算重建丢失的数据。

数据校验技术相对于镜像技术的优势在于节省大量开销,但由于每次数据读写都要进行大量的校验运算,对计算机的运算速度要求很高,且必须使用硬件RAID 控制器。在数据重建恢复方面,检验技术比镜像技术复杂得多且慢得多。

4 RAID分类

从实现角度看, RAID 主要分为软 RAID、硬 RAID 以及混合 RAID 三种。

软 RAID

所有功能均有操作系统和 CPU 来完成,没有独立的 RAID 控制处理芯片和 I/O 处理芯片,效率自然最低。

硬 RAID

配备了专门的 RAID 控制处理芯片和 I/O 处理芯片以及阵列缓冲,不占用 CPU 资源。效率很高,但成本也很高。

混合 RAID

具备 RAID 控制处理芯片,但没有专门的I/O 处理芯片,需要 CPU 和驱动程序来完成。性能和成本在软RAID 和硬 RAID 之间。

5 常见RAID等级详解

JBOD

JBOD ,Just a Bunch of Disks,磁盘簇。表示一个没有控制软件提供协调控制的磁盘集合,这是 RAID区别与 JBOD 的主要因素。 JBOD 将多个物理磁盘串联起来,提供一个巨大的逻辑磁盘。

JBOD 的数据存放机制是由第一块磁盘开始按顺序往后存储,当前磁盘存储空间用完后,再依次往后面的磁盘存储数据。 JBOD 存储性能完全等同于单块磁盘,而且也不提供数据安全保护。

其只是简单提供一种扩展存储空间的机制,JBOD可用存储容量等于所有成员磁盘的存储空间之和

JBOD 常指磁盘柜,而不论其是否提供 RAID 功能。不过,JBOD并非官方术语,官方称为Spanning。

RAID0

RAID0 是一种简单的、无数据校验的数据条带化技术。实际上不是一种真正的 RAID ,因为它并不提供任何形式的冗余策略。 RAID0 将所在磁盘条带化后组成大容量的存储空间,将数据分散存储在所有磁盘中,以独立访问方式实现多块磁盘的并读访问。

理论上讲,一个由 n 块磁盘组成的 RAID0 ,它的读写性能是单个磁盘性能的 n 倍,但由于总线带宽等多种因素的限制,实际的性能提升低于理论值。由于可以并发执行 I/O 操作,总线带宽得到充分利用。再加上不需要进行数据校验,RAID0 的性能在所有 RAID 等级中是最高的

RAID0 具有低成本、高读写性能、 100% 的高存储空间利用率等优点,但是它不提供数据冗余保护,一旦数据损坏,将无法恢复。

  • 应用场景:对数据的顺序读写要求不高,对数据的安全性和可靠性要求不高,但对系统性能要求很高的场景。

RAID0与JBOD相同点:

1 )存储容量:都是成员磁盘容量总和

2 )磁盘利用率,都是100%,即都没有做任何的数据冗余备份

RAID0与JBOD不同点:

JBOD:数据是顺序存放的,一个磁盘存满后才会开始存放到下一个磁盘

RAID:各个磁盘中的数据写入是并行的,是通过数据条带技术写入的。其读写性能是JBOD的n倍

RAID1


RAID1 就是一种 镜像技术,它将数据完全一致地分别写到工作磁盘和镜像磁盘,它的磁盘空间利用率为 50% 。 RAID1 在数据写入时,响应时间会有所影响,但是读数据的时候没有影响。RAID1 提供了最佳的数据保护,一旦工作磁盘发生故障,系统将自动切换到镜像磁盘,不会影响使用。

RAID1是为了增强数据安全性使两块磁盘数据呈现完全镜像,从而达到安全性好、技术简单、管理方便。 RAID1 拥有完全容错的能力,但实现成本高。

  • 应用场景:对顺序读写性能要求较高,或对数据安全性要求较高的场景。

RAID10


RAID10是一个RAID1与RAID0的组合体,所以它继承了RAID0的快速和RAID1的安全。

简单来说就是,先做条带,再做镜像。发即将进来的数据先分散到不同的磁盘,再将磁盘中的数据做镜像。

RAID01


RAID01是一个RAID0与RAID1的组合体,所以它继承了RAID0的快速和RAID1的安全。

简单来说就是,先做镜像再做条带。即将进来的数据先做镜像,再将镜像数据写入到与之前数据不同的磁盘,即再做条带。

RAID10要比RAID01的容错率更高,所以生产环境下一般是不使用RAID01的。

因为RAID01,两边有1个挂了,整边就全挂了。而RAID10,两边有1个挂了,整边还能继续工作。

七、集群搭建实践

1 集群架构

这里要搭建一个双主双从异步复制的Broker集群。为了方便,这里使用了两台主机来完成集群的搭建。
这两台主机的功能与broker角色分配如下表。

序号 主机名/IP IP 功能 BROKER角色
1 rocketmqOS1 192.168.4.55 NameServer + Broker Master1 + Slave2
2 rocketmqOS2 192.168.4.55 NameServer + Broker Master2 + Slave1

2 克隆生成rocketmqOS1

克隆rocketmqOS主机,并修改配置。指定主机名为rocketmqOS1。

3 修改rocketmqOS1配置文件

配置文件位置

要修改的配置文件在rocketMQ解压目录的conf/2m-2s-async目录中。

修改broker-a.properties

将该配置文件内容修改为如下:

# 指定整个broker集群的名称,或者说是RocketMQ集群的名称
brokerClusterName=DefaultCluster
# 指定master-slave集群的名称。一个RocketMQ集群可以包含多个master-slave集群
brokerName=broker-a
# master的brokerId为 0
brokerId= 0
# 指定删除消息存储过期文件的时间为凌晨 4 点
deleteWhen= 04
# 指定未发生更新的消息存储文件的保留时长为 48 小时, 48 小时后过期,将会被删除
fileReservedTime= 48
# 指定当前broker为异步复制master
brokerRole=ASYNC_MASTER
# 指定刷盘策略为异步刷盘
flushDiskType=ASYNC_FLUSH
# 指定Name Server的地址
namesrvAddr=192.168.4.55:9876;192.168.4.55:9877
# 指定Broker对外提供服务的端口,即Broker与producer与consumer通信的端口。默认10911 。
listenPort= 10911

修改broker-b-s.properties

将该配置文件内容修改为如下:

brokerClusterName=DefaultCluster
# 指定这是另外一个master-slave集群
brokerName=broker-b
# slave的brokerId为非 0
brokerId= 1
deleteWhen= 04
fileReservedTime= 48
# 指定当前broker为slave
brokerRole=SLAVE
flushDiskType=ASYNC_FLUSH
namesrvAddr=192.168.4.55:9876;192.168.4.55:9877
# 指定Broker对外提供服务的端口,即Broker与producer与consumer通信的端口。默认10911 。由于当前主机同时充当着master1与slave2,而前面的master1使用的是默认端口。这里需要将这两个端口加以区分,以区分出master1与slave2
listenPort= 11911
# 指定消息存储相关的路径。默认路径为~/store目录。由于当前主机同时充当着master1与slave2,master1使用的是默认路径,这里就需要再指定一个不同路径
storePathRootDir=~/store-s
storePathCommitLog=~/store-s/commitlog
storePathConsumeQueue=~/store-s/consumequeue
storePathIndex=~/store-s/index
storeCheckpoint=~/store-s/checkpoint
abortFile=~/store-s/abort

其它配置

除了以上配置外,这些配置文件中还可以设置其它属性。

#指定整个broker集群的名称,或者说是RocketMQ集群的名称
brokerClusterName=rocket-MS
#指定master-slave集群的名称。一个RocketMQ集群可以包含多个master-slave集群
brokerName=broker-a
#0 表示 Master,>0 表示 Slave
brokerId= 0
#nameServer地址,分号分割
namesrvAddr=nameserver1:9876;nameserver2:9876
#默认为新建Topic所创建的队列数
defaultTopicQueueNums= 4
#是否允许 Broker 自动创建Topic,建议生产环境中关闭
autoCreateTopicEnable=true
#是否允许 Broker 自动创建订阅组,建议生产环境中关闭
autoCreateSubscriptionGroup=true
#Broker对外提供服务的端口,即Broker与producer与consumer通信的端口
listenPort= 10911
#HA高可用监听端口,即Master与Slave间通信的端口,默认值为listenPort+1
haListenPort= 10912
#指定删除消息存储过期文件的时间为凌晨 4 点
deleteWhen= 04
#指定未发生更新的消息存储文件的保留时长为 48 小时, 48 小时后过期,将会被删除
fileReservedTime= 48
#指定commitLog目录中每个文件的大小,默认1G
mapedFileSizeCommitLog= 1073741824
#指定ConsumeQueue的每个Topic的每个Queue文件中可以存放的消息数量,默认30w条
mapedFileSizeConsumeQueue= 300000
#在清除过期文件时,如果该文件被其他线程所占用(引用数大于 0 ,比如读取消息),此时会阻止
此次删除任务,同时在第一次试图删除该文件时记录当前时间戳。该属性则表示从第一次拒绝删除
后开始计时,该文件最多可以保留的时长。在此时间内若引用数仍不为 0 ,则删除仍会被拒绝。不过
时间到后,文件将被强制删除
destroyMapedFileIntervalForcibly= 120000
#指定commitlog、consumequeue所在磁盘分区的最大使用率,超过该值,则需立即清除过期文
件
diskMaxUsedSpaceRatio= 88
#指定store目录的路径,默认在当前用户主目录中
storePathRootDir=/usr/local/rocketmq-all-4.5.0/store
#commitLog目录路径
storePathCommitLog=/usr/local/rocketmq-all-4.5.0/store/commitlog
#consumeueue目录路径
storePathConsumeQueue=/usr/local/rocketmq-all-4.5.0/store/consumequeue
#index目录路径
storePathIndex=/usr/local/rocketmq-all-4.5.0/store/index
#checkpoint文件路径
storeCheckpoint=/usr/local/rocketmq-all-4.5.0/store/checkpoint
#abort文件路径
abortFile=/usr/local/rocketmq-all-4.5.0/store/abort
#指定消息的最大大小
maxMessageSize= 65536
#Broker的角色
# - ASYNC_MASTER 异步复制Master
# - SYNC_MASTER 同步双写Master
# - SLAVE
brokerRole=SYNC_MASTER
#刷盘策略
# - ASYNC_FLUSH 异步刷盘
# - SYNC_FLUSH 同步刷盘
flushDiskType=SYNC_FLUSH
#发消息线程池数量
sendMessageThreadPoolNums= 128
#拉消息线程池数量
pullMessageThreadPoolNums= 128
#强制指定本机IP,需要根据每台机器进行修改。官方介绍可为空,系统默认自动识别,但多网卡
时IP地址可能读取错误
brokerIP1=192.168.3.105

4 克隆生成rocketmqOS2

克隆rocketmqOS1主机,并修改配置。指定主机名为rocketmqOS2。

5 修改rocketmqOS2配置文件

对于rocketmqOS2主机,同样需要修改rocketMQ解压目录的conf目录的子目录2m-2s-async中的两个配
置文件。

修改broker-b.properties

将该配置文件内容修改为如下:

brokerClusterName=DefaultCluster
brokerName=broker-b
brokerId= 0
deleteWhen= 04
fileReservedTime= 48
brokerRole=ASYNC_MASTER
flushDiskType=ASYNC_FLUSH
namesrvAddr=192.168.4.55:9876;192.168.4.55:9877
# 指定Broker对外提供服务的端口,即Broker与producer与consumer通信的端口。默认10911 。
listenPort= 12911

修改broker-a-s.properties

将该配置文件内容修改为如下:

brokerClusterName=DefaultCluster
brokerName=broker-a
brokerId= 1
deleteWhen= 04
fileReservedTime= 48
brokerRole=SLAVE
flushDiskType=ASYNC_FLUSH
namesrvAddr=192.168.4.55:9876;192.168.4.55:9877
# 指定Broker对外提供服务的端口,即Broker与producer与consumer通信的端口。默认10911 。
listenPort= 13911
storePathRootDir=~/store-s
storePathCommitLog=~/store-s/commitlog
storePathConsumeQueue=~/store-s/consumequeue
storePathIndex=~/store-s/index
storeCheckpoint=~/store-s/checkpoint
abortFile=~/store-s/abort

6 启动服务器

启动NameServer集群

分别启动rocketmqOS1与rocketmqOS2两个主机中的NameServer。启动命令完全相同。

nohup sh bin/mqnamesrv &
tail -f ~/logs/rocketmqlogs/namesrv.log

启动两个Master

分别启动rocketmqOS1与rocketmqOS2两个主机中的broker master。注意,它们指定所要加载的配置文件是不同的。

nohup sh bin/mqbroker -c conf/2m-2s-async/broker-a.properties &
tail -f ~/logs/rocketmqlogs/broker.log
nohup sh bin/mqbroker -c conf/2m-2s-async/broker-b.properties &
tail -f ~/logs/rocketmqlogs/broker.log

启动两个Slave

分别启动rocketmqOS1与rocketmqOS2两个主机中的broker slave。注意,它们指定所要加载的配置文件是不同的。

nohup sh bin/mqbroker -c conf/2m-2s-async/broker-b-s.properties &
tail -f ~/logs/rocketmqlogs/broker.log
nohup sh bin/mqbroker -c conf/2m-2s-async/broker-a-s.properties &
tail -f ~/logs/rocketmqlogs/broker.log 12

八、mqadmin命令

在mq解压目录的bin目录下有一个mqadmin命令,该命令是一个运维指令,用于对mq的主题,集群,broker 等信息进行管理。

1 修改bin/tools.sh

在运行mqadmin命令之前,先要修改mq解压目录下bin/tools.sh配置的JDK的ext目录位置。本机的ext目录在 /opt/apps/jdk1.8/jre/lib/ext

使用vim命令打开tools.sh文件,并在JAVA_OPT配置的-Djava.ext.dirs这一行的后面添加ext的路径。

JAVA_OPT="${JAVA_OPT} -server -Xms1g -Xmx1g -Xmn256m -
XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=128m"
JAVA_OPT="${JAVA_OPT} -
Djava.ext.dirs=${BASE_DIR}/lib:${JAVA_HOME}/jre/lib/ext:${JAVA_HOME}/lib/
ext:/opt/apps/jdk1.8/jre/lib/ext"
JAVA_OPT="${JAVA_OPT} -cp ${CLASSPATH}"

2 运行mqadmin

直接运行该命令,可以看到其可以添加的commands。通过这些commands可以完成很多的功能。

[root@localhost rocketmq]# ./bin/mqadmin
The most commonly used mqadmin commands are:updateTopic          Update or create topicdeleteTopic          Delete topic from broker and NameServer.updateSubGroup       Update or create subscription groupdeleteSubGroup       Delete subscription group from broker.updateBrokerConfig   Update broker's configupdateTopicPerm      Update topic permtopicRoute           Examine topic route infotopicStatus          Examine topic Status infotopicClusterList     get cluster info for topicbrokerStatus         Fetch broker runtime status dataqueryMsgById         Query Message by IdqueryMsgByKey        Query Message by KeyqueryMsgByUniqueKey  Query Message by Unique keyqueryMsgByOffset     Query Message by offsetQueryMsgTraceById    query a message traceprintMsg             Print Message DetailprintMsgByQueue      Print Message DetailsendMsgStatus        send msg to broker.brokerConsumeStats   Fetch broker consume stats dataproducerConnection   Query producer's socket connection and client versionconsumerConnection   Query consumer's socket connection, client version and subscriptionconsumerProgress     Query consumers's progress, speedconsumerStatus       Query consumer's internal data structurecloneGroupOffset     clone offset from other group.clusterList          List all of clusterstopicList            Fetch all topic list from name serverupdateKvConfig       Create or update KV config.deleteKvConfig       Delete KV config.wipeWritePerm        Wipe write perm of broker in all name serverresetOffsetByTime    Reset consumer offset by timestamp(without client restart).updateOrderConf      Create or update or delete order confcleanExpiredCQ       Clean expired ConsumeQueue on broker.cleanUnusedTopic     Clean unused topic on broker.startMonitoring      Start MonitoringstatsAll             Topic and Consumer tps statsallocateMQ           Allocate MQcheckMsgSendRT       check message send response timeclusterRT            List All clusters Message Send RTgetNamesrvConfig     Get configs of name server.updateNamesrvConfig  Update configs of name server.getBrokerConfig      Get broker config by cluster or special broker!queryCq              Query cq command.sendMessage          Send a messageconsumeMessage       Consume messageupdateAclConfig      Update acl config yaml file in brokerdeleteAccessConfig   Delete Acl Config Account in brokerclusterAclConfigVersion List all of acl config version information in clusterupdateGlobalWhiteAddr Update global white address for acl Config File in brokergetAccessConfigSubCommand List all of acl config information in clusterSee 'mqadmin help <command>' for more information on a specific command.

3 该命令的官网详解

该命令在官网中有详细的用法解释。

https://github.com/apache/rocketmq/blob/master/docs/cn/operation.md

consumerStatus Query consumer's internal data structure
cloneGroupOffset clone offset from other group.
clusterList List all of clusters
topicList Fetch all topic list from name server
updateKvConfig Create or update KV config.
deleteKvConfig Delete KV config.
wipeWritePerm Wipe write perm of broker in all name server
resetOffsetByTime Reset consumer offset by timestamp(without
client restart).
updateOrderConf Create or update or delete order conf
cleanExpiredCQ Clean expired ConsumeQueue on broker.
cleanUnusedTopic Clean unused topic on broker.
startMonitoring Start Monitoring
statsAll Topic and Consumer tps stats
allocateMQ Allocate MQ
checkMsgSendRT check message send response time
clusterRT List All clusters Message Send RT
getNamesrvConfig Get configs of name server.
updateNamesrvConfig Update configs of name server.
getBrokerConfig Get broker config by cluster or special broker!
queryCq Query cq command.
sendMessage Send a message
consumeMessage Consume message
updateAclConfig Update acl config yaml file in broker
deleteAccessConfig Delete Acl Config Account in broker
clusterAclConfigVersion List all of acl config version information in
cluster
updateGlobalWhiteAddr Update global white address for acl Config File
in broker
getAccessConfigSubCommand List all of acl config information in
cluster

分布式消息队列RocketMQ工作原理与应用(一)相关推荐

  1. 分布式消息队列RocketMQ(一)安装与启动

    分布式消息队列RocketMQ 一.RocketMQ简介 RocketMQ(火箭MQ) 出自于阿里,后开源给apache成为apache的顶级开源项目之一,顶住了淘宝10年的 双11压力 是电商产品的 ...

  2. 分布式消息队列RocketMQ 快速入门

    分布式消息队列RocketMQ 一 RocketMQ概述 概述 1.MQ简介 MQ,Message Queue,是一种提供消息队列服务的中间件,是一套提供了消息生产.存储.消费全过程API的软件系统. ...

  3. 分布式消息队列RocketMQ继承SpringBoot

    一.介绍 Springboot 继承RocketMQ: com.alibaba.cloud spring-cloud-starter-stream-rocketmq 底层封装了 rocketmq-cl ...

  4. 分布式消息队列RocketMQ—个人笔记(尚硅谷老雷老师视频)

    参考视频:[尚硅谷]RocketMQ教程丨深度掌握MQ消息中间件_哔哩哔哩_bilibili 第一章 RocketMQ概述 一.MQ概述 1.MQ简介 MQ,Message Queue,是一种提供消息 ...

  5. 消息队列+RabbitMq工作原理

    目录 1.消息队列 2.应用场景 2.1 异步处理 2.2 应用解耦 2.3流量削锋 2.4 日志处理 3.RabbitMQ介绍 4.RabbitMQ工作原理 1.消息队列 消息即是信息的载体 消息队 ...

  6. 分布式消息队列RocketMQ与Kafka架构上的巨大差异之1 -- 为什么RocketMQ要去除ZK依赖?...

    我们知道,在早期的RocketMQ版本中,是有依赖ZK的.而现在的版本中,是去掉了对ZK的依赖,转而使用自己开发的NameSrv. 并且这个NameSrv是无状态的,你可以随意的部署多台,其代码也非常 ...

  7. 分布式消息队列RocketMQ与Kafka的18项差异之“拨乱反正”

    我们知道,阿里的RocketMQ其实源自Kafka.同时网络上一直流传着1篇阿里中间件团队所写的RocketMQ与Kafka的18项差异的文章,并且被广泛转发.比如: http://blog.csdn ...

  8. 分布式消息队列RocketMQ与Kafka的18项差异之“拨乱反正“之2

    在前1篇,我讨论了RocketMQ与Kakfa的对比中,几个不太严谨的地方.本着严谨的精神,不偏袒任何一方,本篇想分析一下RocketMQ在Kafka的基础上,的确做的几个改进.有不对之处,敬请指正. ...

  9. 分布式消息队列RocketMQ(四):磁盘阵列RAID(补充)

    磁盘阵列RAID 1 RAID历史 2 RAID等级 3 关键技术 镜像技术 数据条带技术 数据校验技术 4 RAID分类 软 RAID 硬 RAID 混合 RAID 5 常见RAID等级详解 JBO ...

最新文章

  1. springboot-6-整合jdbc
  2. 神鬼传奇小技巧:教你如何修改自己想要的时装
  3. C#程序如何对接比特币钱包节点?
  4. linux环境变量堆栈,情景linux--如何摆脱深路径的频繁切换烦恼?
  5. nyoj239月老的难题
  6. 【编程题目】输入一个已经按升序排序过的数组和一个数字,在数组中查找两个数,使得它们的和正好是输入的那个数字。...
  7. JAVA15.JDK15.6 Record二次预览特性
  8. C++学习笔记6:多文件编程
  9. hive中分组取前N个值的实现
  10. linux 打zip gz tar,linux把文件压缩成.tar.gz的命令 | PT Ubuntu Blog
  11. CRM系统-----学员管理系统---admin自定义开发3
  12. 一.第一周golang学习:--string解析成基本数据类型
  13. Activiti实战. 1.3Activiti的特点
  14. log4j.xml配置示例
  15. idea java EclipseFormatter代码格式化模板
  16. win10如何关机时显示停止服务器,Win10系统关机时总提示此应用程序阻止关机如何解决...
  17. 说一说Qpython在Android手机上的应用(二)
  18. 用C语言对一元二次方程求解
  19. Unity资源管理(四)-AssetBundle使用模式
  20. 背景渐变色,兼容IE

热门文章

  1. html如实现留言板功能,JS实现留言板功能
  2. vi 和 vim 基本介绍
  3. 玻色量子CEO文凯出席首届CCF量子计算大会,分享量子计算加速药物研发新突破
  4. (二)内网渗透之tomcat中间件漏洞
  5. 一种基于后间隔偏最小二乘的梯度下降助力谱建模方法
  6. 如何用Python3实现12306火车票自动抢票,小白必学
  7. TGA图像文件格式资料
  8. DOS指令汇总(字母顺序)DOS自身的解释
  9. 朋友圈怎么设计测试用例,面试官听完都惊呆了
  10. 数学中的 s.t. 含义