参考视频:【尚硅谷】RocketMQ教程丨深度掌握MQ消息中间件_哔哩哔哩_bilibili

RocketMQ概述


一、MQ概述

1MQ简介

MQ,Message Queue,是一种提供消息队列服务的中间件,也称为消息中间件,是一套提供了消息生产、存储、消费全过程API的软件系统。消息即数据。一般消息的体量不会很大。

2MQ用途

从网上可以查看到很多的关于MQ用途的叙述,但总结起来其实就以下三点。
限流削峰
MQ可以将系统的超量请求暂存其中,以便系统后期可以慢慢进行处理,从而避免了请求的丢失或系统被压垮。

异步解耦

上游系统对下游系统的调用若为同步调用,则会大大降低系统的吞吐量与并发度,且系统耦合度太高。而异步调用则会解决这些问题。所以两层之间若要实现由同步到异步的转化,一般性做法就是,在这两层间添加一个MQ层。

数据收集

分布式系统会产生海量级数据流,如:业务日志、监控数据、用户行为等。针对这些数据流进行实时或批量采集汇总,然后对这些数据流进行大数据
分析,这是当前互联网平台的必备技术。通过MQ完成此类数据收集是最好的选择。

3、常见MQ产品

ActiveMQ
ActiveMQ是使用Java语言开发一款MQ产品。早期很多公司与项目中都在使用。但现在的社区活跃度已经很低。现在的项目中已经很少使用了。
RabbitMQ
RabbitMQ是使用ErLang语言开发的一款MQ产品。其吞吐量较Kafka与RocketMQ要低,且由于其不是Java语言开发,所以公司内部对其实现定制化开发难度较大。
Kafka
Kafka是使用Scala/Java语言开发的一款MQ产品。其最大的特点就是高吞吐率常用于大数据领域的实时计算、日志采集等场景。其没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud Netçix,其仅支持RabbitMQ与Kafka。
RocketMQ
RocketMQ是使用Java语言开发的一款MQ产品。经过数年阿里双11的考验,性能与稳定性非常高。其没有遵循任何常见的MQ协议,而是使用自研协议。对于Spring Cloud Alibaba,其支持RabbitMQ、 Kafka,但提倡使用RocketMQ。
对比
关键词
ACTIVEMQ
RABBITMQ
KAFKA
ROCKETMQ
开发语言
Java
ErLang
Java
Java
单机吞吐量
万级
万级
十万级
十万级
Topic
- -
百级Topic时会影响系统吞吐量
千级Topic时会影响系统吞吐量
社区活跃度

4MQ常见协议

一般情况下MQ的实现是要遵循一些常规性协议的。常见的协议如下:
JMS
JMS,Java Messaging Service(Java消息服务)。是Java平台上有关MOM(Message Oriented Middleware,面向消息的中间件 PO/OO/AO)的技术规范,它便于消息系统中的Java应用程序进行消息交换,并且通过提供标准的产生、发送、接收消息的接口,简化企业应用的开发ActiveMQ是该协议的典型实现。
STOMP
STOMP,Streaming Text Orientated Message Protocol(面向流文本的消息协议),是一种MOM设计的简单文本协议。STOMP提供一个可互操作的连接格式,允许客户端与任意STOMP消息代理 (Broker)进行交互。ActiveMQ是该协议的典型实现,RabbitMQ通过插件可以支持该协议。

AMQP

AMQP,Advanced Message Queuing Protocol(高级消息队列协议),一个提供统一消息服务的应用层标准,是应用层协议的一个开放标准,是一种MOM设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。 RabbitMQ是该协议的典型实现。
MQTT
MQTT,Message Queuing Telemetry Transport(消息队列遥测传输),是IBM开发的一个即时通讯协议,是一种二进制协议,主要用于服务器和低功耗IoT(物联网)设备间的通信。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器的通信协议。RabbitMQ通过插件可以支持该协议。

二、RocketMQ概述

1RocketMQ简介

RocketMQ是一个统一消息引擎、轻量级数据处理平台。
RocketMQ是⼀款阿⾥巴巴开源的消息中间件。2016年11⽉28⽇,阿⾥巴巴向 Apache 软件基⾦会捐赠RocketMQ,成为 Apache 孵化项⽬。2017 年 9 ⽉ 25 ⽇,Apache 宣布 RocketMQ孵化成为 Apache 顶级项⽬(TLP ),成为国内⾸个互联⽹中间件在 Apache 上的顶级项⽬。
官⽹地址:http://rocketmq.apache.org

2RocketMQ发展历程

2007年,阿里开始五彩石项目,Notify作为项目中交易核心消息流转系统,应运而生。Notify系统是RocketMQ的雏形。
2010年,B2B大规模使用ActiveMQ作为阿里的消息内核。阿里急需一个具有海量堆积能力的消息系统。
2011年初,Kafka开源。淘宝中间件团队在对Kafka进行了深入研究后,开发了一款新的MQ,MetaQ。2012年,MetaQ发展到了v3.0版本,在它基础上进行了进一步的抽象,形成了RocketMQ,然后就将其进行了开源。
2015年,阿里在RocketMQ的基础上,又推出了一款专门针对阿里云上用户的消息系统Aliware MQ。
2016年双十一,RocketMQ承载了万亿级消息的流转,跨越了一个新的里程碑。11⽉28⽇,阿⾥巴巴向 Apache 软件基⾦会捐赠 RocketMQ,成为 Apache 孵化项⽬。
2017 年 9 ⽉ 25 ⽇,Apache 宣布 RocketMQ孵化成为 Apache 顶级项⽬(TLP ),成为国内⾸个互联⽹中间件在 Apache 上的顶级项⽬。

RocketMQ的安装与启动


一、基本概念

1 消息(Message

消息是指,消息系统所传输信息的物理载体,生产和消费数据的最小单位,每条消息必须属于一个主题。

2 主题(Topic

Topic表示一类消息的集合,每个主题包含若干条消息,每条消息只能属于一个主题,是RocketMQ进行消息订阅的基本单位。      topic:message 1:n                  message:topic 1:1
一个生产者可以同时发送多种Topic的消息;而一个消费者只对某种特定的Topic感兴趣,即只可以订阅和消费一种Topic的消息。 producer:topic 1:n                   consumer:topic 1:1

3 标签(Tag

为消息设置的标签,用于同一主题下区分不同类型的消息。来自同一业务单元的消息,可以根据不同业务目的在同一主题下设置不同标签。标签能够有效地保持代码的清晰度和连贯性,并优化RocketMQ提供的查询系统。消费者可以根据Tag实现对不同子主题的不同消费逻辑,实现更好的扩展性。
Topic是消息的一级分类,Tag是消息的二级分类。
Topic:货物
tag=上海
tag=江苏
tag=浙江
------- 消费者 ------
topic=货物 tag = 上海
topic=货物 tag = 上海|浙江
topic=货物 tag = *

4 队列(Queue

存储消息的物理实体。一个Topic中可以包含多个Queue,每个Queue中存放的就是该Topic的消息。一个Topic的Queue也被称为一个Topic中消息的分区(Partition)。
一个Topic的Queue中的消息只能被一个消费者组中的一个消费者消费。一个Queue中的消息不允许同一个消费者组中的多个消费者同时消费。

在学习参考其它相关资料时,还会看到一个概念:分片(Sharding)。分片不同于分区。在RocketMQ中,分片指的是存放相应Topic的Broker。每个分片中会创建出相应数量的分区,即Queue,每个Queue的大小都是相同的。

5 消息标识(MessageId/Key

RocketMQ中每个消息拥有唯一的MessageId,且可以携带具有业务标识的Key,以方便对消息的查询。不过需要注意的是,MessageId有两个:在生产者send()消息时会自动生成一个MessageId(msgId), 当消息到达Broker后,Broker也会自动生成一个MessageId(offsetMsgId)。msgId、offsetMsgId与key都 称为消息标识。
msgId:由producer端生成,其生成规则为:
producerIp + 进程pid + MessageClientIDSetter类的ClassLoader的hashCode + 当前时间 + AutomicInteger自增计数器
offsetMsgId:由broker端生成,其生成规则为:brokerIp + 物理分区的offset(Queue中的偏移量)
key:由用户指定的业务相关的唯一标识

二、系统架构

RocketMQ架构上主要分为四部分构成:

1 Producer

消息生产者,负责生产消息。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投递,投递的过程支持快速失败并且低延迟。
例如,业务系统产生的日志写入到MQ的过程,就是消息生产的过程
再如,电商平台中用户提交的秒杀请求写入到MQ的过程,就是消息生产的过程
RocketMQ中的消息生产者都是以生产者组(Producer Group)的形式出现的。生产者组是同一类生产者的集合,这类Producer发送相同Topic类型的消息。一个生产者组可以同时发送多个主题的消息。

2 Consumer

消息消费者,负责消费消息。一个消息消费者会从Broker服务器中获取到消息,并对消息进行相关业务处理。
例如,QoS系统从MQ中读取日志,并对日志进行解析处理的过程就是消息消费的过程。
再如,电商平台的业务系统从MQ中读取到秒杀请求,并对请求进行处理的过程就是消息消费的过程。
RocketMQ中的消息消费者都是以消费者组(Consumer Group)的形式出现的。消费者组是同一类消费者的集合,这类Consumer消费的是同一个Topic类型的消息。消费者组使得在消息消费方面,实现 负载均衡(将一个Topic中的不同的Queue平均分配给同一个Consumer Group的不同的
Consumer,注意,并不是将消息负载均衡)和容错(一个Consmer挂了,该Consumer Group中的其它Consumer可以接着消费原Consumer消费的Queue)的目标变得非常容易

消费者组中Consumer的数量应该小于等于订阅Topic的Queue数量。如果超出Queue数量,则多出的Consumer将不能消费消息。

不过,一个Topic类型的消息可以被多个消费者组同时消费。

注意,
1)消费者组只能消费一个Topic的消息,不能同时消费多个Topic消息
2)一个消费者组中的消费者必须订阅完全相同的Topic

3 Name Server

功能介绍
NameServer是一个Broker与Topic路由的注册中心,支持Broker的动态注册与发现。RocketMQ的思想来自于Kafka,而Kafka是依赖了Zookeeper的。所以,在RocketMQ的早期版本,即在MetaQ v1.0与v2.0版本中,也是依赖于Zookeeper的。从MetaQ v3.0,即RocketMQ开始去掉Zookeeper依赖,使用了自己的NameServer。主要包括两个功能:
Broker管理:接受Broker集群的注册信息并且保存下来作为路由信息的基本数据;提供心跳检测机制,检查Broker是否还存活。
路由信息管理:每个NameServer中都保存着Broker集群的整个路由信息和用于客户端查询的队列信息。Producer和Conumser通过NameServer可以获取整个Broker集群的路由信息,从而进行消息的投递和消费。
路由注册
NameServer通常也是以集群的方式部署,不过,NameServer是无状态的,即NameServer集群中的各个节点间是无差异的,各节点间相互不进行信息通讯。那各节点中的数据是如何进行数据同步的呢?在Broker节点启动时,轮询NameServer列表,与每个NameServer节点建立长连接,发起注册请求。在NameServer内部维护着⼀个Broker列表,用来动态存储Broker的信息。
注意,这是与其它像zkEurekaNacos等注册中心不同的地方。
这种NameServer的无状态方式,有什么优缺点:
优点:NameServer集群搭建简单,扩容简单。
缺点:对于Broker,必须明确指出所有NameServer地址。否则未指出的将不会去注册。也正因为如此,NameServer并不能随便扩容。因为,若Broker不重新配置,新增的NameServer对于Broker来说是不可见的,其不会向这个NameServer进行注册。
Broker节点为了证明自己是活着的,为了维护与NameServer间的长连接,会将最新的信息以心跳包的方式上报给NameServer,每30秒发送一次心跳。心跳包中包含 BrokerId、Broker地址(IP+Port)、 Broker名称、Broker所属集群名称等等。NameServer在接收到心跳包后,会更新心跳时间戳,记录这个Broker的最新存活时间。
路由剔除
由于Broker关机、宕机或网络抖动等原因,NameServer没有收到Broker的心跳,NameServer可能会将其从Broker列表中剔除。
NameServer中有⼀个定时任务,每隔10秒就会扫描⼀次Broker表,查看每一个Broker的最新心跳时间戳距离当前时间是否超过120秒,如果超过,则会判定Broker失效,然后将其从Broker
列表中剔除。
扩展:对于RocketMQ日常运维工作,例如Broker升级,需要停掉Broker的工作。OP需要怎么做?
OP需要将Broker的读写权限禁掉。一旦client(ConsumerProducer)broker发送请求,都会收到brokerNO_PERMISSION响应,然后client会进行对其它Broker的重试。
OP观察到这个Broker没有流量后,再关闭它,实现BrokerNameServer的移除。
OP:运维工程师
SRESite Reliability Engineer,现场可靠性工程师路由发现
RocketMQ的路由发现采用的是Pull模型。当Topic路由信息出现变化时,NameServer不会主动推送给客户端,而是客户端定时拉取主题最新的路由。
默认客户端每30秒会拉取一次最新的路由。
扩展:
1Push模型:推送模型。其实时性较好,是一个发布-订阅模型,需要维护一个长连接。而长连接的维护是需要资源成本的。该模型适合于的场景:实时性要求较高Client数量不多,Server数据变化较频繁
2Pull模型:拉取模型。存在的问题是,实时性较差。
3Long Polling模型:长轮询模型。其是对PushPull模型的整合,充分利用了这两种模型的优势,屏蔽了它们的劣势。
客户端NameServer选择策略
这里的客户端指的是ProducerConsumer
客户端在配置时必须要写上NameServer集群的地址,那么客户端到底连接的是哪个NameServer节点呢?客户端首先会生产一个随机数,然后再与NameServer节点数量取模,此时得到的就是所要连接的节点索引,然后就会进行连接。如果连接失败,则会采用round-robin策略,逐个尝试着去连接其它节点。
首先采用的是随机策略进行的选择,失败后采用的是轮询策略。
扩展:Zookeeper Client是如何选择Zookeeper Server的?
简单来说就是,经过两次Shufæe,然后选择第一台Zookeeper Server
详细说就是,将配置文件中的zk server地址进行第一次shufæe,然后随机选择一个。这个选择出的一般都是一个hostname。然后获取到该hostname对应的所有ip,再对这些ip进行第二shufæe,从shufæe过的结果中取第一个server地址进行连接。

4 Broker

功能介绍
Broker充当着消息中转角色,负责存储消息、转发消息。Broker在RocketMQ系统中负责接收并存储从生产者发送来的消息,同时为消费者的拉取请求作准备。Broker同时也存储着消息相关的元数据,包括消费者组消费进度偏移offset、主题、队列等。
Kafka 0.8版本之后,offset是存放在Broker中的,之前版本是存放在Zookeeper中的。
模块构成
下图为Broker Server的功能模块示意图。

Remoting Module:整个Broker的实体,负责处理来自clients端的请求。而这个Broker实体则由以下模块构成。
Client Manager:客户端管理器。负责接收、解析客户端(Producer/Consumer)请求,管理客户端。例如,维护Consumer的Topic订阅信息
Store Service:存储服务。提供方便简单的API接口,处理消息存储到物理硬盘和消息查询功能。
HA Service:高可用服务,提供Master Broker 和 Slave Broker之间的数据同步功能。
Index Service:索引服务。根据特定的Message key,对投递到Broker的消息进行索引服务,同时也提供根据Message Key对消息进行快速查询的功能。

集群部署

为了增强Broker性能与吞吐量,Broker一般都是以集群形式出现的。各集群节点中可能存放着相同Topic的不同Queue。不过,这里有个问题,如果某Broker节点宕机,如何保证数据不丢失呢?其解决方案是,将每个Broker集群节点进行横向扩展,即将Broker节点再建为一个HA集群,解决单点问题。Broker节点集群是一个主从集群,即集群中具有Master与Slave两种角色。
Master负责处理读写操作请求,Slave负责对Master中的数据进行备份。当Master挂掉了,Slave则会自动切换为Master去工作。所以这个Broker集群是主备集群。一个Master可以包含多个
Slave,但一个Slave只能隶属于一个Master。 Master与Slave 的对应关系是通过指定相同的BrokerName、不同的BrokerId 来确定的。BrokerId为0表示Master,非0表示Slave。
每个Broker与NameServer集群中的所有节点建立长连接,定时注册Topic信息到所NameServer。

5 工作流程

具体流程
1)启动NameServer,NameServer启动后开始监听端口,等待Broker、Producer、Consumer连接。
2)启动Broker时,Broker会与所有的NameServer建立并保持长连接,然后每30秒向NameServer定时发送心跳包。
3)发送消息前,可以先创建Topic,创建Topic时需要指定该Topic要存储在哪些Broker上,当然,在创建Topic时也会将Topic与Broker的关系写入到NameServer中。不过,这步是可选的,也可以在发送消息时自动创建Topic。
4)Producer发送消息,启动时先跟NameServer集群中的其中一台建立长连接,并从NameServer中获取路由信息,即当前发送的Topic消息的Queue与Broker的地址(IP+Port)的映射关系。然后根据算法策略从队选择一个Queue,与队列所在的Broker建立长连接从而向Broker发消息。当然,在获取到路由信息后,Producer会首先将路由信息缓存到本地,再每30秒从NameServer更新一次路由信息。
5)Consumer跟Producer类似,跟其中一台NameServer建立长连接,获取其所订阅Topic的路由信息,然后根据算法策略从路由信息中获取到其所要消费的Queue,然后直接跟Broker建立长连接,开始消费其中的消息。Consumer在获取到路由信息后,同样也会每30秒从NameServer更新一次路由信息。不过不同于Producer的是,Consumer还会向Broker发送心跳,以确保Broker的存活状态。
Topic的创建模式
手动创建Topic时,有两种模式:
集群模式:该模式下创建的Topic在该集群中,所有Broker中的Queue数量是相同的。
Broker模式:该模式下创建的Topic在该集群中,每个Broker中的Queue数量可以不同。
自动创建Topic时,默认采用的是Broker模式,会为每个Broker默认创建4个Queue。
/写队列
从物理上来讲,读/写队列是同一个队列。所以,不存在读/写队列数据同步问题。读/写队列是逻辑上进行区分的概念。一般情况下,读/写队列数量是相同的。例如,创建Topic时设置的写
队列数量为8,读队列数量为4,此时系统会创建8个Queue,分别是0 1 2 3 4 5 6 7。Producer会将消息写入到这8个队列,但Consumer只会消费0 1 2 3这4个队列中的消息,4 5 6 7中的消
息是不会被消费到的。 再如,创建Topic时设置的写队列数量为4,读队列数量为8,此时系统会创建8个Queue,分别是0 1 2 3 4 5 6 7。Producer会将消息写入到0 1 2 3 这4个队列,但
Consumer只会消费0 1 2 3 4 5 6 7这8个队列中的消息,但是4 5 6 7中是没有消息的。此时假设Consumer Group中包含两个Consuer,Consumer1消费0 1 2 3,而Consumer2消费4 5 6
7。但实际情况是,Consumer2是没有消息可消费的。 也就是说,当读/写队列数量设置不同时,总是有问题的。那么,为什么要这样设计呢?
其这样设计的目的是为了,方便Topic的Queue的缩容。
例如,原来创建的Topic中包含16个Queue,如何能够使其Queue缩容为8个,还不会丢失消息?可以动态修改写队列数量为8,读队列数量不变。此时新的消息只能写入到前8个队列,而消
费都消费的却是16个队列中的数据。当发现后8个Queue中的消息消费完毕后,就可以再将读队列数量动态设置为8。整 个缩容过程,没有丢失任何消息。 perm用于设置对当前创建Topic
的操作权限:2表示只写,4表示只读,6表示读写。

三、单击安装与启动

1、准备工作

软硬件需求
系统要求是64位的,JDK要求书1.8及以上版本的。
下载RocketMQ安装包

 

将下载的安装包上传到Linux

解压。

2、修改初始内存

修改runserver.sh
使用vim命令打开bin/runserver.sh文件。现将这些值修改为如下:

修改runbroker.sh 

使用vim命令打开bin/runbroker.sh文件。现将这些值修改为如下:

3、启动

启动NameServer 

4、发送/接收消息测试

发送消息
接收消息

 5、关闭Server

无论是关闭name server还是broker,都是使用bin/mqshutdown命令。

四、 控制台的安装与启动

RocketMQ有一个可视化的dashboard,通过该控制台可以直观的查看到很多数据。

1 下载

下载地址:https://github.com/apache/rocketmq-externals/releases

2 修改配置

修改其src/main/resources中的application.properties配置文件。
  • 原来的端口号为8080,修改为一个不常用的
  • 指定RocketMQ的name server地址

3 添加依赖

在解压目录rocketmq-console的pom.xml中添加如下JAXB依赖。
JAXB,Java Architechture for Xml Binding,用于XML绑定的Java技术,是一个业界标准,是一 项可以根据XML Schema生成Java类的技术
<dependency><groupId>javax.xml.bind</groupId><artifactId>jaxb-api</artifactId><version>2.3.0</version>
</dependency>
<dependency><groupId>com.sun.xml.bind</groupId><artifactId>jaxb-impl</artifactId><version>2.3.0</version>
</dependency>
<dependency><groupId>com.sun.xml.bind</groupId><artifactId>jaxb-core</artifactId><version>2.3.0</version>
</dependency>
<dependency><groupId>javax.activation</groupId><artifactId>activation</artifactId><version>1.1.1</version>
</dependency>

4 打包

在rocketmq-console目录下运行maven的打包命令。

 5 启动

 6 访问

 五、集群搭建理论

1 数据复制与刷盘策略

 复制策略

复制策略是Broker的Master与Slave间的数据同步方式。分为同步复制与异步复制:

  • 同步复制:消息写入master后,master会等待slave同步数据成功后才向producer返回成功ACK
  • 异步复制:消息写入master后,master立即向producer返回成功ACK,无需等待slave同步数据成功
异步复制策略会降低系统的写入延迟,RT变小,提高了系统的吞吐量
刷盘策略
刷盘策略指的是broker中消息的落盘方式,即消息发送到broker内存后消息持久化到磁盘的方式。分为 同步刷盘与异步刷盘:
  • 同步刷盘:当消息持久化到broker的磁盘后才算是消息写入成功。
  • 异步刷盘:当消息写入到broker的内存后即表示消息写入成功,无需等待消息持久化到磁盘。
1)异步刷盘策略会降低系统的写入延迟,RT变小,提高了系统的吞吐量
2)消息写入到Broker的内存,一般是写入到了PageCache
3)对于异步 刷盘策略,消息会写入到PageCache后立即返回成功ACK。但并不会立即做落盘操 作,而是当PageCache到达一定量时会自动进行落盘。

2 Broker集群模式

根据Broker集群中各个节点间关系的不同,Broker集群可以分为以下几类:
单Master
只有一个broker(其本质上就不能称为集群)。这种方式也只能是在测试时使用,生产环境下不能使用,因为存在单点问题。
多Master
broker集群仅由多个master构成,不存在Slave。同一Topic的各个Queue会平均分布在各个master节点 上。
优点:配置简单,单个Master宕机或重启维护对应用无影响,在磁盘配置为RAID10时,即使机器 宕机不可恢复情况下,由于RAID10磁盘非常可靠,消息也不会丢(异步刷盘丢失少量消息,同步 刷盘一条不丢),性能最高;
缺点:单台机器宕机期间,这台机器上未被消费的消息在机器恢复之前不可订阅(不可消费), 消息实时性会受到影响。
以上优点的前提是,这些Master都配置了RAID磁盘阵列。如果没有配置,一旦出现某Master宕机,则会发生大量消息丢失的情况。
多Master多Slave模式-异步复制
broker集群由多个master构成,每个master又配置了多个slave(在配置了RAID磁盘阵列的情况下,一 个master一般配置一个slave即可)。master与slave的关系是主备关系,即master负
责处理消息的读写请求,而slave仅负责消息的备份与master宕机后的角色切换。 异步复制即前面所讲的复制策略中的异步复制策略,即消息写入master成功后,master立即向producer返
回成功ACK,无需等待slave同步数据成功。 该模式的最大特点之一是,当master宕机后slave能够自动切换为master。不过由于slave从master的同步具有短暂的延迟(毫秒级),所以当
master宕机后,这种异步复制方式可能会存在少量消息的丢失问题。
Slave从Master同步的延迟越短,其可能丢失的消息就越少对于Master的RAID磁盘阵列,若使用的也是异步复制策略,同样也存在延迟问题,同样也可能会丢失消息。但RAID阵列的秘诀是微秒级的(因为是由硬盘支持的),所以其丢失的数据量会更少。
多Master多Slave模式-同步双写
该模式是多Master多Slave模式的同步复制实现。所谓同步双写,指的是消息写入master成功后, master会等待slave同步数据成功后才向producer返回成功ACK,即master与slave都要写
入成功后才会 返回成功ACK,也即双写。
该模式与异步复制模式相比,优点是消息的安全性更高,不存在消息丢失的情况。但单个消息的RT略高,从而导致性能要略低(大约低10%)。 该模式存在一个大的问题:对于目前的版
本,Master宕机后,Slave不会自动切换到Master。
最佳实践
一般会为Master配置RAID10磁盘阵列,然后再为其配置一个Slave。即利用了RAID10磁盘阵列的高效、安全性,又解决了可能会影响订阅的问题。
1)RAID磁盘阵列的效率要高于Master-Slave集群。因为RAID是硬件支持的。也正因为如此, 所以RAID阵列的搭建成本较高。
2)多Master+RAID阵列,与多Master多Slave集群的区别是什么?
  • 多Master+RAID阵列,其仅仅可以保证数据不丢失,即不影响消息写入,但其可能会影响到消息的订阅。但其执行效率要远高于多Master多Slave集群
  • 多Master多Slave集群,其不仅可以保证数据不丢失,也不会影响消息写入。其运行效率要低 于多Master+RAID阵列

六、磁盘阵列RAID(补充)

1 RAID历史
1988 年美国加州大学伯克利分校的 D. A. Patterson 教授等首次在论文 “A Case of Redundant Array of Inexpensive Disks” 中提出了 RAID 概念 ,即廉价冗余磁盘阵列( Redundant Array
of Inexpensive Disks )。由于当时大容量磁盘比较昂贵, RAID 的基本思想是将多个容量较小、相对廉价的磁盘进行有机组合,从而以较低的成本获得与昂贵大容量磁盘相当的容量、性
能、可靠性。随着磁盘成本和价格的不断降低, “廉价” 已经毫无意义。因此, RAID咨询委员会( RAID Advisory Board, RAB )决定用 “ 独立 ” 替代 “ 廉价 ” ,于时 RAID 变成了独立磁
盘冗余阵列( Redundant Array of Independent Disks )。但这仅仅是名称的变化,实质内容没有改变。
2 RAID等级
RAID这种设计思想很快被业界接纳, RAID技术作为高性能、高可靠的存储技术,得到了非常广泛的应用。 RAID主要利用镜像、数据条带和数据校验三种技术来获取高性能、可靠性、
容错能力和扩展性,根据对这三种技术的使用策略和组合架构,可以把 RAID分为不同的等级,以满足不同数据应用的需求。
D. A. Patterson 等的论文中定义了 RAID0 ~ RAID6 原始 RAID 等级。随后存储厂商又不断推出 RAID7 、 RAID10、RAID01 、 RAID50 、 RAID53 、 RAID100 等 RAID 等级,但这些并
无统一的标准。目前业界与学术界公认的标准是 RAID0 ~ RAID6 ,而在实际应用领域中使用最多的 RAID 等级是 RAID0 、 RAID1 、 RAID3 、 RAID5 、 RAID6 和 RAID10。 RAID每一
个等级代表一种实现方法和技术,等级之间并无高低之分。在实际应用中,应当根据用户的数据应用特点,综合考虑可用性、性能和成本来选择合适的RAID 等级,以及具体的实现方式。

3 关键技术

镜像技术
镜像技术是一种冗余技术,为磁盘提供数据备份功能,防止磁盘发生故障而造成数据丢失。对于 RAID 而言,采用镜像技术最典型地的用法就是,同时在磁盘阵列中产生两个完全相同的数
据副本,并且分布在两个不同的磁盘上。镜像提供了完全的数据冗余能力,当一个数据副本失效不可用时,外部系统仍可 正常访问另一副本,不会对应用系统运行和性能产生影响。而
且,镜像不需要额外的计算和校验,故障修复非常快,直接复制即可。镜像技术可以从多个副本进行并发读取数据,提供更高的读 I/O 性能,但不能并行写数据,写多个副本通常会导致一
定的 I/O 性能下降。 镜像技术提供了非常高的数据安全性,其代价也是非常昂贵的,需要至少双倍的存储空间。高成本限制了镜像的广泛应用,主要应用于至关重要的数据保护,这种场
合下的数据丢失可能会造成非常巨大的损失。
数据条带技术
数据条带化技术是一种自动将 I/O操作负载均衡到多个物理磁盘上的技术。更具体地说就是,将一块连续的数据分成很多小部分并把它们分别存储到不同磁盘上。这就能使多个进程可以并
发访问数据的多个不同部分,从而获得最大程度上的 I/O 并行能力,极大地提升性能。
数据校验技术
数据校验技术是指, RAID 要在写入数据的同时进行校验计算,并将得到的校验数据存储在 RAID 成员 磁盘中。校验数据可以集中保存在某个磁盘或分散存储在多个不同磁盘中。当其中一
部分数据出错时, 就可以对剩余数据和校验数据进行反校验计算重建丢失的数据。
数据校验技术相对于镜像技术的优势在于节省大量开销,但由于每次数据读写都要进行大量的校验运算,对计算机的运算速度要求很高,且必须使用硬件 RAID 控制器。在数据重建恢复方
面,检验技术比镜像技术复杂得多且慢得多。

4 RAID分类

从实现角度看, RAID 主要分为软 RAID、硬 RAID 以及混合 RAID 三种。
软 RAID
所有功能均有操作系统和 CPU 来完成,没有独立的 RAID 控制处理芯片和 I/O 处理芯片,效率自然最低。
硬 RAID
配备了专门的 RAID 控制处理芯片和 I/O 处理芯片以及阵列缓冲,不占用 CPU 资源。效率很高,但成 本也很高。
混合 RAID
具备 RAID 控制处理芯片,但没有专门的I/O 处理芯片,需要 CPU 和驱动程序来完成。性能和成本在软 RAID 和硬 RAID 之间。

5 常见RAID等级详解

JBOD

JBOD ,Just a Bunch of Disks,磁盘簇。表示一个没有控制软件提供协调控制的磁盘集合,这是 RAID 区别与 JBOD 的主要因素。 JBOD 将多个物理磁盘串联起来,提供一个巨大的逻辑磁盘。 JBOD 的数据存放机制是由第一块磁盘开始按顺序往后存储,当前磁盘存储空间用完后,再依次往后面的磁盘存储数据。 JBOD 存储性能完全等同于单块磁盘,而且也不提供数据安全保护。

其只是简单提供一种扩展存储空间的机制,JBOD可用存储容量等于所有成员磁盘的存储空间之和
JBOD 常指磁盘柜,而不论其是否提供 RAID 功能。不过,JBOD并非官方术语,官方称为Spanning。
RAID0
RAID0 是一种简单的、无数据校验的数据条带化技术。实际上不是一种真正的 RAID ,因为它并不提供任何形式的冗余策略。 RAID0 将所在磁盘条带化后组成大容量的存储空间,将数据
分散存储在所有磁盘中,以独立访问方式实现多块磁盘的并读访问。
理论上讲,一个由 n 块磁盘组成的 RAID0 ,它的读写性能是单个磁盘性能的 n 倍,但由于总线带宽等多种因素的限制,实际的性能提升低于理论值。由于可以并发执行 I/O 操作,总线带
宽得到充分利用。 再加上不需要进行数据校验,RAID0 的性能在所有 RAID 等级中是最高的。
RAID0 具有低成本、高读写性能、 100% 的高存储空间利用率等优点,但是它不提供数据冗余保护,一 旦数据损坏,将无法恢复。
应用场景:对数据的顺序读写要求不高,对数据的安全性和可靠性要求不高,但对系统性能要求很高的场景。
RAID0与JBOD相同点:
1)存储容量:都是成员磁盘容量总和
2)磁盘利用率,都是100%,即都没有做任何的数据冗余备份 RAID0与JBOD不同点: JBOD:数据是顺序存放的,一个磁盘存满后才会开始存放到下一个磁盘 RAID:各个磁盘中的数据
写入是并行的,是通过数据条带技术写入的。其读写性能是JBOD的n 倍

RAID1

RAID1 就是一种镜像技术,它将数据完全一致地分别写到工作磁盘和镜像磁盘,它的磁盘空间利用率为 50% 。 RAID1 在数据写入时,响应时间会有所影响,但是读数据的时候没有影响。 RAID1 提供了最佳的数据保护,一旦工作磁盘发生故障,系统将自动切换到镜像磁盘,不会影响使用。 RAID1是为了增强数据安全性使两块磁盘数据呈现完全镜像,从而达到安全性好、技术简单、管理方便。 RAID1 拥有完全容错的能力,但实现成本高。

应用场景:对顺序读写性能要求较高,或对数据安全性要求较高的场景。

RAID10

RAID10是一个RAID1与RAID0的组合体,所以它继承了RAID0的快速和RAID1的安全。

简单来说就是,先做条带,再做镜像。发即将进来的数据先分散到不同的磁盘,再将磁盘中的数据做
镜像。

RAID01

RAID01是一个RAID0与RAID1的组合体,所以它继承了RAID0的快速和RAID1的安全。

简单来说就是,先做镜像再做条带。即将进来的数据先做镜像,再将镜像数据写入到与之前数据不同的磁盘,即再做条带。

RAID10要比RAID01的容错率再高,所以生产环境下一般是不使用RAID01的。

七、集群搭建实践

1 集群架构

这里要搭建一个双主双从异步复制的Broker集群。为了方便,这里使用了两台主机来完成集群的搭建。这两台主机的功能与broker角色分配如下表。

序号 主机名/IP IP 功能 BROKER角色
1 rocketmqOS1 192.168.59.164 NameServer + Broker Master1 + Slave2
2 rocketmqOS2 192.168.59.165 NameServer + Broker Master2 + Slave1

2 克隆生成rocketmqOS1

克隆rocketmqOS主机,并修改配置。指定主机名为rocketmqOS1。

3 修改rocketmqOS1配置文件

配置文件位置 

要修改的配置文件在rocketMQ解压目录的conf/2m-2s-async目录中。

修改broker-a.properties 

将该配置文件内容修改为如下:

# 指定整个broker集群的名称,或者说是RocketMQ集群的名称
brokerClusterName=DefaultCluster
# 指定master-slave集群的名称。一个RocketMQ集群可以包含多个master-slave集群
brokerName=broker-a
# master的brokerId为0
brokerId=0
# 指定删除消息存储过期文件的时间为凌晨4点
deleteWhen=04
# 指定未发生更新的消息存储文件的保留时长为48小时,48小时后过期,将会被删除
fileReservedTime=48
# 指定当前broker为异步复制master
brokerRole=ASYNC_MASTER
# 指定刷盘策略为异步刷盘
flushDiskType=ASYNC_FLUSH
# 指定Name Server的地址
namesrvAddr=192.168.59.164:9876;192.168.59.165:9876

 修改broker-b-s.properties

将该配置文件内容修改为如下:

brokerClusterName=DefaultCluster
# 指定这是另外一个master-slave集群
brokerName=broker-b
# slave的brokerId为非0
brokerId=1
deleteWhen=04
fileReservedTime=48
# 指定当前broker为slave
brokerRole=SLAVE
flushDiskType=ASYNC_FLUSH
namesrvAddr=192.168.59.164:9876;192.168.59.165:9876
# 指定Broker对外提供服务的端口,即Broker与producer与consumer通信的端口。默认
10911。由于当前主机同时充当着master1与slave2,而前面的master1使用的是默认端口。这
里需要将这两个端口加以区分,以区分出master1与slave2
listenPort=11911
# 指定消息存储相关的路径。默认路径为~/store目录。由于当前主机同时充当着master1与
slave2,master1使用的是默认路径,这里就需要再指定一个不同路径
storePathRootDir=~/store-s
storePathCommitLog=~/store-s/commitlog
storePathConsumeQueue=~/store-s/consumequeue
storePathIndex=~/store-s/index
storeCheckpoint=~/store-s/checkpoint
abortFile=~/store-s/abort

分布式消息队列RocketMQ—个人笔记(尚硅谷老雷老师视频)相关推荐

  1. 分布式消息队列RocketMQ(一)安装与启动

    分布式消息队列RocketMQ 一.RocketMQ简介 RocketMQ(火箭MQ) 出自于阿里,后开源给apache成为apache的顶级开源项目之一,顶住了淘宝10年的 双11压力 是电商产品的 ...

  2. 分布式消息队列RocketMQ 快速入门

    分布式消息队列RocketMQ 一 RocketMQ概述 概述 1.MQ简介 MQ,Message Queue,是一种提供消息队列服务的中间件,是一套提供了消息生产.存储.消费全过程API的软件系统. ...

  3. 分布式消息队列RocketMQ继承SpringBoot

    一.介绍 Springboot 继承RocketMQ: com.alibaba.cloud spring-cloud-starter-stream-rocketmq 底层封装了 rocketmq-cl ...

  4. 分布式消息队列RocketMQ工作原理与应用(一)

    第 1 章 RocketMQ概述 一.MQ概述 1 .MQ简介 MQ,Message Queue,是一种提供消息队列服务的中间件,也称为消息中间件,是一套提供了消息生产.存储.消费全过程API的软件系 ...

  5. 分布式消息队列RocketMQ与Kafka架构上的巨大差异之1 -- 为什么RocketMQ要去除ZK依赖?...

    我们知道,在早期的RocketMQ版本中,是有依赖ZK的.而现在的版本中,是去掉了对ZK的依赖,转而使用自己开发的NameSrv. 并且这个NameSrv是无状态的,你可以随意的部署多台,其代码也非常 ...

  6. 分布式消息队列RocketMQ与Kafka的18项差异之“拨乱反正“之2

    在前1篇,我讨论了RocketMQ与Kakfa的对比中,几个不太严谨的地方.本着严谨的精神,不偏袒任何一方,本篇想分析一下RocketMQ在Kafka的基础上,的确做的几个改进.有不对之处,敬请指正. ...

  7. 分布式消息队列RocketMQ与Kafka的18项差异之“拨乱反正”

    我们知道,阿里的RocketMQ其实源自Kafka.同时网络上一直流传着1篇阿里中间件团队所写的RocketMQ与Kafka的18项差异的文章,并且被广泛转发.比如: http://blog.csdn ...

  8. 分布式消息队列RocketMQ(四):磁盘阵列RAID(补充)

    磁盘阵列RAID 1 RAID历史 2 RAID等级 3 关键技术 镜像技术 数据条带技术 数据校验技术 4 RAID分类 软 RAID 硬 RAID 混合 RAID 5 常见RAID等级详解 JBO ...

  9. linux一些常用指令(根据尚硅谷韩顺平老师视频所写,都是自己手打的)

    ` vim和vi的基本介绍 所有的 Linux 系统都会内建 vi 文本编辑器. Vim 具有程序编辑的能力,可以看做是Vi的增强版本,可以主动的以字体颜色辨别 语法的正确性,方便程序设计.代码补完. ...

最新文章

  1. python如何写生日快乐说说_高逼格祝福朋友生日快乐的说说
  2. c语言递归求塔移动次数,【C语言】Hanoi(汉诺)塔问题,求移动盘子的步骤(递归法)...
  3. android 插件化 模块化开发(apkplug)
  4. 控制科学对计算机能力的要求,0811控制科学与工程基本要求.pdf
  5. MySQL事务处理与事务隔离(锁机制)
  6. 中国互联网保险代理人生存状况调查报告
  7. linux内核字符驱动设备,Linux学习笔记——linux内核字符设备驱动-Go语言中文社区...
  8. 720. 词典中最长的单词
  9. c语言喂狗的作用,兽医忠告:用这几样食物喂狗,简直就是喂“砒霜”!
  10. 在IDEA中Java项目如何创建测试类(Junit测试工具)
  11. 北大青鸟软件工程师 ACCP6.0课程体系
  12. 负载均衡(Load Balance)
  13. (转)屈子:独立人格可与日月争光
  14. 用电脑看epub电子书用什么阅读软件好?
  15. python3.9安装numpy+mky_各种转码(bytes、string、base64、numpy array、io、BufferedReader )...
  16. C# BLE蓝牙开发之使用Windows.Devices.Bluetooth获取小米体重秤的体重
  17. Vue响应式原理详细讲解
  18. TDengine与InfluxDB对比测试
  19. 【电源专题】线性稳压器基础(线性稳压器是哪里线性了?)
  20. 威佐夫博弈matlab,51nod1185 威佐夫游戏 V2 (模拟乘法)

热门文章

  1. Win10注册表无法保存对权限所作的更改拒绝访问
  2. Java 诊断工具Arthas初识、安装及试用
  3. 虚拟主机的构建——基于域名、端口、IP
  4. 2022/4/18 天梯赛刷题记录2022天梯赛热身赛
  5. python入门教学反思_Python语言教学反思
  6. 谷歌创始人拉里·佩奇不为人知的故事
  7. Android获取根目录
  8. 史上最详细的新浪广告系统技术架构优化历程
  9. 朱光潜给青年的十二封信 之 谈读书
  10. 软考有什么用?最全软考详解