前置知识:

  • 【定义】矩阵
  • 线性方程组与矩阵的秩

前置定理 1 线性方程组 A x = b \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} Ax=b 有解的充分必要条件是 R ( A ) = R ( A , b ) R(\boldsymbol{A}) = R(\boldsymbol{A},\boldsymbol{b}) R(A)=R(A,b)。

证明见 “线性方程组与矩阵的秩”。

前置定理 2 矩阵方程 A X = b \boldsymbol{A} \boldsymbol{X} = \boldsymbol{b} AX=b 有解的充分必要条件是 R ( A ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(A,B)。

证明见 “线性方程组与矩阵的秩”。


1 向量和向量空间

定义 1(向量)  n n n 个有次序的数 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1​,a2​,⋯,an​ 所组成的数组称为 n n n 维向量,这 n n n 个数称为该向量的 n n n 个分量,第 i i i 个数 a i a_i ai​ 称为第 i i i 个分量。

定义 2 分量全为实数的向量称为 实向量,分量为复数的向量称为 复向量

n n n 维向量可以写成一行,称为行向量,也可以写成一列,称为列向量;规定行向量和列向量都按照矩阵的运算规则进行运算。因此 n n n 维行向量和 n n n 维度列向量总看作是两个不同的向量。

定义 3(向量空间)  n n n 维向量的全体所组成的集合
R n = { x = ( x 1 , x 2 , ⋯ , x n ) T ∣ x 1 , x 2 , ⋯ , x n ∈ R } \R^n = \{\boldsymbol{x} = (x_1,x_2,\cdots,x_n)^T \ | \ x_1,x_2,\cdots,x_n \in \R \} Rn={x=(x1​,x2​,⋯,xn​)T ∣ x1​,x2​,⋯,xn​∈R}
叫做 n n n 维向量空间。 n n n 维向量的集合
{ x = ( x 1 , x 2 , ⋯ , x n ) T ∣ a 1 x 1 + a 2 x 2 + ⋯ a n x n = b } \{ \boldsymbol{x} = (x_1,x_2,\cdots,x_n)^T \ | \ a_1 x_1 + a_2 x_2 + \cdots a_n x_n = b\} {x=(x1​,x2​,⋯,xn​)T ∣ a1​x1​+a2​x2​+⋯an​xn​=b}
叫做 n n n 维向量空间 R n \R^n Rn 中的 n − 1 n-1 n−1 维超平面

2 向量组、线性组合

定义 4(向量组) 若干个同维数的列向量(或同维数的行向量)所组成的集合叫做 向量组

矩阵的列向量组和行向量组都是只含有限个向量的向量组;反之,一个含有限个向量的向量组总可以构成一个矩阵。

定义 5(线性组合) 给定向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​,对于任何一组实数 k 1 , k 2 , ⋯ , k m k_1,k_2,\cdots,k_m k1​,k2​,⋯,km​,表达式
k 1 a 1 + k 2 a 2 + ⋯ k m a m k_1 \boldsymbol{a}_1 + k_2 \boldsymbol{a}_2 + \cdots k_m \boldsymbol{a}_m k1​a1​+k2​a2​+⋯km​am​
称为向量组 A A A 的一个 线性组合, k 1 , k 2 , ⋯ , k m k_1,k_2,\cdots,k_m k1​,k2​,⋯,km​ 称为这个线性组合的系数。

定义 6(线性表示) 给定向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​ 和向量 b \boldsymbol{b} b,如果存在一组数 λ 1 , λ 2 , ⋯ , λ m \lambda_1,\lambda_2,\cdots,\lambda_m λ1​,λ2​,⋯,λm​,使
b = λ 1 a 1 + λ 2 a 2 + ⋯ λ m a m \boldsymbol{b} = \lambda_1 \boldsymbol{a}_1 + \lambda_2 \boldsymbol{a}_2 + \cdots \lambda_m \boldsymbol{a}_m b=λ1​a1​+λ2​a2​+⋯λm​am​
则向量 b \boldsymbol{b} b 是向量组 A A A 的线性组合,这时称向量 b \boldsymbol{b} b 能由向量组 A A A 线性表示。

关于线性组合,有定理和证明如下:

定理 1 向量 b \boldsymbol{b} b 能由向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​ 线性表示的充分必要条件是矩阵 A = ( a 1 , a 2 , ⋯ , a m ) \boldsymbol{A} = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) A=(a1​,a2​,⋯,am​) 的秩等于矩阵 B = ( a 1 , a 2 , ⋯ , a m , b ) \boldsymbol{B} = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m,\boldsymbol{b}) B=(a1​,a2​,⋯,am​,b) 的秩。

证明 向量 b \boldsymbol{b} b 能由向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​ 线性表示,等价于方程组 x 1 a 1 + x 2 a 2 + ⋯ x m a m = b x_1 \boldsymbol{a}_1 + x_2 \boldsymbol{a}_2 + \cdots x_m \boldsymbol{a}_m = \boldsymbol{b} x1​a1​+x2​a2​+⋯xm​am​=b 有解。根据前置定理 1 可知,方程组 x 1 a 1 + x 2 a 2 + ⋯ x m a m = b x_1 \boldsymbol{a}_1 + x_2 \boldsymbol{a}_2 + \cdots x_m \boldsymbol{a}_m = \boldsymbol{b} x1​a1​+x2​a2​+⋯xm​am​=b 有解的充分必要条件是矩阵 A = ( a 1 , a 2 , ⋯ , a m ) \boldsymbol{A} = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) A=(a1​,a2​,⋯,am​) 的秩等于矩阵 B = ( a 1 , a 2 , ⋯ , a m , b ) \boldsymbol{B} = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m,\boldsymbol{b}) B=(a1​,a2​,⋯,am​,b) 的秩。得证。

3 向量组等价

定义 7(向量组等价) 设有两个向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​ 及 B : b 1 , b 2 , ⋯ , b l B:\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l B:b1​,b2​,⋯,bl​,若 B B B 组中的每个向量都能由向量组 A A A 线性表示,则称 向量组 B B B 能由向量组 A A A 线性表示。若向量组 A A A 与向量组 B B B 能互相线性表示,则称这两个 向量组等价

关于向量组等价,有定理和证明如下:

定理 2 向量组 B : b 1 , b 2 , ⋯ , b l B:\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l B:b1​,b2​,⋯,bl​ 能由向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​ 线性表示的充分必要条件是矩阵 A = ( a 1 , a 2 , ⋯ , a m ) \boldsymbol{A} = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) A=(a1​,a2​,⋯,am​) 的秩等于矩阵 ( A , B ) = ( a 1 , a 2 , ⋯ , a m , b 1 , b 2 , ⋯ , b l ) (\boldsymbol{A},\boldsymbol{B}) = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m,\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) (A,B)=(a1​,a2​,⋯,am​,b1​,b2​,⋯,bl​) 的秩,即 R ( A ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(A,B)。

证明 向量组 B : b 1 , b 2 , ⋯ , b l B:\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l B:b1​,b2​,⋯,bl​ 能由向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​ 线性表示,等价于存在矩阵 K m × l \boldsymbol{K}_{m \times l} Km×l​ 使 ( b 1 , b 2 , ⋯ , b l ) = ( a 1 , a 2 , ⋯ , a m ) K (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) \boldsymbol{K} (b1​,b2​,⋯,bl​)=(a1​,a2​,⋯,am​)K,即矩阵方程
( a 1 , a 2 , ⋯ , a m ) K = ( b 1 , b 2 , ⋯ , b l ) (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) \boldsymbol{K} = (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) (a1​,a2​,⋯,am​)K=(b1​,b2​,⋯,bl​)
有解。根据前置定理 2 可知,矩阵方程 ( a 1 , a 2 , ⋯ , a m ) K = ( b 1 , b 2 , ⋯ , b l ) (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) \boldsymbol{K} = (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) (a1​,a2​,⋯,am​)K=(b1​,b2​,⋯,bl​) 有解的充分必要条件矩阵 A = ( a 1 , a 2 , ⋯ , a m ) \boldsymbol{A} = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) A=(a1​,a2​,⋯,am​) 的秩等于矩阵 ( A , B ) = ( a 1 , a 2 , ⋯ , a m , b 1 , b 2 , ⋯ , b l ) (\boldsymbol{A},\boldsymbol{B}) = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m,\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) (A,B)=(a1​,a2​,⋯,am​,b1​,b2​,⋯,bl​) 的秩,即 R ( A ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(A,B)。得证。

由定理 2,可得推论和证明如下:

推论 向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​ 与向量组 B : b 1 , b 2 , ⋯ , b l B:\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l B:b1​,b2​,⋯,bl​ 等价的充分必要条件是
R ( A ) = R ( B ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{B}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(B)=R(A,B)
其中 A \boldsymbol{A} A 和 B \boldsymbol{B} B 是向量组 A A A 和 B B B 所构成的矩阵。

证明 根据向量组等价的定义,有:向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​ 与向量组 B : b 1 , b 2 , ⋯ , b l B:\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l B:b1​,b2​,⋯,bl​ 等价 ⇔ \Leftrightarrow ⇔ 向量组 A A A 和向量组 B B B 能互相线性表示。

根据定理 2,有:向量组 A A A 和向量组 B B B 能互相线性表示 ⇔ \Leftrightarrow ⇔ R ( A ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(A,B) 且 R ( B ) = R ( B , A ) R(\boldsymbol{B}) = R(\boldsymbol{B},\boldsymbol{A}) R(B)=R(B,A)。

因为 R ( A , B ) = R ( B , A ) R(\boldsymbol{A},\boldsymbol{B}) = R(\boldsymbol{B},\boldsymbol{A}) R(A,B)=R(B,A),所以有: R ( A ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(A,B) 且 R ( B ) = R ( B , A ) R(\boldsymbol{B}) = R(\boldsymbol{B},\boldsymbol{A}) R(B)=R(B,A) ⇔ \Leftrightarrow ⇔ R ( A ) = R ( B ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{B}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(B)=R(A,B)。

综上所述,得证。

定理 3 设向量组 B : b 1 , b 2 , ⋯ , b l B:\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l B:b1​,b2​,⋯,bl​ 能由向量组 A : a 1 , a 2 , ⋯ , a m A:\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m A:a1​,a2​,⋯,am​ 线性表示,则 R ( b 1 , b 2 , ⋯ , b l ) ≤ R ( a 1 , a 2 , ⋯ , a m ) R(\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) \le R(\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) R(b1​,b2​,⋯,bl​)≤R(a1​,a2​,⋯,am​)。

证明 记 A = ( a 1 , a 2 , ⋯ , a m ) \boldsymbol{A} = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m) A=(a1​,a2​,⋯,am​), B = ( b 1 , b 2 , ⋯ , b l ) \boldsymbol{B} = (\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_l) B=(b1​,b2​,⋯,bl​)。根据定理 2,有 R ( A ) = R ( A , B ) R(\boldsymbol{A}) = R(\boldsymbol{A},\boldsymbol{B}) R(A)=R(A,B),而 R ( B ) ≤ R ( A , B ) R(\boldsymbol{B}) \le R(\boldsymbol{A},\boldsymbol{B}) R(B)≤R(A,B),因此 R ( B ) ≤ R ( A ) R(\boldsymbol{B}) \le R(\boldsymbol{A}) R(B)≤R(A)。得证。

【定义】向量与向量组相关推荐

  1. 线性代数(4)—— 向量与向量组的线性相关性

    参考:张宇高等数学基础30讲 文章目录 1. 引入 2. 向量的概念和运算 3. 向量组的线性表出与线性相关 3.1 基础概念 3.2 线性相关.线性无关的进一步说明 4. 判别线性相关性的七大定理 ...

  2. 线性代数 向量长度_用户定义长度的向量| 使用Python的线性代数

    线性代数 向量长度 Prerequisite: Defining a vector 先决条件: 定义向量 Linear algebra is the branch of mathematics con ...

  3. 向量范数与矩阵范数定义和python向量矩阵运算示例

    向量范数与矩阵范数定义和python向量矩阵运算示例 1.范数(norm)的意义 要更好的理解范数,就要从函数.几何与矩阵的角度去理解.  我们都知道,函数与几何图形往往是有对应的关系,这个很好想象, ...

  4. c语言平面向量加法考点,平面向量的加减法怎么死活都不会?有没有什么口诀?例如:向量AB+BC=?向量OA-OB=?向量AB-CB=?有没有什么口诀!...

    设a=(x,y),b=(x',y'). 1.向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换 ...

  5. 闲聊机器人实例三:python实现小姜机器人(检索式chatbot_sentence_vec_by_word_词向量句向量)

    word2vec词向量构建生成句向量,再计算相似度,匹配问答库中的标准问题. 小姜机器人.python.tensorflow.chatbot.dialog.fuzzywuzzy.检索式.生成式.聊天. ...

  6. 【运筹学】线性规划 单纯形法 ( 原理 | 约定符号 | 目标系数矩阵 C | 目标函数变量矩阵 X | 约束方程常数矩阵 b | 系数矩阵 A | 向量 | 向量符号 | 向量 Pj )

    文章目录 I . 单纯形法 引入 II . 单纯形法 基本原理 III . 线性规划 标准形式 IV . 线性规划 标准形式 普通形式公式 V . 线性规划 标准形式 展开完整形式公式 VI . 线性 ...

  7. 向量与向量的叉积和向量与矩阵的叉积数学表达式与python 实现

    向量与向量的叉积 a=(123)(1)a= \left( \begin{matrix} 1 & 2 & 3 \\ \end{matrix} \right) \tag{1} a=(1​2 ...

  8. 57 SD配置-科目分配-定义客户账户分配组

    业务背景:定义客户账户分配组 事务码:SPRO SPRO路径:SPRO->销售和分销->基本功能->科目分配/成本->收入帐户确定->检查科目分配相关的主资料 第1步,S ...

  9. 56 SD配置-科目分配-定义物料科目设置组

    业务背景:定义物料科目设置组 事务码:SPRO SPRO路径:SPRO->销售和分销->基本功能->科目分配/成本->收入帐户确定->检查科目分配相关的主资料 第1步,S ...

最新文章

  1. 没有人能够解释为什么飞机可以待在空中
  2. Verilog设计实例(6)基于Verilog的各种移位寄存器实现
  3. 《Java 高并发》01 高并发基本概念
  4. 算法设计与分析——回溯法——旅行售货员问题
  5. 今天的考核题目: 你知道React和Vue的区别吗? skr,skr
  6. 就业信息网进行服务器维护,服务器安全武汉大学黄石理工学院就业信息网.pptx...
  7. 我的世界基岩版json_(1.8.0.13+)我的世界Minecraft【BE】基岩版 /function 使用教程
  8. 简单防止通过执行存储过程攻击服务器
  9. 省选专练HAOI2015树上操作
  10. 微服务架构下的数据一致性:概念及相关模式
  11. top 显示按照内存、CPU排序
  12. mybatis plus+spring boot 多租户动态数据源实现方案
  13. linux镜像ISO文件下载
  14. 2.5A双路电机驱动模块 正反转 PWM调速 双H桥 步进电机 超L298N
  15. 汽车零部件加工行业工业互联网智能工厂解决方案
  16. django-csrf_exempt
  17. cesium--entity
  18. 物联网:GPRS和NB-IOT
  19. 报错:For input string
  20. SSIS - Excel Destination无法接受大于255个字符长度的字符字段(转载)

热门文章

  1. qq批量登录软件_QQ群控高效管理,引流过万不是问题!
  2. 计算机网络之ip、子网掩码、网络号、主机号等概念解析
  3. 云原生架构的核心技术
  4. 不重视技术,何谈掌握核心技术?
  5. 点开瞅瞅,再来几道Python面试题吧,Python面试题No20
  6. 数字图像处理第五次作业——频域滤波器
  7. S7-1500系统内使用ET200S 1SI模块实现自由口通信
  8. 入职华为云计算工程师值得嘛?
  9. 关于localhost
  10. 什么是MySQL| 什么是数据库 | 数据库详解