学习目标:

学习通信技术的分集与复用


学习内容:

  1. 分集和复用是无线通信两项最基本的技术
    分集是把一个数据重复发送多次,以保证接收端能够正确收到。分集的方式有很多种。在传统的单发单收(SingleInput,SingleOutput;SISO)系统中,可以通过时间来实现分集。在多发多收(MultipleInput,MultipleOutput;MIMO)系统中,收发双方拥有多根天线,分集可以在不同的天线上实现,这种方法也叫做空间分集。例如,我们想把符号“X”从发送端传递给接收端,如果采用时间分集,只要在不同的时刻t1,t2,…分别发送X就可以了;若采用空间分集,则可以将X在不同的天线上进行发送。有两件事情需要注意:第一,分集的次数越多,传输的成功率就越高;第二,在空间上的分集,节省了时间资源。

    但是,有一个问题,其实不管在时间上还是空间上的分集,传输的效率并不高。比如在图2中,尽管我们有4根发送天线,但由于发送内容相同,一个时刻(t1)实际上只传输了一个符号(X)。但是,如果在不同的天线上发送不同的数据,我们一次就可以传输4个符号!–这种“在不同的天线上发送不同的数据”的发送思想也叫空间多路复用,V-BLAST,最早由贝尔实验室提出。
    “分集”告诉我们,把数据重复发送多次可以提高传输的可靠性,“复用”则说,把资源都用来发送不同的数据可以提高传输速率。
  2. 我们把衡量空间分集的标准叫做“分集增益”。
    有一个很简单的方法来看一个通信系统能提供多少分集增益,就是数数看从发送天线到接收天线间有多少条“可辨识”的传播路径。
    衡量复用的标准当然是看一个系统每时刻最多可以发送多少个不同的数据,也叫做“自由度”。
    举例来说,在一个1x2的系统中,发送端有一根天线,接收端有两根天线,如图表3所示。从天线A发出的X可以通过路径1到达B,也可以通过路径2到达C,这就表示1x2的系统有两条不同的传播路径,可以提供的最大分集增益是2。由于发送端只有一根天线,所以每个时刻只能发出一个数据,故它具有的自由度就是1。我们可以把这样的分析扩展到接收端有多个天线的情况:对一个有n根接收天线的SIMO系统来说,能够提供的最大分集增益是n,自由度是1。

    我们再来看看发送端配有多天线的情况。先考虑具有两根发送天线的MISO系统,如图表4所示。我们也能找出两条不同的传播路径,分别为A到C的路径1;B到C的路径2。所以2x1的MISO系统可以提供的最大分集增益也是2。现在发送端有两根发送天线,一次可以发出两个不同的符号,是否说明2x1的系统具有的自由度是2呢?

    这个问题挺有意思,需要我们特别的分析一下。假设在t1时刻,天线A上发送Y,天线B上发送X,那么接收天线C上得到的接收信号就是h1·Y+h2·X,其中h1和h2分别是传播路径1和2的信道增益。我们考虑相干解调,即h1和h2在接收端已知,现在,任何一个学过奥数的小学生也会大声的告诉你:“这里有两个未知数X和Y,但是只有一个方程,从一个方程中是无法解出两个未知数的!”所以,这就说明2x1的MISO系统无法支持2个自由度,它的自由度只能是1。
    我们把这个问题扩展一下,既然从一个方程中不能解出两个未知数,那么如果能再写出一个传输方程,不就可以解出这两个未知数了吗?其中一种提供额外方程的方法就是在接收端多加一根天线。这就是我们下面要讨论的2x2MIMO系统。

    类似于2x1系统的分析,我们在接收端加了一根天线D,在D上接收到的信号就是h3·Y+h4·X。现在,即使发送端发出两个不同信号,接收端也能轻松处理了。所以2x2的MIMO系统支持的自由度是2(这也是为什么V-BLAST系统要求接收天线数要大于等于发送天线数的原因)。我们不难数出,2x2的系统有4条不同的传播路径,故它能提供的最大分集增益是4。
  3. 结合了时间和空间的发送策略–空时编码
    回到刚才的问题,在2x1系统中,还有一种方法可以提供额外的传输方程,就是在时间上进行分集。比如我们在 t1和t2时刻重复发送X 和Y,接收端同样可以得到关于X和Y的两个传输方程。现在,我们把时间维度也引入到发送策略的设计中来,这种结合了时间和空间的发送策略,其实有一个响亮的名字–空时编码。当然,如何在时间和空间两个维度上分配好资源,却是一门艺术。
    当引入了时间维度后,我们可以设计以下的发送策略:天线A在时刻t1和t2上都发Y,天线B上都发X。我们用了两个时刻,一共传输了两个不同的数据,所以每个时刻传输的数据量,即获得的自由度是1(2/2=1)。刚才我们分析过,一个2x1系统的最大自由度就是1,换句话说,这种发送策略在自由度这个评价标准下获得了满分!我们再来考察它能得到多少分集增益。在t1和t2时刻,Y都从天线A上发送,它只能通过传播路径1到达C;同理,X也只能通过路径2到达C,每个数据都无法遍历所有的传播路径,只用到了其中一条,所以这种发送策略能获得的分集增益就是1。而2x1系统能提供的最大分集增益是2,看来,这种发送策略在分集增益上的得分并不理想。

    那么,如何才能获得所有的分集增益呢?这里有个小技巧,那就是,在t2时刻,从天线A上发送X,从天线B上发送Y。这样一来,X在两个时刻上,分别由传播路径2和1到达接收端,它能够遍历两条传播路径,所以这个发送策略获得的分集增益就是2。注意到,拥有图表7所示的空时编码结构,就是著名的Alamouti码(真正的Alamouti码是在t2时刻发送-Y和X,并且假设信道在t1和t2时刻是不变的,这样的设计是为了满足数学上的准则,本文描述的形式只为了分析Alamouti码的分集与复用特性)。

    到现在为止,我们已经知道一个具有特定天线配置的系统所拥有的最大分集增益和自由度是多少,我们也知道如何去分析一种发送策略,看它能够获得多少分集增益和自由度。接下来,我们就以2x2MIMO系统为例,分别考察下“重复编码”,“Alamouti编码”和“V-BLAST”三种发送策略。回忆一下,2x2MIMO系统拥有的最大分集增益是4,自由度是2。
    (1)重复编码。重复编码的策略是这样的:在时刻t1,天线A上发送X,天线B关闭,什么也不发;在时刻t2,天线B上发送X,天线A关闭。有了之前的分析经验,我们可以很快看出重复编码的性能:在t1和t2两个时刻,X分别由传播路径1,3和2,4到达接收端,所以重复编码获得的分集增益是4。但经过了两个时刻,只传送了一个符号X,它的自由度只有1/2。

(2)Alamouti编码。前面我们已经分析了Alamouti码在2x1系统下的性能,在2x2 MIMO系统中,分析类似。我们简单回顾一下:经过两个时刻,每个符号都可以遍历4条传播路径,故可以获得的分集增益是4;这两个时刻一共发送了两个不同的符号,所以获得的自由度是1。

(3)V-BLAST系统。在V-BLAST系统中,每个时刻,两根发送天线上都发送不同的数据,所以它获得的自由度是2。但分析V-BLAST系统的分集增益就没有那么简单了,因为这与它采用的接收方式有关(关于接收机设计的话题,后续会有专门的讨论,这里只简述其思想)。

如果采用ML接收机,它的中心思想是把接收信号投影到待检测信号的“方向”上。比如我们要检测X,它通过传播路径1和3到达接收端,那么,信号X的“方向”就只和这两条路径有关,我们只需要关注这两条路径就可以了。沿着这个思路,我们可以把V-BLAST系统分解成两个SIMO子系统。现在再进行分析就容易多了,很明显,每个信号都经历了两条传播路径,所以,使用ML接收机的V-BLAST系统,能获得的分集增益是2。

V-BLAST系统中,接收机还可以使用“解相关”的方式。顾名思义,它的中心思想就是将接收信号投影在干扰信号的“正交方向”上,把干扰消灭掉,那么剩下的不就是待检测信号了么。这里,我们将V-BLAST系统分解成两个MISO子系统,以便于分析。对于接收天线C,它同时收到了从路径1和路径2到达的信号X和Y。如果我们想检测X,就要消除干扰Y。同理,在接收天线D上,可以通过消除X来检测信号Y。当干扰都被消除掉以后,我们清晰的看到,V-BLAST系统变身为拥有两条独立平行子信道的系统,两条子信道间互不干扰。这时,每个信号只能经历1条传播路径,故采用干扰抵消(解相关)的V-BLAST系统可以获得的分集增益是1。

好了,到目前为止,我们已经分析了多种发送策略,但每种策略,都各有所长。比如Alamouti码可以获得最高的分集增益,而V-BLAST在自由度的评比上又当仁不让。那么,现实的MIMO通信系统中,是如何选择发送策略的呢?

发送策略 分集增益 自由度
2×2MIMO系统本身 4 2
重复编码 4 1/2
Alamouti编码 4 1
V-BLART(ML) 2 2
V-BLAST(解相关) 1 2

通常,一套完整的通信物理层协议会定义许多种发送方式。在实际通信过程中,收发双方会根据即时的通信条件和传播环境等因素,自适应的调整并选择最优的方式进行通信。比如,当无线信道条件很差的时候,会更多的用到分集技术,来保证通信的可靠性;当信道条件良好的时候,就会选择复用,每次多发一些数据,以提高传输的速率。


学习产出:

2009年,IEEE正式通过了802.11n标准,这是第一个将MIMO技术引入到无线局域网的标准。802.11n最大支持4天线,4个空间流(有几个空间流,就意味着能处理几路独立的数据,换句话说,空间流数可以理解为我们文章中提到的“自由度”)。在40MHz带宽下,如果选择调制编码方式为64QAM,5/6编码速率时,最高的传输速率可以达到540Mbit/s!这个速率是以前SISO设备 不敢想象的。经过几年的市场演进,现在,支持802.11n的设备已经随处可见了。我们也经常碰见这样的问题,当朋友买了配有2根,甚至3根天线的无线路由器产品,然后颇有怀疑的问:“这家伙有2根天线,上网速度是不是能翻一倍?至少感觉上是快了些…” 现在我们有了本文的学习经验以后,就可以很容易的回答这些问题:要想让传输速度有质的飞跃,不光发送设备要升级,接收设备也要升级。不然,即使你的AP有2根天线,可是连接到AP上的手机,电脑只有一根天线,就像我们分析过的2x1系统一样,整个系统的自由度也只有1,速度仍与SISO系统相当。iPad就是一个很好的例子,尽管它是802.11n设备,但只支持单空间流传输(自由度只有1),所以iPad的最高传输速率不会超过65Mbps。 但是,大家为什么还会感觉到速度变快了呢?因为影响用户体验的因素有很多。比如,2天线的无线路由即使无法提高传输速率的上限,但是它的信号覆盖范围却变大了。原来你在无线路由附近才能获得的上网速度,现在在卧室,甚至洗手间都可以达到,你自然会感觉速度变快了;或者由于2天线的设备通过分集技术提高了传输的可靠性,使重传的次数减少,你也会感觉速度变快了;同样,802.11n在MAC层效率的优化也会悄无声息的带给你更好的用户体验。

MIMO技术(一)分集与复用相关推荐

  1. MIMO技术杂谈(一):--浅谈分集与复用的权衡

            无线通信世界在过去的几十年中的发展简直是爆发式的,MIMO(多发多收)技术的出现更是将通信理论推向了另一个高峰.它已经成为当今乃至今后很多年内的主流物理层技术.所以,理解一些MIMO技 ...

  2. 一文帮你捋清MIMO和分集、复用的关系,顺便介绍几种常用的分集技术

    MIMO大规模多输入输出(multiple-in multiple-out),它利用多径效应来改善通信质量,收发双方使用多副同时工作的天线进行通信,采用复杂的信号处理技术来增强可靠性.传输范围和吞吐量 ...

  3. 计算机的空间复用技术应用,MIMO技术的介绍

    文章目录 MIMO的介绍 MIMO的介绍 MIMO即多入多出技术(Multiple-Input Multiple-Output)技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与 ...

  4. 【转载】MIMO技术杂谈(二):犹抱琵琶半遮面--MIMO信道中隐藏的秘密

    犹抱琵琶半遮面--MIMO信道中隐藏的秘密 无线通信中,最让人难以捉摸的,就是那看不见,摸不着的无线信道了.但是,正因为它的变化莫测,才让无线通信具有了独特的魅力.正如Tse在他的大作<无线通信 ...

  5. MIMO技术杂谈(二):犹抱琵琶半遮面--MIMO信道中隐藏的秘密

    犹抱琵琶半遮面--MIMO信道中隐藏的秘密          经典MIMO原理介绍,原文地址: http://bbs.c114.net/thread-668750-1-1.html         无 ...

  6. 《转》MIMO技术杂谈(二):犹抱琵琶半遮面--MIMO信道中隐藏的秘密

    转自: http://blog.csdn.net/rs_network/article/details/52968281 转自:http://bbs.c114.NET/thread-668750-1- ...

  7. [4G5G专题-47]:物理层-多天线MIMO技术、层映射、预编码矩阵

    目录 第1章 物理层架构 1.1 物理层内部功能协议栈 1.2 5G NR下行选项A 1.3 5G NR下行选项B 1.4 NR的物理层数据处理过程概述 第2章 多天线MIMO技术回顾 第3章 层映射 ...

  8. 《转》MIMO技术杂谈(三):知己知彼,百战不殆--信道信息的获取和应用

    转自:http://bbs.c114.net/thread-671320-1-1.html 上一回我们说到了变化莫测的MIMO信道,并且留下了一个美好的假设:"如果在发送数据之前,我们能够提 ...

  9. 无线网络MIMO技术浅谈

    随着笔记本的不断发展,英特尔第四代迅驰平台的发布,无线网络模块已经成为了平台标准,人们对于WLAN性能和速度方面有了更高的要求.而今年802.11n协议也将转正,各大厂商都加快了步伐,新品上市的速度和 ...

  10. 大规模MIMO技术概述

    大规模MIMO技术概述 一. 前言 本文主要介绍了大规模MIMO涉及的各个层面,包括理论.实现和原理样机的介绍,旨在对大规模MIMO技术有个总体的了解,不涉及具体的技术细节,包括各种算法等等. 二. ...

最新文章

  1. C#用XmlDocument操作XML
  2. 转变--一个平凡人的2017年总结及2018年展望
  3. CSharpGL(39)GLSL光照示例:鼠标拖动太阳(光源)观察平行光的漫反射和镜面反射效果...
  4. WebRTC 及点对点网络通信机制
  5. el-table中合并行加入图标
  6. 计算机维修与护理论文,计算机维修与维护方面论文选题 计算机维修与维护论文题目怎样定...
  7. Maven项目出现web.xml is missing and 《failOnMissingWebXml》is set to true,已解决
  8. go mysql stmt exec_Go语言操作MySQL
  9. paip.ecshop邮件模板修改一个密码找回 一个留言回复
  10. 时间复杂性为O (n2),是什么意思
  11. python eml解析_使用 python eml-parser 对 eml文件进行格式化
  12. OpenGL入门学习[二] 绘制简单的几何图形
  13. 中国苹果之都苹果快成熟了
  14. 4K电视与4K显示器区别
  15. 【牛客专项练习】计算机基础—网络基础
  16. 2017-03-27Oracle故障gc buffer busy acquire导致数据库不可用
  17. 01入门及简单应用-ReentrantReadWriteLock原理-AQS-并发编程(Java)
  18. 浅谈:网站SEO优化导航做法分析及技巧
  19. OF1.7中的p_rgh【翻译】
  20. 【Java】 # 使用java调用MySQL的函数、存储过程

热门文章

  1. 成都理工大学计算机类中外合办,成都理工大学代码
  2. 蓝桥杯 模块 低压音频功率放大器LM386
  3. noj [1480] 懒惰的风纪委Elaine (多重背包)
  4. 美团实习面(45min + 35min)
  5. 通过qmh启动qt应用
  6. 【零基础学Python】Day9 Python推导式
  7. kindle自定义屏保之自定义字帖
  8. excel如何快速查询银行卡号实名认证?
  9. TensorRT安装及使用--通用模型
  10. java连连看倒计时_javascrpit开发连连看记录-小游戏