为什么要使用线程池

首先,回顾线程池的相关知识,在 Java 诞生之初是没有线程池的概念的,而是先有线程,随着线程数的不断增加,人们发现需要一个专门的类来管理它们,于是才诞生了线程池。没有线程池的时候,每发布一个任务就需要创建一个新的线程,这样在任务少时是没有问题的,如代码所示。
/** 
* 描述:     单个任务的时候,新建线程来执行 
*/ 
public class OneTask { 
 
    public static void main(String[] args) { 
        Thread thread0 = new Thread(new Task());
        thread0.start();
    } 
 
    static class Task implements Runnable { 
 
        public void run() { 
           System.out.println("Thread Name: " + Thread.currentThread().getName());
        } 
    } 
}
在这段代码中,我们发布了一个新的任务并放入子线程中,然后启动子线程执行任务,这时的任务也非常简单,只是打印出当前线程的名字,这种情况下,打印结果显示 Thread Name: Thread-0,即我们当前子线程的默认名字。

我们来看一下任务执行流程,如图所示,主线程调用 start() 方法,启动了一个 t0 的子线程。这是在一个任务的场景下,随着我们的任务增多,比如现在有 10 个任务了,那么我们就可以使用 for 循环新建 10 个子线程,如代码所示。

/** 
* 描述:     for循环新建10个线程 
*/ 
public class TenTask { 
 
    public static void main(String[] args) { 
        for (int i = 0; i < 10; i++) { 
            Thread thread = new Thread(new Task());
            thread.start();
        } 
    } 
 
    static class Task implements Runnable { 
 
        public void run() { 
            System.out.println("Thread Name: " + Thread.currentThread().getName());
        } 
    } 
}
执行结果:

Thread Name: Thread-1
Thread Name: Thread-4
Thread Name: Thread-3
Thread Name: Thread-2
Thread Name: Thread-0
Thread Name: Thread-5
Thread Name: Thread-6
Thread Name: Thread-7
Thread Name: Thread-8
Thread Name: Thread-9
这里你会发现,打印出来的顺序是错乱的,比如 Thread-4 打印在了 Thread-3 之前,这是因为,虽然  Thread-3 比  Thread-4 先执行 start 方法,但是这并不代表  Thread-3 就会先运行,运行的顺序取决于线程调度器,有很大的随机性,这是需要我们注意的地方。

我们再看来下线程的执行流程,如图所示,主线程通过 for 循环创建了 t0~t9 这 10 个子线程,它们都可以正常的执行任务,但如果此时我们的任务量突然飙升到 10000 会怎么样?我们先来看看依然用 for 循环的实现方式:

for (int i = 0; i < 10000; i++) { 
    Thread thread = new Thread(new Task());
    thread.start();
}
如图所示,我们创建了 10000 个子线程,而 Java 程序中的线程与操作系统中的线程是一一对应的,此时假设线程中的任务需要一定的耗时才能够完成,便会产生很大的系统开销与资源浪费。

创建线程时会产生系统开销,并且每个线程还会占用一定的内存等资源,更重要的是我们创建如此多的线程也会给稳定性带来危害,因为每个系统中,可创建线程的数量是有一个上限的,不可能无限的创建。线程执行完需要被回收,大量的线程又会给垃圾回收带来压力。但我们的任务确实非常多,如果都在主线程串行执行,那效率也太低了,那应该怎么办呢?于是便诞生了线程池来平衡线程与系统资源之间的关系。

我们来总结下如果每个任务都创建一个线程会带来哪些问题:

第一点,反复创建线程系统开销比较大,每个线程创建和销毁都需要时间,如果任务比较简单,那么就有可能导致创建和销毁线程消耗的资源比线程执行任务本身消耗的资源还要大。
第二点,过多的线程会占用过多的内存等资源,还会带来过多的上下文切换,同时还会导致系统不稳定。

===

线程池解决问题思路
针对上面的两点问题,线程池有两个解决思路。

首先,针对反复创建线程开销大的问题,线程池用一些固定的线程一直保持工作状态并反复执行任务。

其次,针对过多线程占用太多内存资源的问题,解决思路更直接,线程池会根据需要创建线程,控制线程的总数量,避免占用过多内存资源。

如何使用线程池
线程池就好比一个池塘,池塘里的水是有限且可控的,比如我们选择线程数固定数量的线程池,假设线程池有 5 个线程,但此时的任务大于 5 个,线程池会让余下的任务进行排队,而不是无限制的扩张线程数量,保障资源不会被过度消耗。如代码所示,我们往 5 个线程的线程池中放入 10000 个任务并打印当前线程名字,结果会是怎么样呢?

/** 
* 描述:     用固定线程数的线程池执行10000个任务 
*/ 
public class ThreadPoolDemo { 
 
    public static void main(String[] args) { 
        ExecutorService service = Executors.newFixedThreadPool(5);
        for (int i = 0; i < 10000; i++) { 
            service.execute(new Task());
        } 
    System.out.println(Thread.currentThread().getName());
    } 
 
    static class Task implements Runnable { 
 
        public void run() { 
            System.out.println("Thread Name: " + Thread.currentThread().getName());
        } 
    } 
}
执行效果:
Thread Name: pool-1-thread-1
Thread Name: pool-1-thread-2
Thread Name: pool-1-thread-3
Thread Name: pool-1-thread-4
Thread Name: pool-1-thread-5
Thread Name: pool-1-thread-5
Thread Name: pool-1-thread-5
Thread Name: pool-1-thread-5
Thread Name: pool-1-thread-5
Thread Name: pool-1-thread-2
Thread Name: pool-1-thread-1
Thread Name: pool-1-thread-5
Thread Name: pool-1-thread-3
Thread Name: pool-1-thread-5
 
...
如打印结果所示,打印的线程名始终在 Thread Name: pool-1-thread-1~5 之间变化,并没有超过这个范围,也就证明了线程池不会无限制地扩张线程的数量,始终是这5个线程在工作。

创建了一个线程池,线程池中有 5 个线程,然后线程池将 10000 个任务分配给这 5 个线程,这 5 个线程反复领取任务并执行,直到所有任务执行完毕,这就是线程池的思想。

使用线程池的好处
使用线程池比手动创建线程主要有三点好处。

第一点,线程池可以解决线程生命周期的系统开销问题,同时还可以加快响应速度。因为线程池中的线程是可以复用的,我们只用少量的线程去执行大量的任务,这就大大减小了线程生命周期的开销。而且线程通常不是等接到任务后再临时创建,而是已经创建好时刻准备执行任务,这样就消除了线程创建所带来的延迟,提升了响应速度,增强了用户体验。
第二点,线程池可以统筹内存和 CPU 的使用,避免资源使用不当。线程池会根据配置和任务数量灵活地控制线程数量,不够的时候就创建,太多的时候就回收,避免线程过多导致内存溢出,或线程太少导致 CPU 资源浪费,达到了一个完美的平衡。
第三点,线程池可以统一管理资源。比如线程池可以统一管理任务队列和线程,可以统一开始或结束任务,比单个线程逐一处理任务要更方便、更易于管理,同时也有利于数据统计,比如我们可以很方便地统计出已经执行过的任务的数量。

===========常用线程池参数意义===========

线程池的参数

我们来看下线程池中各个参数的含义,如表所示线程池主要有 6 个参数,其中第 3 个参数由 keepAliveTime + 时间单位组成。我们逐一看下它们各自的含义,corePoolSize 是核心线程数,也就是常驻线程池的线程数量,与它对应的是 maximumPoolSize,表示线程池最大线程数量,当我们的任务特别多而 corePoolSize 核心线程数无法满足需求的时候,就会向线程池中增加线程,以便应对任务突增的情况。

线程创建的时机

接下来,我们来具体看下这两个参数所代表的含义,以及线程池中创建线程的时机。如上图所示,当提交任务后,线程池首先会检查当前线程数,如果此时线程数小于核心线程数,比如最开始线程数量为 0,则新建线程并执行任务,随着任务的不断增加,线程数会逐渐增加并达到核心线程数,此时如果仍有任务被不断提交,就会被放入 workQueue 任务队列中,等待核心线程执行完当前任务后重新从 workQueue 中提取正在等待被执行的任务。

此时,假设我们的任务特别的多,已经达到了 workQueue 的容量上限,这时线程池就会启动后备力量,也就是 maximumPoolSize 最大线程数,线程池会在 corePoolSize 核心线程数的基础上继续创建线程来执行任务,假设任务被不断提交,线程池会持续创建线程直到线程数达到 maximumPoolSize 最大线程数,如果依然有任务被提交,这就超过了线程池的最大处理能力,这个时候线程池就会拒绝这些任务,我们可以看到实际上任务进来之后,线程池会逐一判断 corePoolSize、workQueue、maximumPoolSize,如果依然不能满足需求,则会拒绝任务。

corePoolSize 与 maximumPoolSize

通过上面的流程图,我们了解了 corePoolSize 和 maximumPoolSize 的具体含义,corePoolSize 指的是核心线程数,线程池初始化时线程数默认为 0,当有新的任务提交后,会创建新线程执行任务,如果不做特殊设置,此后线程数通常不会再小于 corePoolSize ,因为它们是核心线程,即便未来可能没有可执行的任务也不会被销毁。随着任务量的增加,在任务队列满了之后,线程池会进一步创建新线程,最多可以达到 maximumPoolSize 来应对任务多的场景,如果未来线程有空闲,大于 corePoolSize 的线程会被合理回收。所以正常情况下,线程池中的线程数量会处在 corePoolSize 与 maximumPoolSize 的闭区间内。

“长工”与“临时工”

我们可以把 corePoolSize 与 maximumPoolSize 比喻成长工与临时工,通常古代一个大户人家会有几个固定的长工,负责日常的工作,而大户人家起初肯定也是从零开始雇佣长工的。假如长工数量被老爷设定为 5 人,也就对应了 corePoolSize,不管这 5 个长工是忙碌还是空闲,都会一直在大户人家待着,可到了农忙或春节,长工的人手显然就不够用了,这时就需要雇佣更多的临时工,这些临时工就相当于在 corePoolSize 的基础上继续创建新线程,但临时工也是有上限的,也就对应了 maximumPoolSize,随着农忙或春节结束,老爷考虑到人工成本便会解约掉这些临时工,家里工人数量便会从 maximumPoolSize 降到 corePoolSize,所以老爷家的工人数量会一致保持在 corePoolSize 和 maximumPoolSize 的区间。

在这里我们用一个动画把整个线程池变化过程生动地描述出来,比如线程池的 corePoolSize 为 5,maximumPoolSize 为 10,任务队列容量为 100,随着任务被提交,我们的线程数量会从 0 慢慢增长到 5,然后就不再增长了,新的任务会被放入队列中,直到队列被塞满,然后在 corePoolSize 的基础上继续创建新线程来执行队列中的任务,线程会逐渐增加到 maximumPoolSize, 然后线程数不再增加,如果此时仍有任务被不断提交,线程池就会拒绝任务。随着队列中任务被执行完,被创建的 10 个线程现在无事可做了,这时线程池会根据 keepAliveTime 参数来销毁线程,已达到减少内存占用的目的。

通过对流程图的理解和动画演示,我们总结出线程池的几个特点。

线程池希望保持较少的线程数,并且只有在负载变得很大时才增加线程。

线程池只有在任务队列填满时才创建多于 corePoolSize 的线程,如果使用的是无界队列(例如 LinkedBlockingQueue),那么由于队列不会满,所以线程数不会超过 corePoolSize。

通过设置 corePoolSize 和 maximumPoolSize 为相同的值,就可以创建固定大小的线程池。

通过设置 maximumPoolSize 为很高的值,例如 Integer.MAX_VALUE,就可以允许线程池创建任意多的线程。

keepAliveTime+时间单位

第三个参数是 keepAliveTime + 时间单位,当线程池中线程数量多于核心线程数时,而此时又没有任务可做,线程池就会检测线程的 keepAliveTime,如果超过规定的时间,无事可做的线程就会被销毁,以便减少内存的占用和资源消耗。如果后期任务又多了起来,线程池也会根据规则重新创建线程,所以这是一个可伸缩的过程,比较灵活,我们也可以用 setKeepAliveTime 方法动态改变 keepAliveTime 的参数值。

ThreadFactory

第四个参数是 ThreadFactory,ThreadFactory 实际上是一个线程工厂,它的作用是生产线程以便执行任务。我们可以选择使用默认的线程工厂,创建的线程都会在同一个线程组,并拥有一样的优先级,且都不是守护线程,我们也可以选择自己定制线程工厂,以方便给线程自定义命名,不同的线程池内的线程通常会根据具体业务来定制不同的线程名。

workQueue 和 Handler

最后两个参数是 workQueue 和 Handler,它们分别对应阻塞队列和任务拒绝策略,在后面的课时会对它们进行详细展开讲解。

引用:https://kaiwu.lagou.com/course/courseInfo.htm?courseId=16#/detail/pc?id=248

Java多线程学习六:使用线程池比手动创建线程好在那里以及常用线程池参数的意义相关推荐

  1. java线程学习,GitHub - zksir/thread: Java多线程学习

    Java多线程学习 threadcoreknowledge包----线程核心知识基础 createthreads包 创建线程 1.实现多线程的方法是1种还是2种还是4种? Oracle官方:2种,一种 ...

  2. Java多线程学习(二)---线程创建方式

    线程创建方式 摘要: 1. 通过继承Thread类来创建并启动多线程的方式 2. 通过实现Runnable接口来创建并启动线程的方式 3. 通过实现Callable接口来创建并启动线程的方式 4. 总 ...

  3. java多线程学习笔记。

    java多线程学习笔记 线程的优缺点: 多线程的好处: 充分利用多处理核心,提高资源的利用率和吞吐量. 提高接口的响应效率,异步系统工作. 线程的风险: 安全危险(竞争条件):什么坏事都没有发生.在没 ...

  4. 【转】Java 多线程学习

    原网址:https://www.cnblogs.com/yjd_hycf_space/p/7526608.html Java多线程学习(总结很详细!!!) 此文只能说是java多线程的一个入门,其实J ...

  5. 转:Java多线程学习(总结很详细!!!)

    Java多线程学习(总结很详细!!!) 此文只能说是java多线程的一个入门,其实Java里头线程完全可以写一本书了,但是如果最基本的你都学掌握好,又怎么能更上一个台阶呢? 本文主要讲java中多线程 ...

  6. Java多线程学习 (超详细总结)

    Java多线程学习 一.概要 二. JAVA 线程实现/创建方式 2.1 继承Thread 类 2.2 实现 Runnable 接口 2.3 Thread和Runnable的区别 2.4 总结 三.线 ...

  7. 艾伟:C#多线程学习(六) 互斥对象

    本系列文章导航 C#多线程学习(一) 多线程的相关概念 C#多线程学习(二) 如何操纵一个线程 C#多线程学习(三) 生产者和消费者 C#多线程学习(四) 多线程的自动管理(线程池) C#多线程学习( ...

  8. java多线程学习-java.util.concurrent详解

    http://janeky.iteye.com/category/124727 java多线程学习-java.util.concurrent详解(一) Latch/Barrier 博客分类: java ...

  9. C#多线程学习(六) 互斥对象

    C#多线程学习(六) 互斥对象 原文链接:http://kb.cnblogs.com/page/42533/ 本系列文章导航 C#多线程学习(一) 多线程的相关概念 C#多线程学习(二) 如何操纵一个 ...

最新文章

  1. Mybatis常见面试题(三)
  2. 解决在Tomcat上手动部署WAR服务器不能自动解压的方法
  3. Comparable接口和Comparator接口
  4. 深度学习搞CV?图像数据不足咋办?看这里!
  5. 广东计算机电子学校,广东省电子职业技术学校
  6. 关于java的取整/和取余%
  7. iconv 解决乱码问题
  8. 人体特征点检测解决方案
  9. 大道至简——第二章读后感
  10. 华为手机设置页面黑色_羡慕黑色背景照片?华为手机简单一招即可轻松拍摄
  11. Oracle EBS-SQL (OM-2):检查OM常用表
  12. mysql 8.0安装_MySQL5.7升级到8.0过程详解
  13. python爬虫电影资源_python爬虫批量获取最新电影资源
  14. jenkins集成sonar问题记录
  15. [linux]scp与服务器互传文件
  16. 摄像头采集图像本地HDMI输出延迟测试
  17. ECSHOP全部品牌页实现分页换页功能方法
  18. 事情往往不是想的那么糟
  19. 【VRP问题】基于NSGA算法求解多中心VRP问题matlab源码
  20. 计算机操作系统(第四版)第四章存储器管理—课后习题答案

热门文章

  1. 猪肉价格屡创新高 也许AI养猪是时候提上日程了
  2. OPPO Reno造乐节落地重庆 华语乐坛十大金曲榜单公布
  3. 中国男足孔已己版(转载,博大家一笑)
  4. Mysql的两种存储引擎以及区别
  5. Java中try、finally语句中有return时的执行情况
  6. pb通过对象名称调用对象_信号线名称自动关联Simulink信号对象
  7. live555编译、播放示例
  8. 初识openwrt(下)
  9. python怎么做软件程序_Revit二次开发python怎么做?人工智能python语言在BIM软件高效建模的运用尝试...
  10. 95-18-015-配置-AbstractBootstrapConfig