泄露

截断会使谱分析精度受到影响。如果时域信号是周期性的,而截断又按整周期取数,信号截断不会产生问题,因为每周期信号都能代表整个周期信号变化情况。若不是整周期截取数据,则截断将使信号波形两端产生突变,所截取的一段信号与原信号有很大不同,对这个被截断的时域信号进行谱分析时,本来集中的线谱将分散在该线谱临近的频带内,产生原信号中不存在的新的频率成分,在频谱分析技术上称这种效应为泄露。意思是原先集中的频率信息泄露到旁边频段去了,影响谱分析的精度,并干扰对频谱的识别。如果时域信号是随机信号,截断的结果在原先连续谱上将出现皱纹,即皱波效应,同样会影响频谱图的识别。信号截断产生泄露的原因是信号失真。因为截断相当于用一矩形窗函数和信号相乘,根据卷积定理,其频谱为两个时间函数谱的卷积,即在相应频率处进行频谱相乘,由于矩形函数的频谱是一个带旁瓣的无限带宽的频谱(与基频对应的图形称为主瓣,与谐波频率对应的称旁瓣),所以其中的谱线便被扩展成矩形信号谱窗(sin(wt)形函数)的形状。为了减少泄露误差,除采用整周期截断外,主要是加窗的办法。

加窗

加窗的主导想法是用比较光滑的窗函数代替截取信号样本的矩形窗函数,也就是对截断的时序信号进行特定的不等加权,使被截断的波形两端突变变得平滑些,以此压低谱窗的旁瓣。因为旁瓣泄露量最大,旁瓣小了泄露也相应减少了。用于信号处理的窗函数很多,工程上常用的是矩形窗、汉宁窗、汉明窗、余弦窗等,各种窗的特点如下说明:

l 矩形窗的特点是容易获得主瓣窄,但旁瓣大,尤其第一旁瓣太高,为主瓣的21%,所以泄露很大。

l 汉宁窗(Hanning),旁瓣很小,且衰减很快,主瓣比矩形窗的主瓣宽,泄露比矩形窗小很多。

l 汉明窗(Hamming),它由矩形窗和汉宁窗拼接而成,第一旁瓣很小,其它旁瓣衰减比汗宁窗慢,主瓣宽介于矩形窗和汉宁窗之间。

l 高斯钟形窗只有主瓣没有旁瓣,主瓣宽太大,其形状可调,为减少泄露,应使高斯窗变瘦。

l 余弦窗主瓣成三角形,旁瓣很小。

关于窗函数的选择,应考虑被分析信号的性质与处理要求。如果仅要求精度读出主瓣频率,而不考虑幅值精度,则可选用主瓣宽度比较窄而便于分辨的矩形窗,例如测量物体的自振频率等;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,例如汉宁窗、三角窗。

采样方式:采样方式有等时间间隔△t和等角位移△φ两种方式。一般情况下均采用等间隔采样方式,即固定采样频率采样。这种方式很容易实现无须键相位信号配合,对转速稳定的信号而言,这种方式可获得相当好的信号。但对机组转速波动信号的采集(如升降速信号)则不够好,一是有可能因设定的采样频率fs跟不上转速的变化而无法满足采样定理的要求,造成信号失真;二是由于转速变化,信号不再是周期性的,频谱变成连续谱,离散的谱线变成了谱带或者说谱线变胖,尤其高阶谐波,带宽按阶次比例改变,谱带更宽,谱图变得模糊不好分辨。这种模糊的谱线成分由于信号功率分散在一串谱线上,除使幅值有较大误差外,有时还会淹没旁瓣结构的细节,这对机组故障分析是不利的,如能改变采样的频率使其与转速的改变同步起来,则在谱图上显示的转速频率及其各次谐波就会明确地保持其确定的相互关系,谱线模糊的现象就可以消除。采用等角度触发同步采样,保证每周采样点数相同,便相当于信号的周期性质,从而可获得清晰的阶次谱图。

误报警:误报警的原因很多,一是传感器长期在苛刻的环境中运行造成传感器失灵,二是传感器安装不当或长期运行后松动、损伤,三是传感器本身被磁化,高频信号电缆绝缘下降,二次仪表导线松动或接地等也是误报警的原因。

信噪比:在采得的信号中,总是混有干扰成分的,此即所谓噪声,噪声过大,有用信号不突出,便难以做出准确的故障诊断。在技术上用信噪比来衡量信号与噪声的比例关系,用符号S/N表示。在做信号分析前,设法减少噪声干扰的影响,提高S/N是信号欲处理的一项主要内容。

提高信噪比:提高S/N的途径主要是时域平均和滤波两种方法。

滤波

滤波的主要目的是设法使噪声与有用信号分离,并予以抑制和消除,滤波有模拟滤波和数字滤波两种方式,共有低通、高通、带通和带阻等四种基本类型。各种滤波器的作用见下表:

模拟滤波:由模拟电路实现的滤波方法,在采样前先用模拟滤波器进行滤波,可以改善信号质量,减少后续数据处理的工作量和困难,如信号调节器DAS100中的抗混滤波器。

数字滤波:数字滤波的实质是对采集到的离散数据进行运算,增强或提升所需要的信号,压低或滤掉干扰成分,数字滤波有线性滤波和非线性滤波,线性滤波适用于有用信号和噪声呈线性叠加的情况,而非线性滤波则适用于两者为相乘(如幅值调制)和卷积(如冲击引发的传递响应)情况。卷积可通过傅立叶变换成乘积关系,而相乘可通过取对数变成相加关系,所以非线性滤波最终可化成线性滤波处理。

幅域处理

振动幅值作为振动强弱的一种度量,是设备故障诊断最基础的数据。

位移峰-峰值xp-p,反应振动位移双振幅的大小,主要用来判断振动大小和配合间隙之间的关系。

振动速度有效值VRMS,用以反映振动能量的大小,是判断振动烈度的参数。

简单幅值参数只是设备实际振动的量度,其数值既和故障有关又和工况(负荷、转速、仪表的灵敏度等)有关,实际上不能从其量值发现故障的发展,因此简单幅域参数只可供振动评价参考,对故障反映是不敏感的。

无量纲幅域参数:

波形指标(Shape Factor) Sf=XRMS/abs(X)

峰值指标(Crest Factor) Sf=Xmax/XRMS

脉冲指标(Impulse Factor) If=Xmax/abs(X)

裕度指标(Clearance Factor) CLf=Xmax/Xr

峭度指标(Kurtosis Value)Kv=beta/Xrms

以上各式中,XRMS 、abs(X)、Xmax、Xr、beta分别为振动有效值、绝对平均值、最大值、方根幅值、峭度。

以上参数的分子都是振动最大值或振动的高次方,突出了大振幅的作用,实质上是对大振幅的提升。同时通过选用与机组运行工况基本适应的比较稳定的振值作为基准值,以此来消除工况振动对参数的影响,提高故障的灵敏度。在这些参数中,峭度指标、裕度指标和脉冲指标对于冲击类故障比较敏感,特别是当故障早期发生时,它们有明显增加;但上升到一定程度后,随故障的逐渐发展,反而会下降,表明它们对早期故障有较高的敏感性,但稳定性不好。一般说,均方根值的稳定性较好,但对早期故障信号不敏感。所以,为了取得较好的效果,长将它们同时应用,以兼顾敏感性和稳定性。

时域变换

根据数据时间先后顺序进行变换。有两种情况,一是自相关函数变换,二是互相关函数变换。

自相关函数:自相关函数变换的目的是了解某时刻振动和先前另一时刻振动之间的依赖关系或相似情况,它用两时刻振动之积的平均值来表示。即

利用自相关函数可检验数据是否相关,其次可用于检验混于随机噪声中的周期信号。正常的机器,没有故障存在,振动是随机的,所以自相关函数是一窄脉冲。出现故障时,特别是有了周期性的冲击时,在时延为周期的整数倍数处,自相关函数就会出现较大的峰值。

互相关函数:与自相关函数相似互相关函数用以表示两组数据之间在时间顺序上的依赖关系,也用两个不同时刻振值乘积的平均值来表示,只有乘积的值来自两组不同数据。互相关函数可确定信号源所在位置,因信号在信道中传输的时延,可用互相关函数峰值的时延确定,另外自相关函数可检验出受通道噪声干扰的周期信号。

频域变换

将复杂的时间信号变换成以频率成分表示的结构形式就是频域变换。频域变换是机械设备故障诊断中使用的最为广泛的处理方法,因为故障发生,发展时往往会引起信号频率结构的变化,而通过频率信息的分析,可对许多故障原因作出解释和阐述。

谱图:频域变换以直角坐标形式表示得到的图形就是常说的谱图。频谱是总称,视频率成分的具体内容还有幅值谱、相位谱、功率谱、能量谱、倒频谱等类型。实现频谱变换的数学原理是傅立叶变换。对于周期信号,可通过傅立叶级数实现这种改照,得到离散的幅值谱,对于瞬态信号,可以通过傅立叶积分得到连续的频谱,与离散频谱对应,连续谱的谱值改用谱密度的概念。

功率谱密度函数:经过时间平均的信号平方的傅立叶变换得到的谱图。它表示振动功率随频率的分布情况。

倒频谱:倒频谱是近代信号处理技术中的一项新技术,可以分析复杂频谱图上的周期结构,分离和提取在密集调频信号中的周期成分。对于具有同族谐频或异族谐频和多成分边频等复杂信号的分析甚为有效。倒频谱变换是频域信号的傅立叶积分变换的再变换。时域信号x(t)经过傅立叶积分变换可转换为频率频率函数x(t)或功率谱密度函数Gx(f),如果频谱图上呈现出复杂的周期结构而难以分辨时,对功率谱密度取对数再进行一次傅立叶积分变换,可以使周期结构集中在成便于识别的谱线形式。第二次傅立叶变换的平方就是x(t)的倒功率谱Cp(q),其表达式为:

Cp(q)=abs{F[logGx(f)]}2

用文字表达就是倒功率谱是“对数功率谱的功率谱”

倒功率谱的开方即:

Cc(q)=sqrt[Cp(q)]=abs{F[logGx(f)]}

称幅值倒频谱,简称倒频谱,式中自变量 称倒频谱,其量纲为时间,一般以ms为单位q。q值大者称为低倒频率,表示谱图上的快速波动和密集的谐波频率;反之,q值小者称为低倒频率,表示谱图上的较慢波动和离散的谐波频率。

傅立

短时傅立叶变换

短时傅立叶变换(STFT)又称加窗傅立叶变换,它是将信号乘以一个滑动的窗函数然后对窗内信号h(t-tao)进行傅立叶变换,其定义为

STFTf(w,tao)=f(t)h*(t-tao)e-jwtdt在正负无穷之间的积分

式中,*表示复共轭,h(t)可采用Hamming,Hanning,Gabor等窗函数,随着τ的移动,得到一组原信号的“局部”频谱,从而能够反映非平稳信号的时-频分布特征。由式中可以看出STFT具有时域局部化功能,h(t-tao)在时域中是滑动窗,在频域中相当于带通滤波器;STFT可以分析非平稳动态信号,由于其基础是傅立叶变换,所以更适合分析准平稳信号;在STFT计算中,当选定h(t),则时频分辨率保持不变;但同样可以看出,STFT缺乏细化能力,反映强烈瞬变信号的非平稳性功能不足。STFT提供了同时在时域和频域内观察信号的方法,然而由于滑动窗口的长度对所有频率成分是固定的,因此STFT只能保证有限的精度,它对于剧烈变化的瞬变信号分析仍存在较大误差。

叶分析

傅立叶分析是将原始信号分解成不同频率的成分的正弦波,或者说是将时域信号转变为频域信号的一种数学方法。但是FFT分析有比较严重的缺陷

首先,时域信号变换为频域信号时丢失了时间信息,这样我们在观察频域图时就不能看到事件是在什么时间发生的。

另外,FFT是建立在信号的平稳假设基础上的,所以严格的说,FFT只适应于对平稳信号的分析。

其次,FFT分析其实质是一种线性变换方法,在大型旋转机械故障情况下会表现出较强的非线性,这时采用FFT分析对它们进行处理。

信号系统一些基本概念相关推荐

  1. 疫情下海外城市轨道交通信号系统项目集管理实践

    摘要:疫情不仅会影响海外城市轨道交通信号系统项目集的管理,而且会影响其最终收益.因此,信号系统企业在管理海外项目集时,必须科学有效地应对疫情,降低不良影响,获得高收益,从而稳定自身在海外的市场和自身的 ...

  2. dtmf信号系统的matlab仿真,dtmf信号系统的matlab仿真毕业设计

    dtmf信号系统的matlab仿真毕业设计 DTMF 信号系统的 Matlab 仿真摘 要双音多频(Dual Tone Multi Frequency, DTMF)信号是音频电话中的拨号信号,由美国 ...

  3. 关于信号系统的一些笔记

    一个系统的性质包括可加性和比例性,非时变特性,微分特性,因果性和稳定性. 因果性和稳定性是信号系统和控制系统常出现的概念.因果性是指输出变化不发生在输入变化之前的系统为因果系统,否则为非因果系统. 稳 ...

  4. 卷积神经网络中的卷积操作与信号系统中的卷积区别

    本科期间信号系统中学习到了卷积概念, 卷积是两个变量在某范围内相乘后求和的结果.如果卷积的变量是序列x(n)和h(n),则卷积的结果 其中星号*表示卷积.当时序n=0时,序列h(-i)是h(i)的时序 ...

  5. 城市轨道交通信号系统学习笔记(一)信号系统的特点

    信号设备的特点 一.城市轨道交通的特点 二.城市轨道交通对信号系统的要求 三.城市轨道交通信号系统的特点 城市轨道交通(包括地铁和轻轨)是现代化都市的重要基础设施.它安全.迅速.舒适.便利地在城市范围 ...

  6. 计算机技术在铁路中的应用,计算机容错技术在铁路信号系统中的应用

    计算机容错技术在铁路信号 系统中的应用 张仕雄 (武汉铁路职业技术学院,湖北武汉430063) 摘 要:着重介绍了计算机容错技术的概念及实现方法.阐述了硬件冗余的工作原理及其在铁路信号系统中的应用. ...

  7. 轨道交通信号系统的可靠性与安全性

    01.引言 城市轨道交通系统作为大容量公共交通工具,其安全性直接关系到广大乘客的生命安全,所以要求城市轨道交通系统在如此高的运行密度下,还要保证安全和高效率的运行.而信号系统作为保证列车安全.正点.便 ...

  8. 信号完整性的一些概念(2022年6月14日学习笔记)

    信号完整性的一些概念: 1.信号完整性(SignalIntegrity):就是指电路系统中信号的质量,如果在要求的时间内,信号能不失真地从源端传送到接收 端,我们就称该信号是完整的. 2.传输线(Tr ...

  9. 理解系统底层的概念是多么重要

    理解系统底层的概念是多么重要                                --趋势科技邹飞评<程序员的自我修养>   关于<程序员的自我修养>这本书,最初是在 ...

最新文章

  1. LSTM模型(基于Keras框架)预测特定城市或者区域的太阳光照量实战
  2. POSTMAN 数据关联
  3. 笔记-中项案例题-2018年下-整体管理
  4. 利用datagrip从hive导入csv数据(还没整理完)
  5. chrome导出插件
  6. 求两条轨迹间的hausdorff距离_「中考专题」瓜豆原理|第二讲 线段型路径轨迹...
  7. 小波说雨燕 第三季 构建 swift UI 之 度假清单 学习笔记
  8. python运维开发项目_GitHub上值得推荐的8个python 项目
  9. 深度学习行人检测简介_深度学习简介
  10. AFNetworking实现程序重新启动时的断点续传
  11. ue的 linux版本,UltraEdit Linux版RPM包 64位 V16.1.0.22
  12. 小程序无法获取用户头像的原因
  13. php导出word文档图片不显示,word文档几种不显示图片的解决方法
  14. 《东周列国志》第四十四回 叔詹据鼎抗晋侯 弦高假命犒秦军
  15. C# 实现的几种在线翻译
  16. 涛思数据创始人陶建辉荣获“2020中国开源杰出贡献人物”奖
  17. 64位计算机可以安装32位软件,【64位可以安装32位系统】64位安装32位的软件_64位系统改装32位系统...
  18. linux sli 提高效率,性能到底提升几倍?多卡SLI的效率测试
  19. Java中IO流体系
  20. C++中int、long和double的取值范围和最大值,以及32位和64位的差异解读

热门文章

  1. 2019年寒假 纪中培训总结
  2. vue3源码系列之计算属性computed原理剖析
  3. 为什么有了IP地址还要有MAC地址??
  4. Haproxy基础知识
  5. 攻读学位研究计划计算机专业,拟攻读博士学位的科学研究计划书模板
  6. 关于Springboot中跨域问题的解决(Response to preflight request doesn‘t pass access control check)
  7. PCIe PCS sublayer
  8. 计算机主机电源故障分析检测维修,电源故障:台式机电脑电源故障检修
  9. JOL(java object layout --java 对象内存布局)
  10. TCP粘包以及粘包处理