AI之循环神经网络基础

  • 循环神经网络的构造
  • 从零开始实现循环神经网络
    • one-hot向量
    • 初始化模型参数
    • 定义模型
    • 裁剪梯度
    • 定义预测函数
    • 困惑度
    • 定义模型训练函数
    • 训练模型并创作歌词
  • 循环神经网络的简洁实现
    • 定义模型
  • 例题

  本文介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型。目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量 H H H,用 H t H_{t} Ht​表示 H H H在时间步 t t t的值。 H t H_{t} Ht​的计算基于 X t X_{t} Xt​和 H t − 1 H_{t-1} Ht−1​,可以认为 H t H_{t} Ht​记录了到当前字符为止的序列信息,利用 H t H_{t} Ht​对序列的下一个字符进行预测。

循环神经网络的构造

  先看循环神经网络的具体构造。假设 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} Xt​∈Rn×d是时间步 t t t的小批量输入, H t ∈ R n × h \boldsymbol{H}_t \in \mathbb{R}^{n \times h} Ht​∈Rn×h是该时间步的隐藏变量,则:
H t = ϕ ( X t W x h + H t − 1 W h h + b h ) . \boldsymbol{H}_t = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} + \boldsymbol{b}_h). Ht​=ϕ(Xt​Wxh​+Ht−1​Whh​+bh​).
其中, W x h ∈ R d × h \boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h} Wxh​∈Rd×h, W h h ∈ R h × h \boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h} Whh​∈Rh×h, b h ∈ R 1 × h \boldsymbol{b}_{h} \in \mathbb{R}^{1 \times h} bh​∈R1×h, ϕ \phi ϕ函数是非线性激活函数。由于引入了 H t − 1 W h h \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} Ht−1​Whh​, H t H_{t} Ht​能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。由于 H t H_{t} Ht​的计算基于 H t − 1 H_{t-1} Ht−1​,上式的计算是循环的,使用循环计算的网络即循环神经网络(recurrent neural network)。
  在时间步 t t t,输出层的输出为:

O t = H t W h q + b q . \boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q. Ot​=Ht​Whq​+bq​.
其中 W h q ∈ R h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q} Whq​∈Rh×q, b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bq​∈R1×q。

从零开始实现循环神经网络

  先尝试从零开始实现一个基于字符级循环神经网络的语言模型,这里使用周杰伦的歌词作为语料,首先我们读入数据:

import torch
import torch.nn as nn
import time
import math
import sys
sys.path.append("/home/kesci/input")
import d2l_jay9460 as d2l
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

one-hot向量

  需要将字符表示成向量,这里采用one-hot向量。假设词典大小是 N N N,每次字符对应一个从 0 0 0到 N − 1 N-1 N−1的唯一的索引,则该字符的向量是一个长度为 N N N的向量,若字符的索引是 i i i,则该向量的第 i i i个位置为 1 1 1,其他位置为 0 0 0。下面分别展示了索引为0和2的one-hot向量,向量长度等于词典大小。

#scatter_()函数说明
scatter_(input,dim,index,value)
将value对应的值按照index确定的索引写入input张量中,其中索引是根据给定的dim(维度)来确定的。
"""
Args:
input:要进行scatter_填充的tensor
dim:在input张量进行scatter_填充的维度
index:input对应dim的填充索引,要小于对应填充维度的长度,且index维度要与input张量维度一致
value:填充值
"""
def one_hot(x, n_class, dtype=torch.float32):result = torch.zeros(x.shape[0], n_class, dtype=dtype, device=x.device)  # shape: (n, n_class)result.scatter_(1, x.long().view(-1, 1), 1)  # result[i, x[i, 0]] = 1return resultx = torch.tensor([0, 2])
x_one_hot = one_hot(x, vocab_size)
print(x_one_hot)
print(x_one_hot.shape)
print(x_one_hot.sum(axis=1))

输出结果:
tensor([[1., 0., 0., …, 0., 0., 0.],
[0., 0., 1., …, 0., 0., 0.]])
torch.Size([2, 1027])
tensor([1., 1.])
  每次采样的小批量的形状是(批量大小, 时间步数)。下面的函数将这样的小批量变换成数个形状为(批量大小, 词典大小)的矩阵,矩阵个数等于时间步数。也就是说,时间步 t t t的输入为 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} Xt​∈Rn×d,其中 n n n为批量大小, d d d为词向量大小,即one-hot向量长度(词典大小)。

def to_onehot(X, n_class):return [one_hot(X[:, i], n_class) for i in range(X.shape[1])]X = torch.arange(10).view(2, 5)
inputs = to_onehot(X, vocab_size)
print(len(inputs), inputs[0].shape)

输出结果:
5 torch.Size([2, 1027])

初始化模型参数

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
# num_inputs: d
# num_hiddens: h, 隐藏单元的个数是超参数
# num_outputs: qdef get_params():def _one(shape):param = torch.zeros(shape, device=device, dtype=torch.float32)nn.init.normal_(param, 0, 0.01)return torch.nn.Parameter(param)# 隐藏层参数W_xh = _one((num_inputs, num_hiddens))W_hh = _one((num_hiddens, num_hiddens))b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device))# 输出层参数W_hq = _one((num_hiddens, num_outputs))b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device))return (W_xh, W_hh, b_h, W_hq, b_q)

定义模型

函数rnn用循环的方式依次完成循环神经网络每个时间步的计算。

def rnn(inputs, state, params):# inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵W_xh, W_hh, b_h, W_hq, b_q = paramsH, = stateoutputs = []for X in inputs:H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)Y = torch.matmul(H, W_hq) + b_qoutputs.append(Y)return outputs, (H,)

函数init_rnn_state初始化隐藏变量,这里的返回值是一个元组。

def init_rnn_state(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device), )

  做个简单的测试来观察输出结果的个数(时间步数),以及第一个时间步的输出层输出的形状和隐藏状态的形状。

print(X.shape)
print(num_hiddens)
print(vocab_size)
state = init_rnn_state(X.shape[0], num_hiddens, device)
inputs = to_onehot(X.to(device), vocab_size)
params = get_params()
outputs, state_new = rnn(inputs, state, params)
print(len(inputs), inputs[0].shape)
print(len(outputs), outputs[0].shape)
print(len(state), state[0].shape)
print(len(state_new), state_new[0].shape)

输出结果:
torch.Size([2, 5])
256
1027
5 torch.Size([2, 1027])
5 torch.Size([2, 1027])
1 torch.Size([2, 256])
1 torch.Size([2, 256])

裁剪梯度

  循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设我们把所有模型参数的梯度拼接成一个向量 g \boldsymbol{g} g,并设裁剪的阈值是 θ \theta θ。裁剪后的梯度
min ⁡ ( θ ∥ g ∥ , 1 ) g \min\left(\frac{\theta}{\|\boldsymbol{g}\|}, 1\right)\boldsymbol{g} min(∥g∥θ​,1)g
的 L 2 L_2 L2​范数不超过 θ \theta θ。

def grad_clipping(params, theta, device):norm = torch.tensor([0.0], device=device)for param in params:norm += (param.grad.data ** 2).sum()norm = norm.sqrt().item()if norm > theta:for param in params:param.grad.data *= (theta / norm)

定义预测函数

  以下函数基于前缀prefix(含有数个字符的字符串)来预测接下来的num_chars个字符。这个函数稍显复杂,其中我们将循环神经单元rnn设置成了函数参数,这样在后面小节介绍其他循环神经网络时能重复使用这个函数。

def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state,num_hiddens, vocab_size, device, idx_to_char, char_to_idx):state = init_rnn_state(1, num_hiddens, device)output = [char_to_idx[prefix[0]]]   # output记录prefix加上预测的num_chars个字符for t in range(num_chars + len(prefix) - 1):# 将上一时间步的输出作为当前时间步的输入X = to_onehot(torch.tensor([[output[-1]]], device=device), vocab_size)# 计算输出和更新隐藏状态(Y, state) = rnn(X, state, params)# 下一个时间步的输入是prefix里的字符或者当前的最佳预测字符if t < len(prefix) - 1:output.append(char_to_idx[prefix[t + 1]])else:output.append(Y[0].argmax(dim=1).item())return ''.join([idx_to_char[i] for i in output])

  先测试一下predict_rnn函数。我们将根据前缀“分开”创作长度为10个字符(不考虑前缀长度)的一段歌词。因为模型参数为随机值,所以预测结果也是随机的。

predict_rnn('分开', 10, rnn, params, init_rnn_state, num_hiddens, vocab_size,device, idx_to_char, char_to_idx)

输出结果:
‘分开濡时食提危踢拆田唱母’

困惑度

  通常使用困惑度(perplexity)来评价语言模型的好坏。回忆一下“softmax回归”一文中交叉熵损失函数的定义。困惑度是对交叉熵损失函数做指数运算后得到的值。特别地,

  • 最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
  • 最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
  • 基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。

  显然,任何一个有效模型的困惑度必须小于类别个数。在本例中,困惑度必须小于词典大小vocab_size。

定义模型训练函数

  跟之前提到的模型训练函数相比,这里的模型训练函数有以下几点不同:

  • 使用困惑度评价模型。
  • 在迭代模型参数前裁剪梯度。
  • 对时序数据采用不同采样方法将导致隐藏状态初始化的不同。
def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,vocab_size, device, corpus_indices, idx_to_char,char_to_idx, is_random_iter, num_epochs, num_steps,lr, clipping_theta, batch_size, pred_period,pred_len, prefixes):if is_random_iter:data_iter_fn = d2l.data_iter_randomelse:#相邻采样会更易造成梯度爆炸data_iter_fn = d2l.data_iter_consecutiveparams = get_params()loss = nn.CrossEntropyLoss()for epoch in range(num_epochs):if not is_random_iter:  # 如使用相邻采样,在epoch开始时初始化隐藏状态state = init_rnn_state(batch_size, num_hiddens, device)l_sum, n, start = 0.0, 0, time.time()data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)for X, Y in data_iter:if is_random_iter:  # 如使用随机采样,在每个小批量更新前初始化隐藏状态state = init_rnn_state(batch_size, num_hiddens, device)else:  # 否则需要使用detach函数从计算图分离隐藏状态for s in state:s.detach_()# inputs是num_steps个形状为(batch_size, vocab_size)的矩阵inputs = to_onehot(X, vocab_size)# outputs有num_steps个形状为(batch_size, vocab_size)的矩阵(outputs, state) = rnn(inputs, state, params)# 拼接之后形状为(num_steps * batch_size, vocab_size)outputs = torch.cat(outputs, dim=0)# Y的形状是(batch_size, num_steps),转置后再变成形状为# (num_steps * batch_size,)的向量,这样跟输出的行一一对应y = torch.flatten(Y.T)# 使用交叉熵损失计算平均分类误差l = loss(outputs, y.long())# 梯度清0if params[0].grad is not None:for param in params:param.grad.data.zero_()l.backward()grad_clipping(params, clipping_theta, device)  # 裁剪梯度d2l.sgd(params, lr, 1)  # 因为误差已经取过均值,梯度不用再做平均l_sum += l.item() * y.shape[0]n += y.shape[0]if (epoch + 1) % pred_period == 0:print('epoch %d, perplexity %f, time %.2f sec' % (epoch + 1, math.exp(l_sum / n), time.time() - start))for prefix in prefixes:print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,num_hiddens, vocab_size, device, idx_to_char, char_to_idx))

训练模型并创作歌词

  现在可以训练模型了。首先,设置模型超参数。我们将根据前缀“分开”和“不分开”分别创作长度为50个字符(不考虑前缀长度)的一段歌词。我们每过50个迭代周期便根据当前训练的模型创作一段歌词。

num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']

下面采用随机采样训练模型并创作歌词。

train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,vocab_size, device, corpus_indices, idx_to_char,char_to_idx, True, num_epochs, num_steps, lr,clipping_theta, batch_size, pred_period, pred_len,prefixes)

输出结果:
epoch 50, perplexity 65.808092, time 0.78 sec
- 分开 我想要这样 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我
- 不分开 别颗去 一颗两 三颗四 一颗四 三颗四 一颗四 一颗四 一颗四 一颗四 一颗四 一颗四 一颗四 一
epoch 100, perplexity 9.794889, time 0.72 sec
- 分开 一直在美留 谁在它停 在小村外的溪边 默默等 什么 旧你在依旧 我有儿有些瘦 世色我遇见你是一场
- 不分开吗 我不能再想 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不
epoch 150, perplexity 2.772557, time 0.80 sec
- 分开 有直在不妥 有话它停留 蜥蝪横怕落 不爽就 旧怪堂 是属于依 心故之 的片段 有一些风霜 老唱盘
- 不分开吗 然后将过不 我慢 失些 如 静里回的太快 想通 却又再考倒我 说散 你想很久了吧?的我 从等
epoch 200, perplexity 1.601744, time 0.73 sec
- 分开 那只都它满在我面妈 捏成你的形状啸而过 或愿说在后能 让梭时忆对着轻轻 我想就这样牵着你的手不放开
- 不分开期 然后将过去 慢慢温习 让我爱上你 那场悲剧 是你完美演出的一场戏 宁愿心碎哭泣 再狠狠忘记 不是
epoch 250, perplexity 1.323342, time 0.78 sec
- 分开 出愿段的哭咒的天蛦丘好落 拜托当血穿永杨一定的诗篇 我给你的爱写在西元前 深埋在美索不达米亚平原
- 不分开扫把的胖女巫 用拉丁文念咒语啦啦呜 她养的黑猫笑起来像哭 啦啦啦呜 我来了我 在我感外的溪边河口默默
接下来采用相邻采样训练模型并创作歌词。

train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,vocab_size, device, corpus_indices, idx_to_char,char_to_idx, False, num_epochs, num_steps, lr,clipping_theta, batch_size, pred_period, pred_len,prefixes)

输出结果:
epoch 50, perplexity 60.294393, time 0.74 sec
- 分开 我想要你想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我
- 不分开 我想要你 你有了 别不我的可爱女人 坏坏的让我疯狂的可爱女人 坏坏的让我疯狂的可爱女人 坏坏的让我
epoch 100, perplexity 7.141162, time 0.72 sec
- 分开 我已要再爱 我不要再想 我不 我不 我不要再想 我不 我不 我不要 爱情我的见快就像龙卷风 离能开
- 不分开柳 你天黄一个棍 后知哈兮 快使用双截棍 哼哼哈兮 快使用双截棍 哼哼哈兮 快使用双截棍 哼哼哈兮
epoch 150, perplexity 2.090277, time 0.73 sec
- 分开 我已要这是你在著 不想我都做得到 但那个人已经不是我 没有你在 我却多难熬 没有你在我有多难熬多
- 不分开觉 你已经离 我想再好 这样心中 我一定带我 我的完空 不你是风 一一彩纵 在人心中 我一定带我妈走
epoch 200, perplexity 1.305391, time 0.77 sec
- 分开 我已要这样牵看你的手 它一定实现它一定像现 载著你 彷彿载著阳光 不管到你留都是晴天 蝴蝶自在飞力
- 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该好好生活 我该好好生
epoch 250, perplexity 1.230800, time 0.79 sec
- 分开 我不要 是你看的太快了悲慢 担心今手身会大早 其么我也睡不着 昨晚梦里你来找 我才 原来我只想
- 不分开觉 你在经离开我 不知不觉 你知了有节奏 后知后觉 后知了一个秋 后知后觉 我该好好生活 我该好好生

循环神经网络的简洁实现

定义模型

  使用Pytorch中的nn.RNN来构造循环神经网络。在本文中,主要关注nn.RNN的以下几个构造函数参数:
input_size - The number of expected features in the input x
hidden_size – The number of features in the hidden state h
nonlinearity – The non-linearity to use. Can be either ‘tanh’ or ‘relu’. Default: ‘tanh’
batch_first – If True, then the input and output tensors are provided as (batch_size, num_steps, input_size). Default: False
  这里的batch_first决定了输入的形状,我们使用默认的参数False,对应的输入形状是 (num_steps, batch_size, input_size)。

forward函数的参数为:
input of shape (num_steps, batch_size, input_size): tensor containing the features of the input sequence.
h_0 of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.
forward函数的返回值是:
output of shape (num_steps, batch_size, num_directions * hidden_size): tensor containing the output features (h_t) from the last layer of the RNN, for each t.
h_n of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the hidden state for t = num_steps.
  现在构造一个nn.RNN实例,并用一个简单的例子来看一下输出的形状。

rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens)
num_steps, batch_size = 35, 2
X = torch.rand(num_steps, batch_size, vocab_size)
state = None
Y, state_new = rnn_layer(X, state)
print(Y.shape, state_new.shape)

输出结果:
torch.Size([35, 2, 256]) torch.Size([1, 2, 256])
  定义一个完整的基于循环神经网络的语言模型。

stack函数说明:

堆叠函数 stack((a,b), axis=0)
功能:
根据axis的不同,对多个矩阵进行堆叠。
axis参数的含义:
axis指明了要增加哪一个维度。
axis=0,增加第一维度。实际是不切开,两个堆一起。
axis=1,增加第二维度。实际是横着切开,对应行横着堆。
axis=2,增加第三维度。实际是竖着切开,对应行竖着堆。
class RNNModel(nn.Module):def __init__(self, rnn_layer, vocab_size):super(RNNModel, self).__init__()self.rnn = rnn_layerself.hidden_size = rnn_layer.hidden_size * (2 if rnn_layer.bidirectional else 1) self.vocab_size = vocab_sizeself.dense = nn.Linear(self.hidden_size, vocab_size)def forward(self, inputs, state):# inputs.shape: (batch_size, num_steps)X = to_onehot(inputs, vocab_size)X = torch.stack(X)  # X.shape: (num_steps, batch_size, vocab_size)hiddens, state = self.rnn(X, state)hiddens = hiddens.view(-1, hiddens.shape[-1])  # hiddens.shape: (num_steps * batch_size, hidden_size)output = self.dense(hiddens)return output, state

  类似的,我们需要实现一个预测函数,与前面的区别在于前向计算和初始化隐藏状态。

def predict_rnn_pytorch(prefix, num_chars, model, vocab_size, device, idx_to_char,char_to_idx):state = Noneoutput = [char_to_idx[prefix[0]]]  # output记录prefix加上预测的num_chars个字符for t in range(num_chars + len(prefix) - 1):X = torch.tensor([output[-1]], device=device).view(1, 1)(Y, state) = model(X, state)  # 前向计算不需要传入模型参数if t < len(prefix) - 1:output.append(char_to_idx[prefix[t + 1]])else:output.append(Y.argmax(dim=1).item())return ''.join([idx_to_char[i] for i in output])

使用权重为随机值的模型来预测一次。

model = RNNModel(rnn_layer, vocab_size).to(device)
predict_rnn_pytorch('分开', 10, model, vocab_size, device, idx_to_char, char_to_idx)

输出结果:
‘分开胸呵以轮轮轮轮轮轮轮’

接下来实现训练函数,这里只使用了相邻采样。

def train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,corpus_indices, idx_to_char, char_to_idx,num_epochs, num_steps, lr, clipping_theta,batch_size, pred_period, pred_len, prefixes):loss = nn.CrossEntropyLoss()optimizer = torch.optim.Adam(model.parameters(), lr=lr)model.to(device)for epoch in range(num_epochs):l_sum, n, start = 0.0, 0, time.time()data_iter = d2l.data_iter_consecutive(corpus_indices, batch_size, num_steps, device) # 相邻采样state = Nonefor X, Y in data_iter:if state is not None:# 使用detach函数从计算图分离隐藏状态if isinstance (state, tuple): # LSTM, state:(h, c)  state[0].detach_()state[1].detach_()else: state.detach_()(output, state) = model(X, state) # output.shape: (num_steps * batch_size, vocab_size)y = torch.flatten(Y.T)l = loss(output, y.long())optimizer.zero_grad()l.backward()grad_clipping(model.parameters(), clipping_theta, device)optimizer.step()l_sum += l.item() * y.shape[0]n += y.shape[0]if (epoch + 1) % pred_period == 0:print('epoch %d, perplexity %f, time %.2f sec' % (epoch + 1, math.exp(l_sum / n), time.time() - start))for prefix in prefixes:print(' -', predict_rnn_pytorch(prefix, pred_len, model, vocab_size, device, idx_to_char,char_to_idx))

训练模型。

num_epochs, batch_size, lr, clipping_theta = 250, 32, 1e-3, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,corpus_indices, idx_to_char, char_to_idx,num_epochs, num_steps, lr, clipping_theta,batch_size, pred_period, pred_len, prefixes)

输出结果:
epoch 50, perplexity 9.405654, time 0.52 sec
- 分开始一起 三步四步望著天 看星星 一颗两颗三颗四颗 连成线背著背默默许下心愿 一枝杨柳 你的那我 在
- 不分开 爱情你的手 一人的老斑鸠 腿短毛不多 快使用双截棍 哼哼哈兮 快使用双截棍 哼哼哈兮 快使用双截棍
epoch 100, perplexity 1.255020, time 0.54 sec
- 分开 我人了的屋我 一定令它心仪的母斑鸠 爱像一阵风 吹完美主 这样 还人的太快就是学怕眼口让我碰恨这
- 不分开不想我多的脑袋有问题 随便说说 其实我早已经猜透看透不想多说 只是我怕眼泪撑不住 不懂 你的黑色幽默
epoch 150, perplexity 1.064527, time 0.53 sec
- 分开 我轻外的溪边 默默在一心抽离 有话不知不觉 一场悲剧 我对不起 藤蔓植物的爬满了伯爵的坟墓 古堡里
- 不分开不想不多的脑 有教堂有你笑 我有多烦恼 没有你烦 有有样 别怪走 快后悔没说你 我不多难熬 我想就
epoch 200, perplexity 1.033074, time 0.53 sec
- 分开 我轻外的溪边 默默在一心向昏 的愿 古无着我只能 一个黑远 这想太久 这样我 不要再是你打我妈妈
- 不分开你只会我一起睡著 样 娘子却只想你和汉堡 我想要你的微笑每天都能看到 我知道这里很美但家乡的你更美
epoch 250, perplexity 1.047890, time 0.68 sec
- 分开 我轻多的漫 却已在你人演 想要再直你 我想要这样牵着你的手不放开 爱可不可以简简单单没有伤害 你
- 不分开不想不多的假 已无能为力再提起 决定中断熟悉 然后在这里 不限日期 然后将过去 慢慢温习 让我爱上

例题

1.关于循环神经网络描述错误的是:
1、在同一个批量中,处理不同语句用到的模型参数 W h W_{h} Wh​和 b h b_{h} bh​ 是一样的
2、循环神经网络处理一个长度为T的输入序列,需要维护T组模型参数
3、各个时间步的隐藏状态 H t H_{t} Ht​不能并行计算
4、可以认为第tt个时间步的隐藏状态 H t H_t Ht​包含截止到第t个时间步的序列的历史信息
答案解释
选项1:批量训练的过程中,参数是以批为单位更新的,每个批次内模型的参数都是一样的。
选项2:循环神经网络通过不断循环使用同样一组参数来应对不同长度的序列,故网络的参数数量与输入序列长度无关。
选项3:隐藏状态 H t H_t Ht​的值依赖于 H 1 , . . . , H t − 1 H_1, ..., H_{t-1} H1​,...,Ht−1​,故不能并行计算。

2.关于梯度裁剪描述错误的是:
1、梯度裁剪之后的梯度小于或者等于原梯度
2、梯度裁剪是应对梯度爆炸的一种方法
3、裁剪之后的梯度L2范数小于阈值\thetaθ
4、梯度裁剪也是应对梯度消失的一种方法
答案解释
选项1:正确,参考梯度裁剪的定义。
选项4:错误,只能应对梯度爆炸。

3.关于困惑度的描述错误的是:
1、困惑度用来评价语言模型的好坏
2、困惑度越低语言模型越好
3、有效模型的困惑度应该大于类别个数
答案解释
选项3:错误,一个随机分类模型(基线模型)的困惑度等于分类问题的类别个数,有效模型的困惑度应小于类别个数。

4.关于采样方法和隐藏状态初始化的描述错误的是:
1、采用的采样方法不同会导致隐藏状态初始化方式发生变化
2、采用相邻采样仅在每个训练周期开始的时候初始化隐藏状态是因为相邻的两个批量在原始数据上是连续的
3、采用随机采样需要在每个小批量更新前初始化隐藏状态是因为每个样本包含完整的时间序列信息
答案解释
选项3:错误,随机采样中每个样本只包含局部的时间序列信息,因为样本不完整所以每个批量需要重新初始化隐藏状态。

AI之循环神经网络基础相关推荐

  1. 动手学深度学习-12 循环神经网络基础

    循环神经网络基础 循环神经网络 从零开始实现循环神经网络 我们先尝试从零开始实现一个基于字符级循环神经网络的语言模型,这里我们使用周杰伦的歌词作为语料,首先我们读入数据: import torch i ...

  2. Task02:学习笔记文本预处理;语言模型;循环神经网络基础

    Task02:学习笔记文本预处理:语言模型:循环神经网络基础 文本预处理 文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤: 读入文本 ...

  3. AI之循环神经网络进阶

    AI之循环神经网络进阶 GRU 从零实现GNU 载入数据集 初始化参数 GRU模型 训练模型 简洁实现 LSTM 初始化参数 建立LSTM模型 训练模型 简洁实现 深度循环神经网络 双向循环神经网络 ...

  4. 动手学深度学习PyTorch版-循环神经网络基础

    循环神经网络基础 从零开始实现循环神经网络 import torch import torch.nn as nn import time import math import sys sys.path ...

  5. Chemistry.AI | 基于循环神经网络(RNN)预测分子性质

    Chemistry.AI | 基于卷积神经网络(CNN)预测分子特性 环境准备 Python版本:Python 3.6.8 PyTorch版本:PyTorch1.1.0 RDKit版本:RDKit 2 ...

  6. 循环神经网络基础介绍

    在应用循环神经网络的过程中,还是会有些地方疑惑,所以还是要回归下问题的本质. 学而不思则惘,思而不学则怠.. 1. 循环神经网路简介 首先循环神经网络的主要用途是处理和预测序列数据.在之前的全链接神经 ...

  7. 从零开始学Pytorch(十)之循环神经网络基础

    本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型.我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符.循环神经网络引入一个隐藏变量HHH,用HtH_{t}Ht​表示HHH ...

  8. 动手学深度学习(文本预处理+语言模型+循环神经网络基础)

    文本预处理 文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤: 读入文本 分词 建立字典,将每个词映射到一个唯一的索引(index) ...

  9. 《动手学》:循环神经网络基础 youthAI

    循环神经网络 本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型.我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符.循环神经网络引入一个隐藏变量 H ,用 Ht 表示 H ...

最新文章

  1. 《虚拟化与云计算》读书感(四)数据中心的设计和构造
  2. [USACO08JAN]Cell Phone Network G 树形dp
  3. php in_array 和 str_replace
  4. 算法:删除顺序表中重复的元素
  5. 我曾经是怎么做面试官的
  6. webview 转义字符_iOS中webView加载URL需要处理特殊字符
  7. Command ‘ifconfig‘ not found, but can be installed with: sudo apt install net-tools VM Ubuntu 解决方案
  8. HTML5学习总结(1)——HTML5基础知识
  9. linux acpidtd 进程,clover引导卡在该图上了,求资助
  10. 请简述一下RS485通讯连接方式及其应用?
  11. Tensorflow手写数字识别
  12. 前端启动本地服务的四种方法,看完不会你锤我
  13. Mtk Sensor 驱动框架变更简要分析
  14. C语言代码覆盖率测试软件,代码覆盖率检测工具GCOV
  15. SQL必知必会(一)SQL基础篇
  16. UE5笔记【十】第一个蓝图项目:bluePrint。
  17. matlab中类的用法
  18. ReID:通用性能评价标准
  19. 【附源码】计算机毕业设计SSM-小区停车场信息系统
  20. python解析html用哪个模块_[转载]python模块学习---HTMLParser(解析HTML文档元素)

热门文章

  1. 学习笔记 | 条件概率、联合概率、全概率公式、贝叶斯公式
  2. 贪心---圣诞老人的礼物
  3. 手把手教你如何将有线音箱改装成蓝牙音箱
  4. contains正确使用
  5. Android debug.apk 闪退 ClassNotFoundException 直接Run正常
  6. 鸡你太美 攻防世界 打野(详细)
  7. 重庆北大青鸟解放碑校区学生作品—A05班 【商场管理平台】
  8. 获取百度贴吧头像的爬虫
  9. 机器视觉工业缺陷检测的那些事(一、光源)
  10. 英特尔发布12代酷睿处理器