1算法实战

##  基础函数库
import numpy as np ## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns## 导入逻辑回归模型函数
from sklearn  import svm##Demo演示LogisticRegression分类## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])## 调用SVC模型 (支持向量机分类)
svc = svm.SVC(kernel='linear')## 用SVM模型拟合构造的数据集
svc = svc.fit(x_fearures, y_label) ## 查看其对应模型的w
print('the weight of Logistic Regression:',svc.coef_)## 查看其对应模型的w0
print('the intercept(w0) of Logistic Regression:',svc.intercept_)## 模型预测
y_train_pred = svc.predict(x_fearures)
print('The predction result:',y_train_pred)# 最佳函数
x_range = np.linspace(-3, 3)w = svc.coef_[0]
a = -w[0] / w[1]
y_3 = a*x_range - (svc.intercept_[0]) / w[1]# 可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.plot(x_range, y_3, '-c')
plt.show()

2支持向量机介绍

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
%matplotlib inline# 画图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, s=60, cmap=plt.cm.Paired)# 画散点图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4)plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)x_fit = np.linspace(0, 3)
# 画函数
y_1 = 1 * x_fit + 0.8
plt.plot(x_fit, y_1, '-c')
y_2 = -0.3 * x_fit + 3
plt.plot(x_fit, y_2, '-k')# 画散点图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)
plt.scatter([3], [2.8], c='#cccc00', marker='<', s=100, cmap=plt.cm.Paired)x_fit = np.linspace(0, 3)# 画函数
y_1 = 1 * x_fit + 0.8
plt.plot(x_fit, y_1, '-c')
y_2 = -0.3 * x_fit + 3
plt.plot(x_fit, y_2, '-k')# 画散点图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)x_fit = np.linspace(0, 3)# 画函数
y_1 = 1 * x_fit + 0.8
plt.plot(x_fit, y_1, '-c')
# 画边距
plt.fill_between(x_fit, y_1 - 0.6, y_1 + 0.6, edgecolor='none', color='#AAAAAA', alpha=0.4)y_2 = -0.3 * x_fit + 3
plt.plot(x_fit, y_2, '-k')
plt.fill_between(x_fit, y_2 - 0.4, y_2 + 0.4, edgecolor='none', color='#AAAAAA', alpha=0.4)# 画散点图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)# 画图
y_1 = 1 * x_fit + 0.8
plt.plot(x_fit, y_1, '-c')
# 画边距
plt.fill_between(x_fit, y_1 - 0.6, y_1 + 0.6, edgecolor='none', color='#AAAAAA', alpha=0.4)from sklearn.svm import SVC
# SVM 函数
clf = SVC(kernel='linear')
clf.fit(X, y)# 最佳函数
w = clf.coef_[0]
a = -w[0] / w[1]
y_3 = a*x_fit - (clf.intercept_[0]) / w[1]# 最大边距 下届
b_down = clf.support_vectors_[0]
y_down = a* x_fit + b_down[1] - a * b_down[0]
# 最大边距 上届
b_up = clf.support_vectors_[-1]
y_up = a* x_fit + b_up[1] - a * b_up[0]# 画散点图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)
# 画函数
plt.plot(x_fit, y_3, '-c')
# 画边距
plt.fill_between(x_fit, y_down, y_up, edgecolor='none', color='#AAAAAA', alpha=0.4)
# 画支持向量
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b',s=80, facecolors='none')# 画散点图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.9)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)# 画散点图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.9)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)
# 惩罚参数:C=1
clf = SVC(C=1, kernel='linear')
clf.fit(X, y)# 最佳函数
w = clf.coef_[0]
a = -w[0] / w[1]
y_3 = a*x_fit - (clf.intercept_[0]) / w[1]
# 最大边距 下届
b_down = clf.support_vectors_[0]
y_down = a* x_fit + b_down[1] - a * b_down[0]
# 最大边距 上届
b_up = clf.support_vectors_[-1]
y_up = a* x_fit + b_up[1] - a * b_up[0]# 画散点图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)
# 画函数
plt.plot(x_fit, y_3, '-c')
# 画边距
plt.fill_between(x_fit, y_down, y_up, edgecolor='none', color='#AAAAAA', alpha=0.4)
# 画支持向量
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b',s=80, facecolors='none')X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.9)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)
# 惩罚参数:C=0.2
clf = SVC(C=0.2, kernel='linear')
clf.fit(X, y)x_fit = np.linspace(-1.5, 4)
# 最佳函数
w = clf.coef_[0]
a = -w[0] / w[1]
y_3 = a*x_fit - (clf.intercept_[0]) / w[1]
# 最大边距 下届
b_down = clf.support_vectors_[10]
y_down = a* x_fit + b_down[1] - a * b_down[0]
# 最大边距 上届
b_up = clf.support_vectors_[1]
y_up = a* x_fit + b_up[1] - a * b_up[0]# 画散点图
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)
# 画函数
plt.plot(x_fit, y_3, '-c')
# 画边距
plt.fill_between(x_fit, y_down, y_up, edgecolor='none', color='#AAAAAA', alpha=0.4)
# 画支持向量
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b',s=80, facecolors='none')from sklearn.datasets.samples_generator import make_circles
# 画散点图
X, y = make_circles(100, factor=.1, noise=.1, random_state=2019)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)clf = SVC(kernel='linear').fit(X, y)# 最佳函数
x_fit = np.linspace(-1.5, 1.5)
w = clf.coef_[0]
a = -w[0] / w[1]
y_3 = a*X - (clf.intercept_[0]) / w[1]plt.plot(X, y_3, '-c')# 数据映射
r = np.exp(-(X[:, 0] ** 2 + X[:, 1] ** 2))ax = plt.subplot(projection='3d')
ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap=plt.cm.Paired)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')x_1, y_1 = np.meshgrid(np.linspace(-1, 1), np.linspace(-1, 1))
z =  0.01*x_1 + 0.01*y_1 + 0.5
ax.plot_surface(x_1, y_1, z, alpha=0.3)# 画图
X, y = make_circles(100, factor=.1, noise=.1, random_state=2019)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)
clf = SVC(kernel='rbf')
clf.fit(X, y)ax = plt.gca()
x = np.linspace(-1, 1)
y = np.linspace(-1, 1)
x_1, y_1 = np.meshgrid(x, y)
P = np.zeros_like(x_1)
for i, xi in enumerate(x):for j, yj in enumerate(y):P[i, j] = clf.decision_function(np.array([[xi, yj]]))
ax.contour(x_1, y_1, P, colors='k', levels=[-1, 0, 0.9], alpha=0.5,linestyles=['--', '-', '--'])plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b',s=80, facecolors='none');

机器学习算法(三): 基于支持向量机的分类预测相关推荐

  1. 机器学习笔记III: 基于支持向量机的分类预测

    支持向量机(Support Vector Machine,SVM)是一个非常优雅的算法,具有非常完善的数学理论,常用于数据分类,也可以用于数据的回归预测中,由于其优美的理论保证和利用核函数对于线性不可 ...

  2. 基于python的分类预测_机器学习算法(五): 基于支持向量机的分类预测

    声明:本次撰写以Datawhale团队提供的学习材料以自学为主,代码为Datawhale团队提供,利用阿里云天池实验室与编辑器pycharm完成测试. 支持向量机(Support Vector Mac ...

  3. 【活动打卡】【Datawhale】第16期 机器学习算法梳理(AI入门体验) Task02:基于决策树的分类预测

    1.决策树的介绍和应用 1.1 决策树的介绍 决策树是一种常见的分类模型,在金融风控.医疗辅助诊断等诸多行业具有较为广泛的应用.决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本 ...

  4. 机器学习算法(七): 基于LightGBM的分类预测(基于英雄联盟10分钟数据判断红蓝方胜负)

    机器学习算法(七)基于LightGBM的分类预测 1. 实验室介绍 1.1 LightGBM的介绍 LightGBM是2017年由微软推出的可扩展机器学习系统,是微软旗下DMKT的一个开源项目,由20 ...

  5. 机器学习算法(二):基于决策树的分类预测

    机器学习算法(二):基于决策树的分类预测 决策树的介绍和应用 简介 决策树构建的伪代码 特征划分选择 信息增益 信息增益率 基尼系数 应用场景 优缺点 基于企鹅数据集的决策树实战 Step1:函数库导 ...

  6. 机器学习算法(六):基于决策树的分类预测

    机器学习算法(六):基于决策树的分类预测 1 决策树的介绍和应用 1.1决策树的介绍 1.2 决策树的应用 2. 实验室手册 2.1 学习目标 2.2 代码流程 2.3 算法实战 2.3.1 Demo ...

  7. 【LSSVM回归预测】基于matlab灰狼算法优化最小支持向量机GWO-LSSVM数据预测【含Matlab源码 2259期】

    ⛄一.灰狼算法优化最小支持向量机GWO-LSSVM简介 1 算法理论 采用灰狼优化算法的最小二乘支持向量机模型预测时,为避免过拟合现象和检验该模型的有效性,将实证部分主要分为:①基于灰狼优化算法的最小 ...

  8. 机器学习应用篇(七)——基于LightGBM的分类预测

    机器学习应用篇(七)--基于LightGBM的分类预测 文章目录 机器学习应用篇(七)--基于LightGBM的分类预测 一.Introduction 1 LightGBM的优点 2 LightGBM ...

  9. CV之IC之SpatialTransformer:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init、ST_CNN算法(CNN+ST)实现多分类预测案例训练过程记录

    CV之IC之SpatialTransformer:基于ClutteredMNIST手写数字图片数据集分别利用CNN_Init.ST_CNN算法(CNN+ST)实现多分类预测案例训练过程记录 目录 基于 ...

最新文章

  1. ehcache缓存原理_贼厉害,手撸的 SpringBoot缓存系统,性能杠杠的!
  2. 【Linux 内核 内存管理】优化内存屏障 ① ( barrier 优化屏障 | 编译器优化 | CPU 执行优化 | 优化屏障源码 barrier 宏 )
  3. spring boot集成webservice接口
  4. poj 1797 Dijkstra算法
  5. Digg:私人制造的时代
  6. 使用ADO.NET访问数据库
  7. java8 streams_使用Java 8 Streams进行编程对算法性能的影响
  8. 【Modern OpenGL】转换 Transformations
  9. void*和void类型
  10. spring和redis的整合-超越昨天的自己系列(7)
  11. struts 进不了action方法
  12. react实现动画电子倒计时组件
  13. 2016清华计算机学院复试名单,清华大学计算机系2016统考硕士拟录取名单
  14. 小米10获取root权限_安卓刷机搞机小能手必备的三款root神器 最后一款你肯定用过...
  15. html如何添加qq聊天框
  16. HotPower超级CRC计算器与第三方CRC计算器名词解释与对照及操作
  17. 每日阅读:你如何过一天,你就如何过一生
  18. Ubuntu下开机自启动脚本 init supervisor systemd
  19. 过采样算法之SMOTE
  20. python视频教程全集-Python视频教程全集带你入门

热门文章

  1. github-本地仓库文件同步到云服务器上的演练
  2. dj鲜生-07-静态文件的成功加载-用户注册的页面
  3. linux-查看文件相关命令-cat-more-less-head-tail
  4. jquery-文档操作-标签取值-输入控件取值与赋值
  5. SVG 入门——理解viewport,viewbox,preserveAspectRatio
  6. ViewPager与Tab结合使用
  7. zabbix server和client的快速部署
  8. 通过组策略批量安装Lync 2010客户端
  9. 【029】获取选择要素的属性
  10. 浏览器 JavaScript HTTP 库的大比拼:SugerAgent VS Axios