#include

#include

#defineINT8Uunsigned char

#defineINT16Uunsigned int

#define WRITE_BURST 0x40//连续写入

#define READ_SINGLE 0x80//读

#define READ_BURST 0xC0//连续读

#define BYTES_IN_RXFIFO 0x7F //接收缓冲区的有效字节数

#define CRC_OK 0x80 //CRC校验通过位标志

//************CC1100接口***************

sbit GDO0=P3^3;

sbit GDO2=P1^4;

sbitMISO=P1^2;

sbitMOSI=P1^1;

sbitSCK=P3^2;

sbitCSN=P1^3;

//sbit GDO0=P1^3;

//sbit GDO2=P1^2;

//sbitMISO=P1^4;

//sbitMOSI=P3^2;

//sbitSCK=P1^1;

//sbitCSN=P3^3;

//**************按键****************

sbit KEY1 =P3^6;

sbit KEY2 =P3^7;

//**********数码管位选**********

sbitled3=P2^0;

sbitled2=P2^1;

sbitled1=P2^2;

sbitled0=P2^3;

//**************蜂鸣器***********

sbit BELL=P3^4;

//*************数码管?****************

INT8U seg[10]={0xC0,0xCF,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90}; //0~~9段码

INT8U seg1[10]={0x40,0x4F,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10};

//***************按键****************

INT8U data temp_data[2]={0x00,0x00};

INT8U dispaly[8], temp[6];

//更多功率参数设置可详细参考DATACC1100英文文档中第48-49页的参数表

//INT8U PaTabel[8] = {0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04 ,0x04}; //-30dBm 功率最小

INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60}; //0dBm

//INT8U PaTabel[8] = {0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0 ,0xC0}; //10dBm 功率最大

//****************************

void SpiInit(void);

void CpuInit(void);

void RESET_CC1100(void);

void POWER_UP_RESET_CC1100(void);

void halSpiWriteReg(INT8U addr, INT8U value);

void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count);

void halSpiStrobe(INT8U strobe);

INT8U halSpiReadReg(INT8U addr);

void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count);

INT8U halSpiReadStatus(INT8U addr);

void halRfWriteRfSettings(void);

void halRfSendPacket(INT8U *txBuffer, INT8U size);

INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length);

void StartUART( void );

void R_S_Byte(INT8U R_Byte);

//************************

// CC1100 STROBE, CONTROL AND STATUS REGSITER

#define CCxxx0_IOCFG2 0x00 // GDO2 output pin configuration

#define CCxxx0_IOCFG1 0x01 // GDO1 output pin configuration

#define CCxxx0_IOCFG0 0x02 // GDO0 output pin configuration

#define CCxxx0_FIFOTHR 0x03 // RX FIFO and TX FIFO thresholds

#define CCxxx0_SYNC1 0x04 // Sync word, high INT8U

#define CCxxx0_SYNC0 0x05 // Sync word, low INT8U

#define CCxxx0_PKTLEN 0x06 // Packet length

#define CCxxx0_PKTCTRL1 0x07 // Packet automation control

#define CCxxx0_PKTCTRL0 0x08 // Packet automation control

#define CCxxx0_ADDR 0x09 // Device address

#define CCxxx0_CHANNR 0x0A // Channel number

#define CCxxx0_FSCTRL1 0x0B // Frequency synthesizer control

#define CCxxx0_FSCTRL0 0x0C // Frequency synthesizer control

#define CCxxx0_FREQ2 0x0D // Frequency control word, high INT8U

#define CCxxx0_FREQ1 0x0E // Frequency control word, middle INT8U

#define CCxxx0_FREQ0 0x0F // Frequency control word, low INT8U

#define CCxxx0_MDMCFG4 0x10 // Modem configuration

#define CCxxx0_MDMCFG3 0x11 // Modem configuration

#define CCxxx0_MDMCFG2 0x12 // Modem configuration

#define CCxxx0_MDMCFG1 0x13 // Modem configuration

#define CCxxx0_MDMCFG0 0x14 // Modem configuration

#define CCxxx0_DEVIATN 0x15 // Modem deviation setting

#define CCxxx0_MCSM2 0x16 // Main Radio Control State Machine configuration

#define CCxxx0_MCSM1 0x17 // Main Radio Control State Machine configuration

#define CCxxx0_MCSM0 0x18 // Main Radio Control State Machine configuration

#define CCxxx0_FOCCFG 0x19 // Frequency Offset Compensation configuration

#define CCxxx0_BSCFG 0x1A // Bit Synchronization configuration

#define CCxxx0_AGCCTRL2 0x1B // AGC control

#define CCxxx0_AGCCTRL1 0x1C // AGC control

#define CCxxx0_AGCCTRL0 0x1D // AGC control

#define CCxxx0_WOREVT1 0x1E // High INT8U Event 0 timeout

#define CCxxx0_WOREVT0 0x1F // Low INT8U Event 0 timeout

#define CCxxx0_WORCTRL 0x20 // Wake On Radio control

#define CCxxx0_FREND1 0x21 // Front end RX configuration

#define CCxxx0_FREND0 0x22 // Front end TX configuration

#define CCxxx0_FSCAL3 0x23 // Frequency synthesizer calibration

#define CCxxx0_FSCAL2 0x24 // Frequency synthesizer calibration

#define CCxxx0_FSCAL1 0x25 // Frequency synthesizer calibration

#define CCxxx0_FSCAL0 0x26 // Frequency synthesizer calibration

#define CCxxx0_RCCTRL1 0x27 // RC oscillator configuration

#define CCxxx0_RCCTRL0 0x28 // RC oscillator configuration

#define CCxxx0_FSTEST 0x29 // Frequency synthesizer calibration control

#define CCxxx0_PTEST 0x2A // Production test

#define CCxxx0_AGCTEST 0x2B // AGC test

#define CCxxx0_TEST2 0x2C // Various test settings

#define CCxxx0_TEST1 0x2D // Various test settings

#define CCxxx0_TEST0 0x2E // Various test settings

// Strobe commands

#define CCxxx0_SRES 0x30 // Reset chip.

#define CCxxx0_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).

// If in RX/TX: Go to a wait state where only the synthesizer is

// running (for quick RX / TX turnaround).

#define CCxxx0_SXOFF 0x32 // Turn off crystal oscillator.

#define CCxxx0_SCAL 0x33 // Calibrate frequency synthesizer and turn it off

// (enables quick start).

#define CCxxx0_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and

// MCSM0.FS_AUTOCAL=1.

#define CCxxx0_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if

// MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:

// Only go to TX if channel is clear.

#define CCxxx0_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer and exit

// Wake-On-Radio mode if applicable.

#define CCxxx0_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer

#define CCxxx0_SWOR 0x38 // Start automatic RX polling sequence (Wake-on-Radio)

#define CCxxx0_SPWD 0x39 // Enter power down mode when CSn goes high.

#define CCxxx0_SFRX 0x3A // Flush the RX FIFO buffer.

#define CCxxx0_SFTX 0x3B // Flush the TX FIFO buffer.

#define CCxxx0_SWORRST 0x3C // Reset real time clock.

#define CCxxx0_SNOP 0x3D // No operation. May be used to pad strobe commands to two

// INT8Us for simpler software.

#define CCxxx0_PARTNUM 0x30

#define CCxxx0_VERSION 0x31

#define CCxxx0_FREQEST 0x32

#define CCxxx0_LQI 0x33

#define CCxxx0_RSSI 0x34

#define CCxxx0_MARCSTATE 0x35

#define CCxxx0_WORTIME1 0x36

#define CCxxx0_WORTIME0 0x37

#define CCxxx0_PKTSTATUS 0x38

#define CCxxx0_VCO_VC_DAC 0x39

#define CCxxx0_TXBYTES 0x3A

#define CCxxx0_RXBYTES 0x3B

#define CCxxx0_PATABLE 0x3E

#define CCxxx0_TXFIFO 0x3F

#define CCxxx0_RXFIFO 0x3F

// RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers

typedef struct S_RF_SETTINGS

{

INT8U FSCTRL2;

INT8U FSCTRL1; // Frequency synthesizer control.

INT8U FSCTRL0; // Frequency synthesizer control.

INT8U FREQ2; // Frequency control word, high INT8U.

INT8U FREQ1; // Frequency control word, middle INT8U.

INT8U FREQ0; // Frequency control word, low INT8U.

INT8U MDMCFG4; // Modem configuration.

INT8U MDMCFG3; // Modem configuration.

INT8U MDMCFG2; // Modem configuration.

INT8U MDMCFG1; // Modem configuration.

INT8U MDMCFG0; // Modem configuration.

INT8U CHANNR; // Channel number.

INT8U DEVIATN; // Modem deviation setting (when FSK modulation is enabled).

INT8U FREND1; // Front end RX configuration.

INT8U FREND0; // Front end RX configuration.

INT8U MCSM0; // Main Radio Control State Machine configuration.

INT8U FOCCFG; // Frequency Offset Compensation Configuration.

INT8U BSCFG; // Bit synchronization Configuration.

INT8U AGCCTRL2; // AGC control.

INT8U AGCCTRL1; // AGC control.

INT8U AGCCTRL0; // AGC control.

INT8U FSCAL3; // Frequency synthesizer calibration.

INT8U FSCAL2; // Frequency synthesizer calibration.

INT8U FSCAL1; // Frequency synthesizer calibration.

INT8U FSCAL0; // Frequency synthesizer calibration.

INT8U FSTEST; // Frequency synthesizer calibration control

INT8U TEST2; // Various test settings.

INT8U TEST1; // Various test settings.

INT8U TEST0; // Various test settings.

INT8U IOCFG2; // GDO2 output pin configuration

INT8U IOCFG0; // GDO0 output pin configuration

INT8U PKTCTRL1; // Packet automation control.

INT8U PKTCTRL0; // Packet automation control.

INT8U ADDR; // Device address.

INT8U PKTLEN; // Packet length.

} RF_SETTINGS;

/

const RF_SETTINGS rfSettings =

{

0x00,

0x08, // FSCTRL1 Frequency synthesizer control.

0x00, // FSCTRL0 Frequency synthesizer control.

0x10, // FREQ2 Frequency control word, high byte.

0xA7, // FREQ1 Frequency control word, middle byte.

0x62, // FREQ0 Frequency control word, low byte.

0x5B, // MDMCFG4 Modem configuration.

0xF8, // MDMCFG3 Modem configuration.

0x03, // MDMCFG2 Modem configuration.

0x22, // MDMCFG1 Modem configuration.

0xF8, // MDMCFG0 Modem configuration.

0x00, // CHANNR Channel number.

0x47, // DEVIATN Modem deviation setting (when FSK modulation is enabled).

0xB6, // FREND1 Front end RX configuration.

0x10, // FREND0 Front end RX configuration.

0x18, // MCSM0 Main Radio Control State Machine configuration.

0x1D, // FOCCFG Frequency Offset Compensation Configuration.

0x1C, // BSCFG Bit synchronization Configuration.

0xC7, // AGCCTRL2 AGC control.

0x00, // AGCCTRL1 AGC control.

0xB2, // AGCCTRL0 AGC control.

0xEA, // FSCAL3 Frequency synthesizer calibration.

0x2A, // FSCAL2 Frequency synthesizer calibration.

0x00, // FSCAL1 Frequency synthesizer calibration.

0x11, // FSCAL0 Frequency synthesizer calibration.

0x59, // FSTEST Frequency synthesizer calibration.

0x81, // TEST2 Various test settings.

0x35, // TEST1 Various test settings.

0x09, // TEST0 Various test settings.

0x0B, // IOCFG2 GDO2 output pin configuration.

0x06, // IOCFG0D GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.

0x04, // PKTCTRL1 Packet automation control.

0x05, // PKTCTRL0 Packet automation control.

0x00, // ADDR Device address.

0x0c // PKTLEN Packet length.

};

//***************************

//函数名:delay(unsigned int s)

//输入:时间

//输出:无

//功能描述:普通廷时,内部用

//****************************

static void delay(unsigned int s)

{

unsigned int i;

for(i=0; i

for(i=0; i

}

//*****************************

void delay1(INT16U i)

{

for(;i>0;i--);

}

void halWait(INT16U timeout) {

do {

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

_nop_();

} while (--timeout);

}

void SpiInit(void)

{

CSN=0;

SCK=0;

CSN=1;

}

/*****************************

//函数名:CpuInit()

//输入:无

//输出:无

//功能描述:SPI初始化程序

/*************************************/

void CpuInit(void)

{

SpiInit();

delay(5000);

}

//*************************************

//函数名:SpisendByte(INT8U dat)

//输入:发送的数据

//输出:无

//功能描述:SPI发送一个字节

//*************************************

INT8U SpiTxRxByte(INT8U dat)

{

INT8U i,temp;

temp = 0;

SCK = 0;

for(i=0; i<8; i++)

{

if(dat & 0x80)

{

MOSI = 1;

}

else MOSI = 0;

dat <<= 1;

SCK = 1;

_nop_();

_nop_();

temp <<= 1;

if(MISO)temp++;

SCK = 0;

_nop_();

_nop_();

}

return temp;

}

//*************************************

//函数名:void RESET_CC1100(void)

//输入:无

//输出:无

//功能描述:复位CC1100

//*************************************

void RESET_CC1100(void)

{

CSN = 0;

while (MISO);

SpiTxRxByte(CCxxx0_SRES); //写入复位命令

while (MISO);

CSN = 1;

}

//************************************

//函数名:void POWER_UP_RESET_CC1100(void)

//输入:无

//输出:无

//功能描述:上电复位CC1100

//**********************************

void POWER_UP_RESET_CC1100(void)

{

CSN = 1;

halWait(1);

CSN = 0;

halWait(1);

CSN = 1;

halWait(41);

RESET_CC1100(); //复位CC1100

}

//*************************************

//函数名:void halSpiWriteReg(INT8U addr, INT8U value)

//输入:地址和配置字

//输出:无

//功能描述:SPI写寄存器

//************************************

void halSpiWriteReg(INT8U addr, INT8U value)

{

CSN = 0;

while (MISO);

SpiTxRxByte(addr);//写地址

SpiTxRxByte(value);//写入配置

CSN = 1;

}

//***********************************

//函数名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)

//输入:地址,写入缓冲区,写入个数

//输出:无

//功能描述:SPI连续写配置寄存器

//**********************************

void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)

{

INT8U i, temp;

temp = addr | WRITE_BURST;

CSN = 0;

while (MISO);

SpiTxRxByte(temp);

for (i = 0; i < count; i++)

{

SpiTxRxByte(buffer[i]);

}

CSN = 1;

}

//*******************************

//函数名:void halSpiStrobe(INT8U strobe)

//输入:命令

//输出:无

//功能描述:SPI写命令

//******************************

void halSpiStrobe(INT8U strobe)

{

CSN = 0;

while (MISO);

SpiTxRxByte(strobe);//写入命令

CSN = 1;

}

//***********************************

//函数名:INT8U halSpiReadReg(INT8U addr)

//输入:地址

//输出:该寄存器的配置字

//功能描述:SPI读寄存器

//**********************************

INT8U halSpiReadReg(INT8U addr)

{

INT8U temp, value;

temp = addr|READ_SINGLE;//读寄存器命令

CSN = 0;

while (MISO);

SpiTxRxByte(temp);

value = SpiTxRxByte(0);

CSN = 1;

return value;

}

//**********************************

//函数名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)

//输入:地址,读出数据后暂存的缓冲区,读出配置个数

//输出:无

//功能描述:SPI连续写配置寄存器

//*********************************

void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)

{

INT8U i,temp;

temp = addr | READ_BURST;//写入要读的配置寄存器地址和读命令

CSN = 0;

while (MISO);

SpiTxRxByte(temp);

for (i = 0; i < count; i++)

{

buffer[i] = SpiTxRxByte(0);

}

CSN = 1;

}

//******************************

//函数名:INT8U halSpiReadReg(INT8U addr)

//输入:地址

//输出:该状态寄存器当前值

//功能描述:SPI读状态寄存器

//*******************************

INT8U halSpiReadStatus(INT8U addr)

{

INT8U value,temp;

temp = addr | READ_BURST;//写入要读的状态寄存器的地址同时写入读命令

CSN = 0;

while (MISO);

SpiTxRxByte(temp);

value = SpiTxRxByte(0);

CSN = 1;

return value;

}

//*********************************

//函数名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)

//输入:无

//输出:无

//功能描述:配置CC1100的寄存器

//********************************

void halRfWriteRfSettings(void)

{

halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL2);

// Write register settings

halSpiWriteReg(CCxxx0_FSCTRL1, rfSettings.FSCTRL1);

halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL0);

halSpiWriteReg(CCxxx0_FREQ2, rfSettings.FREQ2);

halSpiWriteReg(CCxxx0_FREQ1, rfSettings.FREQ1);

halSpiWriteReg(CCxxx0_FREQ0, rfSettings.FREQ0);

halSpiWriteReg(CCxxx0_MDMCFG4, rfSettings.MDMCFG4);

halSpiWriteReg(CCxxx0_MDMCFG3, rfSettings.MDMCFG3);

halSpiWriteReg(CCxxx0_MDMCFG2, rfSettings.MDMCFG2);

halSpiWriteReg(CCxxx0_MDMCFG1, rfSettings.MDMCFG1);

halSpiWriteReg(CCxxx0_MDMCFG0, rfSettings.MDMCFG0);

halSpiWriteReg(CCxxx0_CHANNR, rfSettings.CHANNR);

halSpiWriteReg(CCxxx0_DEVIATN, rfSettings.DEVIATN);

halSpiWriteReg(CCxxx0_FREND1, rfSettings.FREND1);

halSpiWriteReg(CCxxx0_FREND0, rfSettings.FREND0);

halSpiWriteReg(CCxxx0_MCSM0 , rfSettings.MCSM0 );

halSpiWriteReg(CCxxx0_FOCCFG, rfSettings.FOCCFG);

halSpiWriteReg(CCxxx0_BSCFG, rfSettings.BSCFG);

halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);

halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);

halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);

halSpiWriteReg(CCxxx0_FSCAL3, rfSettings.FSCAL3);

halSpiWriteReg(CCxxx0_FSCAL2, rfSettings.FSCAL2);

halSpiWriteReg(CCxxx0_FSCAL1, rfSettings.FSCAL1);

halSpiWriteReg(CCxxx0_FSCAL0, rfSettings.FSCAL0);

halSpiWriteReg(CCxxx0_FSTEST, rfSettings.FSTEST);

halSpiWriteReg(CCxxx0_TEST2, rfSettings.TEST2);

halSpiWriteReg(CCxxx0_TEST1, rfSettings.TEST1);

halSpiWriteReg(CCxxx0_TEST0, rfSettings.TEST0);

halSpiWriteReg(CCxxx0_IOCFG2, rfSettings.IOCFG2);

halSpiWriteReg(CCxxx0_IOCFG0, rfSettings.IOCFG0);

halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);

halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);

halSpiWriteReg(CCxxx0_ADDR, rfSettings.ADDR);

halSpiWriteReg(CCxxx0_PKTLEN, rfSettings.PKTLEN);

}

//**********************************************

//函数名:void halRfSendPacket(INT8U *txBuffer, INT8U size)

//输入:发送的缓冲区,发送数据个数

//输出:无

//功能描述:CC1100发送一组数据

//*****************************************

void halRfSendPacket(INT8U *txBuffer, INT8U size)

{

halSpiWriteReg(CCxxx0_TXFIFO, size);

halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size);//写入要发送的数据

halSpiStrobe(CCxxx0_STX);//进入发送模式发送数据

// Wait for GDO0 to be set -> sync transmitted

while (!GDO0);

// Wait for GDO0 to be cleared -> end of packet

while (GDO0);

halSpiStrobe(CCxxx0_SFTX);

}

void setRxMode(void)

{

halSpiStrobe(CCxxx0_SRX);//进入接收状态

}

//---------------------------------------------------------------------------

INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)

{

INT8U status[2];

INT8U packetLength;

INT8U i=(*length)*4; // 具体多少要根据datarate和length来决定

halSpiStrobe(CCxxx0_SRX);//进入接收状态

//delay(5);

//while (!GDO1);

//while (GDO1);

delay(2);

while (GDO0)

{

delay(2);

--i;

if(i<1)

return 0;

}

if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字节数不为0

{

packetLength = halSpiReadReg(CCxxx0_RXFIFO);//读出第一个字节,此字节为该帧数据长度

if (packetLength <= *length) //如果所要的有效数据长度小于等于接收到的数据包的长度

{

halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //读出所有接收到的数据

*length = packetLength;//把接收数据长度的修改为当前数据的长度

// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)

halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //读出CRC校验位

halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区

return (status[1] & CRC_OK);//如果校验成功返回接收成功

}

else

{

*length = packetLength;

halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区

return 0;

}

}

else

return 0;

}

//*****************************************************************************************

void disdignit()

{

char i;

if(temp[0])

{

for(i=0;i<3;i++)

{

P0=0xC6;

led0=0;

delay1(40);

led0=1;

P0=seg[temp[1]];

led1=0;

delay1(40);

led1=1;

P0=seg1[temp[5]];

led2=0;

delay1(40);

led2=1;

P0=seg[temp[4]];

led3=0;

delay1(40);

led3=1;

}

}

}

//********************************************************************************

void StartUART( void )

{ //波特率4800

SCON = 0x50;

TMOD = 0x20;

TH1 = 0xFA;

TL1 = 0xFA;

PCON = 0x00;

TR1 = 1;

}

void R_S_Byte(INT8U R_Byte)

{

SBUF = R_Byte;

while( TI == 0 );//查询法

TI = 0;

}

void main(void)

{

INT8U i,leng =0;

INT8U RxBuf[8]={0};// 8字节, 如果需要更长的数据包,请正确设置

CpuInit();

POWER_UP_RESET_CC1100();

halRfWriteRfSettings();

halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);//发射功率设置

delay(6000);

StartUART();

while(1)

{

leng =4; // 预计接受8 bytes

if(halRfReceivePacket(RxBuf,&leng)) //判断是否接收到数据

{

temp[0]=RxBuf[3]; //符号位

temp[2]=((RxBuf[2]<<4)|RxBuf[1]);//整数位

temp[1]=RxBuf[0];//小数位

temp[4]=RxBuf[2];//十位

temp[5]=RxBuf[1];

/*for(i=0;i<3;i++)

{

R_S_Byte(temp[2-i]);

delay(100);

} */

disdignit();

disdignit();

R_S_Byte('t');

disdignit();

disdignit();

disdignit();

R_S_Byte(0x30+temp[4]);

R_S_Byte(0x30+temp[5]);

R_S_Byte('.');

R_S_Byte(0x30+temp[1]);

disdignit();

disdignit();

}

if(temp[2]>=0x30)//大于30度时报警,0x30转换成10进制为48

{

BELL=0; //打开蜂明器

}

else

{

BELL=1; //关闭蜂明器

}

}

}

cc1101初始化c语言程序,STC89C52单片机驱动CC1101无线模块的接收C语言程序相关推荐

  1. cc1101初始化c语言程序,STC89C52单片机驱动CC1101无线模块的发送C语言程序

    #include #define INT8U unsigned char #define INT16 Uunsigned int #define WRITE_BURST 0x40//连续写入 #def ...

  2. 按键控制c51单片机驱动unl2003控制步进电机正反转停止及程序调速-萌新入门

    ** 按键控制c51单片机驱动unl2003控制步进电机正反转停止及程序调速 ** 分享一个萌新入门小工程 一.原件连接: 第一种直接用51开发板 第二种用最小单元加unl2003驱动 二.开发板电路 ...

  3. 基于51单片机驱动HC-SR04超声波模块(LCD1602显示)

    基于51单片机驱动HC-SR04超声波模块(LCD1602显示) 一.基本参数 二.通信时序 三.部分代码展示 四.实际效果 总结 一.基本参数 点击图片购买 HC- SR04+是一款宽电压工作的超声 ...

  4. STC8H开发(十五): GPIO驱动Ci24R1无线模块

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...

  5. STC8H开发(十六): GPIO驱动XL2400无线模块

    目录 STC8H开发(一): 在Keil5中配置和使用FwLib_STC8封装库(图文详解) STC8H开发(二): 在Linux VSCode中配置和使用FwLib_STC8封装库(图文详解) ST ...

  6. 养殖环控程序 三菱plc可以带物联网模块,7寸触摸屏程序

    养殖环控程序 三菱plc可以带物联网模块,7寸触摸屏程序 编号:34999657247569378elfking

  7. LED数码管静态显示 C语言程序,PIC单片机驱动LED数码管显示程序

    ;*****该程序用于驱动led数码管显示,在8个LED数码管上依次显示数字1.2.3.4.5.6.7.8******* ;****http://www.51hei.com 单片机学习网经典程序已测试 ...

  8. 单片机外部中断实验C语言程序,STC89C52单片机外部中断0实验

    原标题:STC89C52单片机外部中断0实验 / 实现功能: 设置,然后通过点亮与P1口第一个引脚相连的D1来 显示系统进入了外部中断0 实验板型号:BS-XYD-C52 实验名称: 外部中断0测试 ...

  9. 单片机显示屏c语言程序,51单片机驱动1602液晶显示器c程序

    51单片机驱动1602液晶显示器c程序 /* 程序效果:单片机控制液晶显示器1602显示字母数字,用户自行更改io 程序版权:http://www.51hei.com */ #include //头文 ...

最新文章

  1. VS2015 添加DNX SDK
  2. php 继承性,php面向对象全攻略 (七) 继承性_php基础
  3. testbench实例 vhdl_testbench实例
  4. go get失败时怎么办(golang.org/x/crypto/md4为例)
  5. MFC+Opencv实现图片视频处理和人脸识别
  6. spring resource对象注入是单例吗
  7. Frament与activity切换
  8. 打造我们心中永恒的m500
  9. 机器学习的第三课,实现了一下LWR算法
  10. ipa签名工具(IPA Resign Tool)在windows和macos系统下对苹果ipa文件一键重签名
  11. bat命令实现游戏存档自动备份
  12. cadence 批量一次性修改title 页码标题等
  13. 蓝牙核心技术概述: 蓝牙协议规范(射频、基带链路控制、链路管理)
  14. font-face加载任意字体和字体格式转换
  15. 计算机绘图cad实训报告,AUTOCAD实训报告.doc
  16. 简单几步解决svchost占用内存过高问题
  17. 韩国KOBA蓄电池 全系列电池供应
  18. Jetson WIFI 驱动安装(intel ax200* or inte 9260* 无线模块)
  19. HTML实现表白biu爱心特效 (程序员专属情人节表白网站)
  20. NC17134 Symmetric Matrix(dp+数学)

热门文章

  1. 如何做一场有创意的活动策划?
  2. 陈老师给你介绍半导体功率器件知识大汇总
  3. 2022年Web 前端怎样入门?最新Web前端入门的学习路线
  4. 求任意一个自然数n的立方均可写成n个连续奇数之和。
  5. 【微信小程序】二维数组列表渲染
  6. 功能:清空聊天记录页面
  7. C#开发:不规则裁切图片
  8. 从这里,开始屌丝的逆袭
  9. [PHP问题]Cannot redeclare xxxxxx() (previously declared in C:\WWW\xxx.xxx:xxx)
  10. HTML中的 后代选择器 和 子代选择器