SVM回顾

支持向量机(SVM)的一大特点是最大化间距(max margin)。对于如上图的二分类问题,虽然有很多线可以将左右两部分分开,但是只有中间的红线效果是最好的,因为它的可活动范围(margin)是最大的,从直观上来说很好理解。

对于线性二分类问题,假设分类面为

$$\begin{equation} u=\vec w \cdot \vec x-b \end{equation}$$

则margin为

$$\begin{equation} m=\frac{1}{||w||_2} \end{equation}$$

根据max margin规则和约束条件,得到如下优化问题,我们要求的就是参数$\vec w$和$b$:

$$\begin{equation} \min\limits_{\vec w,b}\frac{1}{2}||\vec w||^2 \quad\text{subject to}\quad y_i(\vec w\cdot \vec x_i-b) \geq 1, \forall i,\end{equation}$$

对于正样本,类标号$y_i$为+1,反之则为-1。根据拉格朗日对偶,(3)可以转换为如下的二次规划(QP)问题,其中$\alpha_i$为拉格朗日乘子。

$$\begin{equation} \min\limits_{\vec \alpha}\Psi(\vec\alpha)=\min\limits_{\vec \alpha}\frac{1}{2}\sum_{i=1}^N\sum_{j=1}^Ny_iy_j(\vec x_i\cdot\vec x_j)\alpha_i\alpha_j-\sum_{i=1}^N\alpha_i,\end{equation}$$

其中N为样本数量。上式还需满足如下两个约束条件:

$$\begin{equation} \alpha_i\geq 0, \forall i,\end{equation}$$

$$\begin{equation} \sum_{i=1}^Ny_i\alpha_i=0.\end{equation}$$

一旦求解出所有的拉格朗日乘子,则我们可以通过如下的公式得到分类面参数$\vec w$和$b$。

$$\begin{equation}\vec w=\sum_{i=1}^Ny_i\alpha_i\vec x_i,\quad b=\vec w\cdot\vec x_k-y_k\quad\text{for some}\quad\alpha_k>0.\end{equation}$$

当然并不是所有的数据都可以完美的线性划分,可能有少量数据就是混在对方阵营,这时可以通过引入松弛变量$\xi_i$得到软间隔形式的SVM:

$$\begin{equation} \min\limits_{\vec w,b,\vec\xi}\frac{1}{2}||\vec w||^2+C\sum_{i=1}^N\xi_i \quad\text{subject to}\quad y_i(\vec w\cdot \vec x_i-b) \geq 1-\xi_i, \forall i,\end{equation}$$

其中的$\xi_i$为松弛变量,能假装把错的样本分对,$C$对max margin和margin failures的trades off。对于这个新的优化问题,约束变成了一个box constraint:

$$\begin{equation}0\leq\alpha_i \leq C,\forall i.\end{equation}$$

而松弛变量$\xi_i$不再出现在对偶公式中了。

对于线性不可分的数据,可以用核函数$K$将其投影到高维空间,这样就可分了,由此得到一般的分类面公式:

$$\begin{equation}u=\sum_{j=1}^Ny_j\alpha_jK(\vec x_j,\vec x)-b,\end{equation}$$

终极优化问题就变成了下面这个样子:

$$\begin{equation} \min\limits_{\vec \alpha}\Psi(\vec\alpha)=\min\limits_{\vec \alpha}\frac{1}{2}\sum_{i=1}^N\sum_{j=1}^Ny_iy_jK(\vec x_i,\vec x_j)\alpha_i\alpha_j-\sum_{i=1}^N\alpha_i,\\0\leq\alpha_i \leq C,\forall i,\\ \sum_{i=1}^Ny_i\alpha_i=0.\end{equation}$$

要满足的KKT条件为:

$$\begin{equation}\alpha_i=0\Leftrightarrow y_iu_i\geq1,\\0

SMO算法

为了求解式(11),SMO算法通过启发式方法选择两个$\alpha_i,\alpha_j$当变量,固定其他$\alpha_k$,然后用解析的方法求解两个变量的二次规划问题。关于这两个变量的解应该更接近原始的二次规划问题,更重要的是,这时子问题可以通过解析方法求解,避免了矩阵运算,大大提高了整个算法的计算速度。如此,SMO算法将原问题不断分解为子问题并对子问题求解,进而达到求解原问题的目的。

不失一般性,假设选择的两个拉格朗日乘子是$\alpha_1,\alpha_2$,因为$\alpha_i$和变量$x_i$是一一对应的,所以也可以说选择了变量$x_1,x_2$。固定其他变量$\alpha_i (i=3,4,…,N)$

此时,式(11)的优化问题转换为如下的优化问题:

$$\begin{equation} \min\limits_{\alpha_1,\alpha_2}W(\alpha_1,\alpha_2)=\frac{1}{2}K_{11}\alpha_1^2+\frac{1}{2}K_{22}\alpha_2^2+y_1y_2K_{12}\alpha_1\alpha_2\\-(\alpha_1+\alpha_2)+y_1\alpha_1\sum_{i=3}^Ny_i\alpha_iK_{i1}+y_2\alpha_2\sum_{i=3}^Ny_i\alpha_iK_{i2}\end{equation}$$

满足

$$\begin{equation}\alpha_1y_1+\alpha_2y_2=-\sum_{i=3}^Ny_i\alpha_i=\zeta\end{equation}$$

因为只有$\alpha_1,\alpha_2$是变量,其他$\alpha_i (i=3,4,…,N)$是固定的(可以认为是常数),所以式(13)省略了不含$\alpha_1,\alpha_2$的常数项。又因为$y_i=\pm 1$,$\alpha_i$有限制(9),所以$\alpha_1,\alpha_2$被限制在$[0,C]\times[0,C]$的盒子里,且位于对角线上,如图Figure 1.

由于$\alpha_2^{new}$需满足(9),所以最优值$\alpha_2^{new}$的取值范围必须满足条件

$$\begin{equation}L\leq\alpha_2^{new}\leq H\end{equation}$$

其中L与H是$\alpha_2^{new}$所在的对角线段端点的界。如果$y_1\neq y_2$(Figure 1.左图),则

$$\begin{equation}L=max(0,\alpha_2^{old}-\alpha_1^{old}),\quad H=min(C,C+\alpha_2^{old}-\alpha_1^{old}).\end{equation}$$

如果$y_1= y_2$(Figure 1.右图),则

$$\begin{equation}L=max(0,\alpha_2^{old}+\alpha_1^{old}-C),\quad H=min(C,\alpha_2^{old}+\alpha_1^{old}).\end{equation}$$

$$\begin{equation}\eta=K(\vec x_1,\vec x_1)+K(\vec x_2,\vec x_2)-2K(\vec x_1,\vec x_2).\end{equation}$$

因为$y_i=\pm 1$,所以$y_i^2=1$,式(14)同乘以$y_1$,用$\alpha_2$表示$\alpha_1$并代入式(13),得到只含一个变量$\alpha_2$的表达式,该表达式对$\alpha_2$求偏导并等于0,求出$\alpha_2$的更新公式为:

$$\begin{equation}\alpha_2^{new}=\alpha_2^{old}+\frac{y_2(E_1-E_2)}{\eta},\end{equation}$$

其中$E_i=u_i-y_i$是第$i$个样本的训练误差。经过截断之后的$\alpha_2^{new}$为:

$$\begin{equation}\alpha_2^{new,clipped}=\begin{cases} H, & \mbox{if }\alpha_2^{new}\geq H; \\ \alpha_2^{new}, & \mbox{if }L

将$\alpha_2^{new,clipped}$的结果代入式(14),得到$\alpha_1$的更新公式:

$$\begin{equation}\alpha_1^{new}=\alpha_1^{old}+y_1y_2(\alpha_2^{old}-\alpha_2^{new,clipped}).\end{equation}$$

当$0

$$\begin{equation}b_1^{new}=b^{old}-E_1-y_1K_{11}(\alpha_1^{new}-\alpha_1^{old})-y_2K_{21}(\alpha_2^{new,clipped}-\alpha_2^{old}),\end{equation}$$

同理,当$0

$$\begin{equation}b_2^{new}=b^{old}-E_2-y_1K_{12}(\alpha_1^{new}-\alpha_1^{old})-y_2K_{22}(\alpha_2^{new,clipped}-\alpha_2^{old}).\end{equation}$$

综合以上,阈值$b$的更新公式为:

$$\begin{equation}b^{new}=\begin{cases} b_1^{new}, & \mbox{if }0

至此,如果我们选定了两个变量$\alpha_2,\alpha_1$,则可以通过公式(19)和(21)来更新它们,并通过公式(24)更新阈值$b$,通过多次迭代逼近最优结果。但是怎样选择$\alpha_2,\alpha_1$呢,SMO通过启发式方法选择!

对于第一个样本$\alpha_2$,我们选择违反KKT条件式(12)(最严重)的样本$\alpha_2$;由式(19)可知,$\alpha_2^{new}$是依赖于$|E_1-E_2|$的,为了加快计算,一种简单的做法是选择$\alpha_1$,使其对应的$|E_1-E_2|$最大。

至此,我们有了启发式选择两个变量$\alpha_2,\alpha_1$的方法,以及求解这两个变量二次规划的解析方法,下面介绍SMO算法的具体实现。

MATLAB代码实现

算法伪代码如下:

输入:训练数据$T=\{(\vec x_1,y_1),(\vec x_2,y_2),…,(\vec x_N,y_N)\}$,其中$\vec x_i \in R^n$,$y_i\in\{-1,+1\}$,$i=1,2,…,N$,精度为$\epsilon$。

输出:拉格朗日乘子$\vec\alpha=\{\alpha_1,\alpha_2,…,\alpha_N\}$和阈值$b$的近似解。

初始化$\vec \alpha=\vec 0, b=0$

选一个违反KKT条件的变量$\alpha_2$

选一个使得$|E_1-E_2|$最大的变量$\alpha_1$

根据公式(19)~(21)更新变量$\alpha_2,\alpha_1$

根据公式(22)~(24)更新阈值$b$

如果不满足结束条件,则转2;否则算法结束

算法的结束条件是:如果所有变量都已经检查过,且没有变量可以进一步优化时,算法结束。

下面是SMO算法的MATLAB简化实现,省略了论文[1]的公式(19)。代码主流程参考论文[1]中的伪代码,部分实现细节参考[2]。

本代码和MATLAB自带的seqminopt.m算法接口相同,可直接替换使用。下载代码。

function [alphas, offset] = bitjoy_seqminopt(data, targetLabels, boxConstraints, ...

kernelFunc, smoOptions)

% http://bitjoy.net/2016/05/02/svm-smo-algorithm/

% 参考文献:

% [1] A Fast Algorithm for Training Support Vector Machines,

% http://research.microsoft.com/pubs/69644/tr-98-14.pdf

% [2] CSDN, http://blog.csdn.net/techq/article/details/6171688

N = length(data); % 样本数量

alphas = zeros([N,1]); % 所有拉格朗日乘子初始化为0

offset = 0.0; % 偏移量b也初始化为0

numChanged = 0; % 拉格朗日乘子改变的个数

examineAll = 1; % 是否需要检查所有拉格朗日乘子

% 主流程

while numChanged > 0 || examineAll

numChanged = 0;

if examineAll == 1

for i = 1 : N

numChanged = numChanged + examineExample(i);

end

else

for i = 1 : N

if alphas(i) ~= 0 && alphas(i) ~= boxConstraints(i)

numChanged = numChanged + examineExample(i);

end

end

end

if examineAll == 1

examineAll = 0;

elseif numChanged == 0

examineAll = 1;

end

end

% 计算当前参数下第idx个样本的函数输出

function [svm_o] = wxpb(idx)

svm_o = 0.0;

for j = 1 : N

svm_o = svm_o + alphas(j) * targetLabels(j) * kernelFunc(data(j,:),data(idx,:));

end

svm_o = svm_o + offset;

end

% 选定第二个变量i2后,根据max|E1-E2|的启发式规则,选择i1;

% 如果没有满足条件的i1,返回-1.

function [i1] = selectSecondChoice(i2, E2)

i1 = -1;

maxDelta = -1;

for j = 1 : N

if j ~= i2 && alphas(j) ~= 0 && alphas(j) ~= boxConstraints(j)

Ej = wxpb(j) - targetLabels(j);

if abs(E2 - Ej) > maxDelta

i1 = j;

maxDelta = abs(E2 - Ej);

end

end

end

end

% 根据选定的两个变量i1,i2,代入更新公式计算;

% 最后还更新了偏移量offset,也就是y=wx+b中的b。

function [flag] = takeStep(i1, i2)

alpha1 = alphas(i1);

y1 = targetLabels(i1);

E1 = wxpb(i1) - y1;

alpha2 = alphas(i2);

y2 = targetLabels(i2);

E2 = wxpb(i2) - y2;

s = y1 * y2;

if y1 ~= y2

L = max(0, alpha2 - alpha1);

H = min(boxConstraints(i2), boxConstraints(i1) + alpha2 - alpha1);

else

L = max(0, alpha2 + alpha1 - boxConstraints(i1));

H = min(boxConstraints(i2), alpha2 + alpha1);

end

if L == H

flag = 0;

return;

end

k11 = kernelFunc(data(i1,:),data(i1,:));

k12 = kernelFunc(data(i1,:),data(i2,:));

k22 = kernelFunc(data(i2,:),data(i2,:));

eta = k11 + k22 - 2 * k12;

if eta > 0

a2 = alpha2 + y2 * (E1 - E2) / eta;

%截断

if a2 < L

a2 = L;

elseif a2 > H

a2 = H;

end

else % 并未处理该case,论文[1]公式(19)有更详细的方法

flag = 0;

return;

end

if abs(a2 - alpha2) < eps * (a2 + alpha2 + eps)

flag = 0;

return;

end

a1 = alpha1 + s * (alpha2 - a2);

alphas(i1) = a1;

alphas(i2) = a2;

% 更新offset

b1 = offset - E1 - y1 * k11 * (a1 - alpha1) - y2 * k12 * (a2 - alpha2);

b2 = offset - E2 - y1 * k12 * (a1 - alpha1) - y2 * k22 * (a2 - alpha2);

if a1 > 0 && a1 < boxConstraints(i1)

offset = b1;

elseif a2 > 0 && a2 < boxConstraints(i2)

offset = b2;

else

offset = (b1 + b2) / 2;

end

flag = 1;

end

% 检查样本。

% 首先判断i2是否满足KKT条件,如果不满足,

% 则根据启发式规则再选择i1样本,

% 然后更新i1和i2的拉格朗日乘子。

function [flag] = examineExample(i2)

y2 = targetLabels(i2);

alpha2 = alphas(i2);

E2 = wxpb(i2) - y2;

r2 = E2 * y2;

if (r2 < -smoOptions.TolKKT && alpha2 < boxConstraints(i2)) || (r2 > smoOptions.TolKKT && alpha2 > 0)

i1 = selectSecondChoice(i2, E2);

if i1 == -1

i1 = floor(1 + rand() * N); % 随机选一个i1

while i1 == i2

i1 = floor(1 + rand() * N);

end

flag = takeStep(i1,i2);

else

flag = takeStep(i1,i2);

end

else

flag = 0;

end

end

end

参考资料

smo算法matlab实现,SVM之序列最小最优化算法(SMO算法)相关推荐

  1. 砥志研思SVM(四) 序列最小最优化算法(SMO)论文翻译

  2. 一文看懂 序列最小最优化算法---SMO

    一.SMO的背景介绍 序列最小最优化算法(sequential minimal optimization,SMO)于1998年被John Platt发明,是一种用于解决支持向量机训练期间出现的二次规划 ...

  3. dijkstra算法matlab代码_头脑风暴优化(BSO)算法(附MATLAB代码)

    BSO讲解https://www.zhihu.com/video/1252605855767736320 B站搜索:随心390,同步观看视频 各位小伙伴可在闲鱼搜索 优化算法交流地,即可搜索到官方闲鱼 ...

  4. aoa定位算法matlab仿真,基于信号到达角度(AOA)的定位算法研究

    内容摘要:基于信号到达角度(AOA)的定位算法是一种常见的无线传感器网络节点自定位算法,算法通信开销低,定位精度较高.由于各种原因,估测的多个节点位置可能存在不可靠位置,提出了一种改进的基于信号到达角 ...

  5. dijkstra算法matlab程序_编程习题课 | 用最短路算法为你的小地图导航

    简介:路网拓扑的正确导入方式,运筹学算法的完整实战案例,最详细的代码讲解与分享. 引言:在研究路径选择和流量分配等交通问题时,常常会用到最短路算法.用最短路算法解决交通问题存在两个难点:一.算法的选择 ...

  6. 序列最小最优化算法(SMO算法)

    前面三篇我已经谈了谈我对支持向量机的理解,推到了各类支持向量机的对偶算法,我们有很多最优化算法来求解这个问题,但是样本容量很大时,这些算法会变得非常低效.人们就提出了很多快速实现算法,SMO算法就是其 ...

  7. 距离矢量算法matlab实现,一种基于最小费用距离模型的城市生态网络构建方法与流程...

    本发明涉及生态网络构建技术领域,特别是涉及一种城市网络的构建方法. 背景技术: 最小费用距离是网络分析的一种计算方法,这种方法被用于物种保护.自然保护区功能规划.动物栖息地的确定.区域生态安全格局设计 ...

  8. 非线性方程的粒子群算法matlab,求解非线性方程组的量子行为粒子群算法

    好文网为大家准备了关于求解非线性方程组的量子行为粒子群算法的文章,好文网里面收集了五十多篇关于好求解非线性方程组的量子行为粒子群算法好文,希望可以帮助大家.更多关于求解非线性方程组的量子行为粒子群算法 ...

  9. nsl0重构算法 matlab,基于SL0压缩感知信号重建的改进算法

    第 28 卷 第 6 期 2012 年 6 月 信 号 处 理 SIGNAL PROCESSING Vol. 28 No. 6 Jun. 2012 收稿日期: 2012-03-30; 修回日期: 20 ...

最新文章

  1. WMI技术介绍和应用——查询本地用户和组
  2. RunTime的使用-Category改变整个项目全部字体
  3. 一个简洁OKR是成功的关键因素
  4. POJ1904 强联通(最大匹配可能性)
  5. iframe如何发送请求_插件分享 | 如何半天玩转一个“ES未授权利用”插件
  6. 参赛作品介绍 | IM体感游戏、校园管家...这些创意颠覆你的想象!
  7. 管家婆SQL SERVER数据库“可能发生了架构损坏。请运行DBCC CHECKCATALOG”修复
  8. 用bat批处理程序通过DOS命令行删除所有的空文件夹
  9. 住宅卫生间水箱配件行业调研报告 - 市场现状分析与发展前景预测(2021-2027年)
  10. Ice-E(Embedded Internet Communications Engine)移植到s3c2440A(arm9)linux(2.6.12)上的 -转
  11. 《软件测试方法和技术》电子课件下载
  12. batchplot3.5.9如何使用_Flink 1.9 实战:使用 SQL 读取 Kafka 并写入 MySQL
  13. Skew Heaps
  14. 用.NET开发MSN聊天机器人 - MSN聊天机器人开发揭秘
  15. ubuntu显卡输出hdmi屏幕没有声音
  16. windows控制台命令: 快捷键大集合
  17. 教你年入100万,互联网赚钱三板斧!
  18. C++自带string类的常用方法
  19. Linux 网络编程socket错误分析
  20. linux的gz文件怎么解压缩,linux gz 解压缩

热门文章

  1. 孙宏斌从贾跃亭手上拿走乐视电视:融创成乐融致新大股东
  2. 拆 米家台灯_米家飞利浦智睿台灯2代拆解测评 米家飞利浦智睿台灯2代做工怎么样...
  3. SQL 函数总结说明
  4. 深入理解VAE(变分自编码器)
  5. NGUI与新版Prefab系统冲突问题
  6. 基于STM32的uc/OS系统移植及用Saleae Logic 16抓取分析波形
  7. 小程序获取当前时间戳
  8. html table表头升序 降序,jquery实现表格根据字段进行升序降序
  9. 华为OJ——DNA序列
  10. 使用python合并与切割pdf文件