RocketMq 入门

主要摘取自

消息队列和 RocketMQ 入门总结

建议大家先取看原文,本文主要摘取自上面这片大佬文章,稍加删减并细化了部分内容。

本章主要能粗略解释的问题

消息队列出现的原因

消息队列的作用(异步,解耦,削峰)

消息队列带来的一系列问题(消息堆积、重复消费、顺序消费、分布式事务等等)

消息队列的两种消息模型——队列和主题模式

分析了 RocketMQ 的技术架构(NameServer、Broker、Producer、Comsumer)

结合着 RocketMQ 回答了消息队列副作用的解决方案

介绍了 RocketMQ 的存储机制和刷盘策略。

消息队列为什么出现

解藕

传统模式的缺点:系统间耦合性太强,如上图所示,系统A在代码中直接调用系统B和系统C的代码,如果将来D系统接入,系统A还需要修改代码,过于麻烦!

中间件模式的的优点:将消息写入消息队列,需要消息的系统自己从消息队列中订阅,从而系统A不需要做任何修改。

异步

比如我下单要发短信,短信如果要在主流程上,那时间就会变长,但是短信并不是非常核心的内容,如果把消息放到消息队列里,就可以提前结束订单主流程,短信慢慢的发。

削峰

如果系统能每秒钟发10条短信,但是突然间大促了,每秒要发100条短信,如果在主流程上就崩了,但是在消息队列里,就可以慢慢的发。

消息队列的缺点

万一我发送方发送失败了,然后执行重试,这样就可能产生重复的消息

或者我消费端处理失败了,请求重发,这样也会产生重复的消息

对于一些微服务来说,消费重复消息会带来更大的麻烦,比如增加积分,这个时候我加了多次是不是对其他用户不公平?

那么,又如何解决重复消费消息的问题呢?

如果我们此时的消息需要保证严格的顺序性怎么办呢?比如生产者生产了一系列的有序消息(对一个 ID 为 1 的记录进行删除增加修改),但是我们知道在发布订阅模型中,对于主题是无顺序的,那么这个时候就会导致对于消费者消费消息的时候没有按照生产者的发送顺序消费,比如这个时候我们消费的顺序为修改删除增加,如果该记录涉及到金额的话是不是会出大事情?

那么,又如何解决消息的顺序消费问题呢?

就拿我们上面所讲的分布式系统来说,用户购票完成之后是不是需要增加账户积分?

那么,又如何解决分布式事务问题呢?

我们刚刚说了,消息队列可以进行削峰操作,那如果我的消费者如果消费很慢或者生产者生产消息很快,这样是不是会将消息堆积在消息队列中?

那么,又如何解决消息堆积的问题呢?

队列模型

在一开始我跟你提到了一个 “广播” 的概念,也就是说如果我们此时我们需要将一个消息发送给多个消费者(比如此时我需要将信息发送给短信系统和邮件系统),这个时候单个队列即不能满足需求了。

当然你可以让 Producer 生产消息放入多个队列中,然后每个队列去对应每一个消费者。问题是可以解决,创建多个队列并且复制多份消息是会很影响资源和性能的。而且,这样子就会导致生产者需要知道具体消费者个数然后去复制对应数量的消息队列,这就违背我们消息中间件的解耦这一原则。

主题模型

那么有没有好的方法去解决这一个问题呢?有,那就是主题模型或者可以称为发布订阅模型。

在主题模型中,消息的生产者称为发布者(Publisher),消息的消费者称为订阅者(Subscriber),存放消息的容器称为主题(Topic)。

其中,发布者将消息发送到指定主题中,订阅者需要提前订阅主题才能接受特定主题的消息。

RocketMQ 中的主题模型到底是如何实现的呢

· Producer Group 生产者组:代表某一类的生产者,比如我们有多个秒杀系统作为生产者,这多个合在一起就是一个

· Producer Group 生产者组,它们一般生产相同的消息。
Consumer Group 消费者组:代表某一类的消费者,比如我们有多个短信系统作为消费者,这多个合在一起就是一个 Consumer Group 消费者组,它们一般消费相同的消息。

· Topic 主题:代表一类消息,比如订单消息,物流消息等等。

生产者组中的生产者会向主题发送消息,而主题中存在多个队列,生产者每次生产消息之后是指定主题中的某个队列发送消息的。

每个主题中都有多个队列(这里还不涉及到 Broker),集群消费模式下,一个消费者集群多台机器共同消费一个 topic 的多个队列,一个队列只会被一个消费者消费。如果某个消费者挂掉,分组内其它消费者会接替挂掉的消费者继续消费。就像 Consumer1 和 Consumer2 分别对应着两个队列,而 Consuer3 是没有队列对应的,所以一般来讲要控制消费者组中的消费者个数和主题中队列个数相同。

当然也可以消费者个数小于队列个数,只不过不太建议

每个消费组在每个队列上维护一个消费位置,为什么呢?

因为我们刚刚仅仅是一个消费者组,我们知道在发布订阅模式中一般会涉及到多个消费者组,而每个消费者组在每个队列中的消费位置都是不同的。如果此时有多个消费者组,那么消息被一个消费者组消费完之后是不会删除的(因为其它消费者组也需要呀),它仅仅是为每个消费者组维护一个消费位移(offset),每次消费者组消费完会返回一个成功的响应,然后队列再把维护的消费位移加一,这样就不会出现刚刚消费过的消息再一次被消费了。

可能你还有一个问题,为什么一个主题中需要维护多个队列?

答案是提高并发能力。的确,每个主题中只存在一个队列也是可行的。你想一下,如果每个主题中只存在一个队列,这个队列中也维护着每个消费者组的消费位置,这样也可以做到发布订阅模式。

但是,这样我生产者是不是只能向一个队列发送消息?又因为需要维护消费位置所以一个队列只能对应一个消费者组中的消费者,这样是不是其他的 Consumer 就没有用武之地了?从这两个角度来讲,并发度一下子就小了很多。

RocketMQ架构图

RocketMQ 技术架构中有四大角色 NameServer、Broker、Producer、Consumer。我来向大家分别解释一下这四个角色是干啥的。

Broker:主要负责消息的存储、投递和查询以及服务高可用保证。说白了就是消息队列服务器嘛,生产者生产消息到 Broker,消费者从 Broker 拉取消息并消费。

这里,我还得普及一下关于 Broker、Topic 和队列的关系。上面我讲解了 Topic 和队列的关系——一个 Topic 中存在多个队列,那么这个 Topic 和队列存放在哪呢?

一个 Topic 分布在多个 Broker 上,一个 Broker 可以配置多个 Topic,它们是多对多的关系。

如果某个 Topic 消息量很大,应该给它多配置几个队列(上文中提到了提高并发能力),并且尽量多分布在不同 Broker 上,以减轻某个 Broker 的压力。

Topic 消息量都比较均匀的情况下,如果某个 broker 上的队列越多,则该 broker 压力越大。

所以说我们需要配置多个 Broker。
NameServer:不知道你们有没有接触过 ZooKeeper 和 Spring Cloud 中的 Eureka,它其实也是一个注册中心,主要提供两个功能:Broker 管理和路由信息管理。说白了就是 Broker 会将自己的信息注册到 NameServer 中,此时 NameServer 就存放了很多 Broker 的信息(Broker的路由表),消费者和生产者就从 NameServer 中获取路由表然后照着路由表的信息和对应的 Broker 进行通信(生产者和消费者定期会向 NameServer 去查询相关的 Broker 的信息)。

Producer:消息发布的角色,支持分布式集群方式部署。说白了就是生产者。

Consumer:消息消费的角色,支持分布式集群方式部署。支持以 push 推,pull 拉两种模式对消息进行消费。同时也支持集群方式和广播方式的消费,它提供实时消息订阅机制。说白了就是消费者。

当然,RocketMQ 中的技术架构肯定不止前面那么简单,因为上面图中的四个角色都是需要做集群的。我给出一张官网的架构图,大家尝试理解一下。

其实和我们最开始画的那张乞丐版的架构图也没什么区别,主要是一些细节上的差别,听我细细道来。

第一、我们的 Broker 做了集群并且还进行了主从部署,由于消息分布在各个 Broker 上,一旦某个 Broker 宕机,则该 Broker 上的消息读写都会受到影响。所以 RocketMQ 提供了 master/slave 的结构,salve 定时从 master 同步数据(同步刷盘或者异步刷盘),如果 master 宕机,则 slave 提供消费服务,但是不能写入消息(后面我还会提到)。

第二、为了保证 HA,我们的 NameServer 也做了集群部署,但是请注意它是去中心化的。也就意味着它没有主节点,你可以很明显地看出 NameServer 的所有节点是没有进行 Info Replicate 的,在 RocketMQ 中是通过单个 Broker 和所有 NameServer 保持长连接,并且在每隔 30 秒 Broker 会向所有 Nameserver 发送心跳,心跳包含了自身的 Topic 配置信息,这个步骤就对应这上面的 Routing Info。

第三、在生产者需要向 Broker 发送消息的时候,需要先从 NameServer 获取关于 Broker 的路由信息,然后通过轮询的方法去向每个队列中生产数据以达到负载均衡的效果。

第四、消费者通过 NameServer 获取所有 Broker 的路由信息后,向 Broker 发送 Pull 请求来获取消息数据。Consumer 可以以两种模式启动—— 广播(Broadcast)和集群(Cluster)。广播模式下,一条消息会发送给同一个消费组中的所有消费者,集群模式下消息只会发送给一个消费者。

如何解决顺序消费

在上面的技术架构介绍中,我们已经知道了 RocketMQ 在主题上是无序的、它只有在队列层面才是保证有序的。

这又扯到两个概念——普通顺序和严格顺序。

所谓普通顺序是指消费者通过同一个消费队列收到的消息是有顺序的,不同消息队列收到的消息则可能是无顺序的。普通顺序消息在 Broker 重启情况下不会保证消息顺序性(短暂时间)。

所谓严格顺序是指消费者收到的所有消息均是有顺序的。严格顺序消息即使在异常情况下也会保证消息的顺序性。

但是,严格顺序看起来虽好,实现它可会付出巨大的代价。如果你使用严格顺序模式,Broker 集群中只要有一台机器不可用,则整个集群都不可用。你还用啥?现在主要场景也就在 binlog 同步。

一般而言,我们的 MQ 都是能容忍短暂的乱序,所以推荐使用普通顺序模式。

那么,我们现在使用了普通顺序模式,我们从上面学习知道了在 Producer 生产消息的时候会进行轮询(取决你的负载均衡策略)来向同一主题的不同消息队列发送消息。那么如果此时我有几个消息分别是同一个订单的创建、支付、发货,在轮询的策略下这三个消息会被发送到不同队列,因为在不同的队列此时就无法使用 RocketMQ 带来的队列有序特性来保证消息有序性了。

那么,怎么解决呢?

其实很简单,我们需要处理的仅仅是将同一语义下的消息放入同一个队列(比如这里是同一个订单),那我们就可以使用 Hash 取模法来保证同一个订单在同一个队列中就行了。

如何解决重复消费

就两个字——幂等。在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。比如说,这个时候我们有一个订单的处理积分的系统,每当来一个消息的时候它就负责为创建这个订单的用户的积分加上相应的数值。可是有一次,消息队列发送给订单系统 FrancisQ 的订单信息,其要求是给 FrancisQ 的积分加上 500。但是积分系统在收到 FrancisQ 的订单信息处理完成之后返回给消息队列处理成功的信息的时候出现了网络波动(当然还有很多种情况,比如 Broker 意外重启等等),这条回应没有发送成功。

那么,消息队列没收到积分系统的回应会不会尝试重发这个消息?问题就来了,我再发这个消息,万一它又给 FrancisQ 的账户加上 500 积分怎么办呢?

所以我们需要给我们的消费者实现幂等,也就是对同一个消息的处理结果,执行多少次都不变。

那么如何给业务实现幂等呢?这个还是需要结合具体的业务的。你可以使用写入 Redis 来保证,因为 Redis 的 key 和 value 就是天然支持幂等的。当然还有使用数据库插入法,基于数据库的唯一键来保证重复数据不会被插入多条。

不过最主要的还是需要根据特定场景使用特定的解决方案,你要知道你的消息消费是否是完全不可重复消费还是可以忍受重复消费的,然后再选择强校验和弱校验的方式。毕竟在 CS 领域还是很少有技术银弹的说法。

而在整个互联网领域,幂等不仅仅适用于消息队列的重复消费问题,这些实现幂等的方法,也同样适用于,在其他场景中来解决重复请求或者重复调用的问题。比如将HTTP服务设计成幂等的,解决前端或者APP重复提交表单数据的问题,也可以将一个微服务设计成幂等的,解决 RPC 框架自动重试导致的重复调用问题。

幂等

在系统高并发的环境下,很有可能因为网络,阻塞等等问题导致客户端或者调用方并不能及时的收到服务端的反馈甚至是调用超时的问题。总之,就是请求方调用了你的服务,但是没有收到任何的信息,完全懵逼的状态。比如订单的问题,可能会遇到如下的几个问题:

创建订单时,第一次调用服务超时,再次调用是否产生两笔订单?

订单创建成功去减库存时,第一次减库存超时,是否会多扣一次?

订单支付时,服务端扣钱成功,但是接口反馈超时,此时再次调用支付,是否会多扣一笔呢?
作为消费者,前两种能接受,第三种情况就MMP了,哈哈哈!!!这种情况一般有如下两种解决方式

服务方提供一个查询操作是否成功的api,第一次超时之后,调用方调用查询接口,如果查到了就走成功的流程,失败了就走失败的流程。

另一种就是服务方需要使用幂等的方式保证一次和多次的请求结果一致。

幂等的实现方式(Http举例)

对于客户端交互的接口,可以在前端拦截一部分,例如防止表单重复提交,按钮置灰,隐藏,不可点击等方式。但是前端进行拦截器显然是针对普通用户,懂点技术的都可以模拟请求调用接口,所以后端幂等性很重要。
后端的幂等性如何实现?将会从以下几个方面介绍

数据库去重表

在往数据库中插入数据的时候,利用数据库唯一索引特性,保证数据唯一。比如订单的流水号,也可以是多个字段的组合。

状态机

很多业务中多有多个状态,比如订单的状态有提交、待支付、已支付、取消、退款等等状态。后端可以根据不同的状态去保证幂等性,比如在退款的时候,一定要保证这笔订单是已支付的状态。

TOKEN机制

针对客户端连续点击或者调用方的超时重试等情况,例如提交订单,此种操作就可以用Token的机制实现防止重复提交。
TOKEN机制如何实现?简单的说就是调用方在调用接口的时候先向后端请求一个全局ID(TOKEN),请求的时候携带这个全局ID一起请求,后端需要对这个全局ID校验来保证幂等操作
主要的流程步骤如下:

客户端先发送获取token的请求,服务端会生成一个全局唯一的ID保存在redis中,同时把这个ID返回给客户端。

客户端调用业务请求的时候必须携带这个token,一般放在请求头上。
服务端会校验这个Token,如果校验成功,则执行业务。

如果校验失败,则表示重复操作,直接返回指定的结果给客户端。

如何解决分布式

如何解释分布式事务呢?事务大家都知道吧?要么都执行要么都不执行。在同一个系统中我们可以轻松地实现事务,但是在分布式架构中,我们有很多服务是部署在不同系统之间的,而不同服务之间又需要进行调用。比如此时我下订单然后增加积分,如果保证不了分布式事务的话,就会出现A系统下了订单,但是B系统增加积分失败或者A系统没有下订单,B系统却增加了积分。前者对用户不友好,后者对运营商不利,这是我们都不愿意见到的。

在第一步发送的 half 消息,它的意思是在事务提交之前,对于消费者来说,这个消息是不可见的。

那么,如何做到写入消息但是对用户不可见呢?RocketMQ 事务消息的做法是:如果消息是 half 消息,将备份原消息的主题与消息消费队列,然后改变主题为 RMQ_SYS_TRANS_HALF_TOPIC。由于消费组未订阅该主题,故消费端无法消费 half 类型的消息,然后 RocketMQ 会开启一个定时任务,从 Topic 为 RMQ_SYS_TRANS_HALF_TOPIC 中拉取消息进行消费,根据生产者组获取一个服务提供者发送回查事务状态请求,根据事务状态来决定是提交或回滚消息。

你可以试想一下,如果没有从第 5 步开始的 事务反查机制 ,如果出现网路波动第 4 步没有发送成功,这样就会产生 MQ 不知道是不是需要给消费者消费的问题,他就像一个无头苍蝇一样。在 RocketMQ 中就是使用的上述的事务反查来解决的,而在 Kafka 中通常是直接抛出一个异常让用户来自行解决。

你还需要注意的是,在 MQ Server 指向系统B的操作已经和系统A不相关了,也就是说在消息队列中的分布式事务是——本地事务和存储消息到消息队列才是同一个事务。这样也就产生了事务的最终一致性,因为整个过程是异步的,每个系统只要保证它自己那一部分的事务就行了。

消息堆积问题

在上面我们提到了消息队列一个很重要的功能——削峰。那么如果这个峰值太大了导致消息堆积在队列中怎么办呢?

其实这个问题可以将它广义化,因为产生消息堆积的根源其实就只有两个——生产者生产太快或者消费者消费太慢。

我们可以从多个角度去思考解决这个问题,当流量到峰值的时候是因为生产者生产太快,我们可以使用一些限流降级的方法,当然你也可以增加多个消费者实例去水平扩展增加消费能力来匹配生产的激增。如果消费者消费过慢的话,我们可以先检查是否是消费者出现了大量的消费错误,或者打印一下日志查看是否是哪一个线程卡死,出现了锁资源不释放等等的问题。

当然,最快速解决消息堆积问题的方法还是增加消费者实例,不过同时你还需要增加每个主题的队列数量。

别忘了在 RocketMQ 中,一个队列只会被一个消费者消费,如果你仅仅是增加消费者实例就会出现我一开始给你画架构图的那种情况。

回溯消费

回溯消费是指 Consumer 已经消费成功的消息,由于业务上需求需要重新消费,在 RocketMQ 中,Broker 在向 Consumer 投递成功消息后,消息仍然需要保留。并且重新消费一般是按照时间维度,例如由于 Consumer 系统故障,恢复后需要重新消费 1 小时前的数据,那么 Broker 要提供一种机制,可以按照时间维度来回退消费进度。RocketMQ 支持按照时间回溯消费,时间维度精确到毫秒。

RocketMQ 的刷盘机制(解决的是如何持久化的问题)

上面我讲了那么多的 RocketMQ 的架构和设计原理,你有没有好奇
在 Topic 中的队列是以什么样的形式存在的?

队列中的消息又是如何进行存储持久化的呢?

我在上文中提到的同步刷盘和异步刷盘又是什么呢?它们会给持久化带来什么样的影响呢?

下面我将给你们一一解释。
同步刷盘和异步刷盘

如上图所示,在同步刷盘中需要等待一个刷盘成功的 ACK,同步刷盘对 MQ 消息可靠性来说是一种不错的保障,但是性能上会有较大影响,一般地适用于金融等特定业务场景。

而异步刷盘往往是开启一个线程去异步地执行刷盘操作。消息刷盘采用后台异步线程提交的方式进行,降低了读写延迟,提高了 MQ 的性能和吞吐量,一般适用于如发验证码等对于消息保证要求不太高的业务场景。

一般地,异步刷盘只有在 Broker 意外宕机的时候会丢失部分数据,你可以设置 Broker 的参数 FlushDiskType 来调整你的刷盘策略(ASYNC_FLUSH 或者 SYNC_FLUSH)。

同步复制和异步复制(主从,解决了备份的问题,是与业务同步进行的,就像吃饭的时候要吃菜一样)

上面的同步刷盘和异步刷盘是在单个结点层面的,而同步复制和异步复制主要是指的 Borker 主从模式下,主节点返回消息给客户端的时候是否需要同步从节点。
同步复制:也叫 “同步双写”,也就是说,只有消息同步双写到主从结点上时才返回写入成功。
异步复制:消息写入主节点之后就直接返回写入成功。

然而,很多事情是没有完美的方案的,就比如我们进行消息写入的节点越多就更能保证消息的可靠性,但是随之的性能也会下降,所以需要程序员根据特定业务场景去选择适应的主从复制方案。

那么,异步复制会不会也像异步刷盘那样影响消息的可靠性呢?

答案是不会的,因为两者就是不同的概念,对于消息可靠性是通过不同的刷盘策略保证的,而像异步同步复制策略仅仅是影响到了 可用性。为什么呢?其主要原因是 RocketMQ 是不支持自动主从切换的,当主节点挂掉之后,生产者就不能再给这个主节点生产消息了。

比如这个时候采用异步复制的方式,在主节点还未发送完需要同步的消息的时候主节点挂掉了,这个时候从节点就少了一部分消息。但是此时生产者无法再给主节点生产消息了,消费者可以自动切换到从节点进行消费(仅仅是消费),所以在主节点挂掉的时间只会产生主从结点短暂的消息不一致的情况,降低了可用性,而当主节点重启之后,从节点那部分未来得及复制的消息还会继续复制。

在单主从架构中,如果一个主节点挂掉了,那么也就意味着整个系统不能再生产了。那么这个可用性的问题能否解决呢?一个主从不行那就多个主从的呗,别忘了在我们最初的架构图中,每个 Topic 是分布在不同 Broker 中的。

但是这种复制方式同样也会带来一个问题,那就是无法保证严格顺序。在上文中我们提到了如何保证的消息顺序性是通过将一个语义的消息发送在同一个队列中,使用 Topic 下的队列来保证顺序性的。如果此时我们主节点 A 负责的是订单 A 的一系列语义消息,然后它挂了,这样其他节点是无法代替主节点A的,如果我们任意节点都可以存入任何消息,那就没有顺序性可言了。

而在 RocketMQ 中采用了 Dledger 解决这个问题。他要求在写入消息的时候,要求至少消息复制到半数以上的节点之后,才给客⼾端返回写⼊成功,并且它是⽀持通过选举来动态切换主节点的。这里我就不展开说明了,读者可以自己去了解。

也不是说 Dledger 是个完美的方案,至少在 Dledger 选举过程中是无法提供服务的,而且他必须要使用三个节点或以上,如果多数节点同时挂掉他也是无法保证可用性的,而且要求消息复制板书以上节点的效率和直接异步复制还是有一定的差距的。

存储机制

还记得上面我们一开始的三个问题吗?到这里第三个问题已经解决了。

但是,在 Topic 中的队列是以什么样的形式存在的?队列中的消息又是如何进行存储持久化的呢?还未解决,其实这里涉及到了 RocketMQ 是如何设计它的存储结构了。我首先想大家介绍 RocketMQ 消息存储架构中的三大角色——CommitLog、ConsumeQueue 和 IndexFile。
CommitLog:消息主体以及元数据的存储主体,存储 Producer 端写入的消息主体内容,消息内容不是定长的。单个文件大小默认 1G ,文件名长度为 20 位,左边补零,剩余为起始偏移量,比如 00000000000000000000 代表了第一个文件,起始偏移量为 0,文件大小为 1G = 1073741824;当第一个文件写满了,第二个文件为 00000000001073741824,起始偏移量为 1073741824,以此类推。消息主要是顺序写入日志文件,当文件满了,写入下一个文件。
ConsumeQueue:消息消费队列,引入的目的主要是提高消息消费的性能(我们再前面也讲了),由于 RocketMQ 是基于主题 Topic 的订阅模式,消息消费是针对主题进行的,如果要遍历 commitlog 文件中根据 Topic 检索消息是非常低效的。Consumer 即可根据 ConsumeQueue 来查找待消费的消息。其中,ConsumeQueue(逻辑消费队列)作为消费消息的索引,保存了指定 Topic 下的队列消息在 CommitLog 中的起始物理偏移量 offset,消息大小 size 和消息 Tag 的 HashCode 值。consumequeue 文件可以看成是基于 topic 的 commitlog 索引文件,故 consumequeue 文件夹的组织方式如下:topic/queue/file 三层组织结构,具体存储路径为:$HOME/store/consumequeue/{topic}/{queueId}/{fileName}。同样 consumequeue 文件采取定长设计,每一个条目共 20 个字节,分别为 8 字节的 commitlog 物理偏移量、4 字节的消息长度、8 字节 tag hashcode,单个文件由 30W 个条目组成,可以像数组一样随机访问每一个条目,每个 ConsumeQueue 文件大小约 5.72M;
IndexFile:IndexFile(索引文件)提供了一种可以通过 key 或时间区间来查询消息的方法。这里只做科普不做详细介绍。

总结来说,整个消息存储的结构,最主要的就是 CommitLoq 和 ConsumeQueue。而 ConsumeQueue 你可以大概理解为 Topic 中的队列。

RocketMQ 采用的是混合型的存储结构,即为 Broker 单个实例下所有的队列共用一个日志数据文件来存储消息。有意思的是在同样高并发的 Kafka 中会为每个 Topic 分配一个存储文件。这就有点类似于我们有一大堆书需要装上书架,RockeMQ 是不分书的种类直接成批的塞上去的,而 Kafka 是将书本放入指定的分类区域的。

而 RocketMQ 为什么要这么做呢?原因是提高数据的写入效率,不分 Topic 意味着我们有更大的几率获取成批的消息进行数据写入,但也会带来一个麻烦就是读取消息的时候需要遍历整个大文件,这是非常耗时的。

所以,在 RocketMQ 中又使用了 ConsumeQueue 作为每个队列的索引文件来提升读取消息的效率。我们可以直接根据队列的消息序号,计算出索引的全局位置(索引序号*索引固定⻓度20),然后直接读取这条索引,再根据索引中记录的消息的全局位置,找到消息。

讲到这里,你可能对 RocketMQ 的存储架构还有些模糊,没事,我们结合着图来理解一下。

如果上面没看懂的读者一定要认真看下面的流程分析!

首先,在最上面的那一块就是我刚刚讲的你现在可以直接把 ConsumerQueue 理解为 Queue。

在图中最左边说明了红色方块代表被写入的消息,虚线方块代表等待被写入的。左边的生产者发送消息会指定 Topic、QueueId 和具体消息内容,而在 Broker 中管你是哪门子消息,他直接全部顺序存储到了 CommitLog。而根据生产者指定的 Topic 和 QueueId 将这条消息本身在 CommitLog 的偏移(offset),消息本身大小,和 tag 的 hash 值存入对应的 ConsumeQueue 索引文件中。而在每个队列中都保存了 ConsumeOffset 即每个消费者组的消费位置(我在架构那里提到了,忘了的同学可以回去看一下),而消费者拉取消息进行消费的时候只需要根据 ConsumeOffset 获取下一个未被消费的消息就行了。

上述就是我对于整个消息存储架构的大概理解(这里不涉及到一些细节讨论,比如稀疏索引等等问题),希望对你有帮助。

因为有一个知识点因为写嗨了忘讲了,想想在哪里加也不好,所以我留给大家去思考一下吧。

为什么 CommitLog 文件要设计成固定大小的长度呢?提醒:内存映射机制。

RocketMq 入门相关推荐

  1. rocketmq 顺序消费_必须先理解的RocketMQ入门手册,才能再次深入解读

    推荐阅读一下下 2020年后想跳槽?MQ.ZK.Nginx.Kafk等分布式技术你都掌握了? 阿里架构师推荐学习的<RabbitMQ实战指南>,渣渣的你都看过吗? RocketMQ入门手册 ...

  2. Spring Boot 消息队列 RocketMQ 入门

    转载自  芋道 Spring Boot 消息队列 RocketMQ 入门 摘要: 原创出处 http://www.iocoder.cn/Spring-Boot/RocketMQ/ 「芋道源码」欢迎转载 ...

  3. rocketmq 订阅组_必须先理解的RocketMQ入门手册,才能再次深入解读

    推荐阅读一下下 2020年后想跳槽?MQ.ZK.Nginx.Kafk等分布式技术你都掌握了? 阿里架构师推荐学习的<RabbitMQ实战指南>,渣渣的你都看过吗? RocketMQ入门手册 ...

  4. RocketMQ入门到入土(七 )为什么同一个消费组设置不同tag会出现奇怪现象

    精彩推荐 一百期Java面试题汇总 SpringBoot内容聚合 IntelliJ IDEA内容聚合 Mybatis内容聚合 接上一篇:RocketMQ入门到入土(六)发消息的时候选择queue的算法 ...

  5. RocketMQ入门到入土(六)发消息的时候选择queue的算法有哪些?

    精彩推荐 一百期Java面试题汇总 SpringBoot内容聚合 IntelliJ IDEA内容聚合 Mybatis内容聚合 接上一篇:RocketMQ入门到入土(五)消息持久化存储源码解析 一.说明 ...

  6. RocketMQ入门到入土(五)消息持久化存储源码解析

    精彩推荐 一百期Java面试题汇总 SpringBoot内容聚合 IntelliJ IDEA内容聚合 Mybatis内容聚合 接上一篇:RocketMQ入门到入土(四)producer生产消息源码剖析 ...

  7. RocketMQ入门到入土(二)事务消息顺序消息

    精彩推荐 一百期Java面试题汇总 SpringBoot内容聚合 IntelliJ IDEA内容聚合 Mybatis内容聚合 接上一篇:RocketMQ入门到入土(一)新手也能看懂的原理和实战! 一. ...

  8. RocketMQ入门及部署

    RocketMQ入门及部署 RocketMQ整体架构 如上图所示,整体可以分成4个角色,分别是:Producer,Consumer,Broker以及NameServer: 1.NameServer 可 ...

  9. 芋道 Spring Boot 消息队列 RocketMQ 入门

    点击上方"芋道源码",选择"设为星标" 做积极的人,而不是积极废人! 源码精品专栏 原创 | Java 2020 超神之路,很肝~ 中文详细注释的开源项目 RP ...

最新文章

  1. [comparator] 策略模式
  2. are exo exo是什么歌 we_are exo exo是什么歌 we_EXO we are one
  3. 提高SQL执行效率的16种方法
  4. Linux下备份cisco路由配置
  5. 关于div中图片水平垂直居中的问题
  6. java类的方法 作用 属性_JAVA:类和对象(秒懂版)
  7. 纳德拉:Excel是微软的最佳象征 难以想象没有它的世界
  8. 手机腾讯网mt框架简介
  9. wps怎么生成html,wps如何自动生成页码 wps页码设置详细方法
  10. 阿里云服务器实例规格型号、功能、型号级别介绍及选择
  11. nlp-形式语言与自动机-ch03
  12. 研究揭示人类大脑进化的基因组调控机制
  13. SQL Server Always Encrypted
  14. 【WCN685X】WCN685X WiFi 6E 6G信道与频宽对应关系
  15. 远程破解Linux操作系统密码
  16. Unity3D游戏开发之当游戏开发遇上Excel
  17. 【无线篇】(6.0) ❀ 02. 连接电源 ❀ FortiAP 无线AP
  18. c语言对物联网专业的关系,揭秘物联网必学语言——C语言与C++的区别
  19. 以前VCD感觉很清晰,为什么现在有些视频用电脑看感觉画面惨不忍睹?
  20. 办公学习常用浏览器:这4款浏览器高效简洁无广告,快收藏

热门文章

  1. 数智工厂行业调研报告
  2. 国产操作系统之银河麒麟服务器版V10安装
  3. EhCache看这一篇就够了
  4. oracle 加密方案
  5. 最强大脑唯爱水哥、ACM敬佩楼教主
  6. 如何配置FS726T的链路聚合--Trunking
  7. 并行处理及分布式系统 第二章 并行硬件和并行软件
  8. 阿里云配置防火墙规则
  9. 正准备换工作的你需要注意哪些面试细节
  10. 机智云OTA过程MCU端程序设计学习(一)