LVS概述

1.LVS:Linux Virtual Server
四层交换(路由):根据请求报文的目标IP和目标PORT将其转发至后端主机集群中的某台服务器(根据调度算法);
不能够实现应用层的负载均衡
lvs(又称ipvs)是基于内核中的防火墙netfilter实现

2.lvs集群术语:

vs:Virtual Server 虚拟服务,可称为Director、Dispatcher分发器、Balancer负载均衡器
rs:Real Server 真实服务器
CIP:Client IP 客户端IP
VIP:Director Virtual IP 等同于FIP(流动IP),负载均衡器虚拟IP
DIP:Director IP 调度IP(第二张网卡IP地址)
RIP:Real Server IP 真实服务器IP

3.LVS:ipvsadm/ipvs

(1)ipvsadm: CLI工具
用户空间的命令行工具,用于管理集群服务及集群服务上的RS等;# yum install -y ipvsadm

(2)ipvs:内核存在(CentOS默认支持)

工作于内核上的netfilterINPUT钩子之上的程序代码;其集群功能依赖于ipvsadm定义的集群服务器规则;
支持基于TCP、UDP、SCTP、AH、EST、AH_EST等协议的众多服务;

4.负载均衡集群中设计时的要点:

(1)session保持
session sticky (iphash):IP地址绑定,来源IP记录在ip hash表作统一调度
session cluster(multicast/broadcast/unicast):广播集群同步(复制)session,只适用于小规模场景
session server ():session服务器

(2)数据共享(提供一致性存储)
1) 共享存储;
NAS:Network Attached Storage (文件级别),网络附加存储,文件服务器
SAN:Storage Area Network (块级别),存储区域网络
DS:Distributed Storage,分布式春初
2) 数据同步:rsync … ...

LVS模型

1.lvs-nat:地址伪装模型
多目标的DNAT:通过将请求报文的目标地址和目标端口修改为挑选出某RS的RIP和PORT来实现;
客户端主机发起请求报文CIP指向VIP,通过内核的核心网卡间转发功能,VIP会将请求交给DIP进行调度,DIP根据设定的算法进行负载均衡给后端的RS主机的RIP,在这个过程中DIP调度功能会将目标IP地址重写为RIP。请求和返回请求读要调度DIP来进行转换操作。

(1)RIP和DIP应该使用私网地址,RS的网状应该指向DIP;
(2)请求和响应报文都要经由director转发;极高负载的场景中,Director可能会成为系统瓶颈(响应报文大);
(3) 支持端口映射(转发);
(4) VS必须为Linux,RS可以为任意操作系统;
(5)RS的RIP与Director的DIP必须在同一IP网络;

2.lvs-dr(direct routing直接路由):网关模型
通过修改请求报文的MAC地址进行转发;IP首部不会发生变化(源IP为CIP,目标IP始终为VIP)
客户端发起请求,经过层层路由到达离VS服务器最近的交换机,通过交换机转发给VS服务器,由VS服务器负载均衡转发请求给RS服务器。在此过程中VIP修改MAC地址调度请求给真实主机。在此过程中通过ARP协议在一个局域网中广播寻找真实主机的MAC地址。每个RS真实主机的网卡会一个别名地址VIP,实现全过程源地址为CIP,目标地址为VIP不变。调度基于寻找MAC。网关模型中的所有主机均要能与外网通信。这样RS主机就能够直接响应客户机。

(1)确保前端路由器将目标IP为VIP的请求报文一定会发送给Director;
解决方案:
1)静态绑定;
2)禁止RS响应VIP的ARP请求;
a) arptables上定义;
b) 修改各RS的内核参数,并把VIP配置在特定的接口上实现禁止其响应;

(2)RS的RIP可以使用私有地址,也可以使用公网地址;
RIP使用私有地址可以通过在之前加一个路由器的方式和外网通信,直接响应客户机
(3)RS跟Director必须在同一物理网络中;
(4)请求报文必须由Director调度,但响应报文必须不能经由Director;
(5) 不支持端口映射;
(6) 各RS可以使用大多数的操作系统;

3.lvs-tun(ip tunneling):IP隧道模型
转发方式:不修改请求报文的IP首部(源IP为CIP,目标IP为VIP),而是在原有的IP首部这外再次封装一个IP首部(源IP为DIP,目标IP为RIP);
(1)RIP,DIP,VIP全得是公网地址;
(2)RS的网关不能也不可能指向DIP;
(3)请求报文经由Director调度,但响应报文将直接发给CIP;
(4) 不支持端口映射;
(5)RS的OS必须支持IP隧道功能;

4.lvs-fullnat:完整模型(同时改变请求报文的源IP和目标IP)
通过同时修改请求报文的源IP地址(cip-->dip)和目标IP地址(vip--> rip)实现转发;
注意:前三种为标准类型,第四种为后添加类型,内核默认可能不支持,需自编译内核
(1)VIP是公网地址;RIP和DIP是私网地址,且可以不在同一IP网络中,但需要通过路由互相通信;
(2)RS收到的请求报文的源IP为DIP,因此其响应报文将发送给DIP;
(3)请求报文和响应报文都必须经由director;
(4) 支持端口映射;
(5) RS可使用任意OS;

LVS scheduler调度算法

1.静态方法:仅根据算法本身进行调度
(1)RR :round robin,轮询机制,依次分配请求,方式简单但时负载均衡的效果一般
(2)WRR :weighted rr,加权轮询,权重越大承担负载越大
(3)SH :source ip hash,源地址哈希,将来自同一个ip请求通过记录在ip hsash表中绑定在同一个服务器,实现session保持
缺点:调度粒度大,对负载均衡效果差;session黏性不同,连接时长保持不同
(4)DH :desination ip hash,目标地址哈希。能实现连接追踪,但不考虑负载均衡效果
正向web代理,负载均衡内网用户对互联网的请求;
Client--> Director --> Web Cache Server(正向代理)

2.动态方法:根据算法及各RS当前的负载状态进行评估

Overhead 负载值,VS转发时记录每个RS的Active和Inactive数量(甚至权重)进行算法计算
Active 活动链接值,当发起新请求后保持在ESTABLISHED状态时,仍有请求响应
Inactive 非活动链接值,在ESTABLISHED状态时,尚未断开保持空闲等待状态

(1)LC:least connection,最少连接
Overhead=Active*256+Inactive
后端的RS谁的连接少就分发请求至那台RS,若overhead一样则自上而下轮询列表中的RS

(2)WLC:weighted least connection,加权最小连接
Overhead=(Active*256+Inactive)/weight,计算结果小的将为选中的下一跳RS服务器
缺点:当Overhead一样时,自上而下轮询响应,权重小的若在列表上方则其会响应

(3)SED:Shortest Expection Delay,最短期望延迟
Overhead=(Active+1)*256/weight
缺点:解决WLC问题,但时无法确保权重小的主机一定响应

(4)NQ:never Queue,永不排队,SED算法改进
RS权重大小排列,每台RS服务器先分配一个请求,其余的按照权重大小计算分配

(5)LBLC:Locality-Based LC,基于本地的最少连接,动态的 DH连接算法

(6)LBLCR:LBLC with Replication,带复制功能的LBLC

ipvsadm命令

1.管理集群服务:

ipvsadm -A|E -t|u|f service-address [-s scheduler][-p [timeout]]
ipvsadm -D -t|u|f service-address
-A:添加
-E:修改
-D:删除
-t, tcp, vip:port    TCP的ip和port
-u, udp, vip:port    UDP的ip和port
-f, fwm, MARK       防火墙标记
-s scheduler:默认为WLC调度算法,可省;
-p [timeout] :超出时长,持久连接相关,默认时长为300秒

2.管理集群服务上的RS:

ipvsadm-a|e -t|u|f service-address -rserver-address [-g|i|m] [-w weight]
ipvsadm -d -t|u|f service-address -rserver-address
-a:添加一个RS
-e:修改一个RS
-d:删除一个RS
server-address指的是rip[:port],端口可省表示与之前的service-address相同,只有nat模式支持端口映射才会使用
[-g|i|m]
-g:GATEWAY (默认),lvs-dr模型
-i: IPIP, lvs-tun隧道模型
-m: MASQUERADE,lvs-nat模型

3.查看

ipvsadm -L|l[options]
-n:numeric,数字格式显示地址和端口;
-c:connection,显示ipvs连接;
--stats:显示统计数据;
--rate:速率
--exact:精确值,不经过单位换算的数值

4.清空规则:

ipvsadm -C

5.数器清零:

ipvsadm -Z [-t|u|f service-address]

6.保存和重载:

保存:

ipvsadm-S > /PATH/TO/SOME_RULE_FILE
ipvsadm-save > /PATH/TO/SOME_RULE_FILE

重载:

ipvsadm -R < /PATH/FROM/SOME_RULE_FILE
ipvsadm-restore< /PATH/FROM/SOME_RULE_FILE

注意:需要结合重定向一起使用,从自定义的规则文件中导入导出

附录(ipvsadm -h):

ipvsadm-A|E -t|u|f service-address [-s scheduler]
[-p[timeout]] [-M netmask] [-b sched-flags]
ipvsadm-D -t|u|f service-address
ipvsadm-C
ipvsadm-R
ipvsadm-S [-n]
ipvsadm-a|e -t|u|f service-address -r server-address
[-g|i|m][-w weight] [-x upper] [-y lower]
ipvsadm-d -t|u|f service-address -r server-address
ipvsadm-L|l [options]
ipvsadm-Z [-t|u|f service-address]
ipvsadm--set tcp tcpfin udp
ipvsadm-h

LVS负载均衡集群服务搭建详解(一)相关推荐

  1. LVS负载均衡集群服务搭建详解

    一.LVS概述  1.LVS:Linux Virtual Server 四层交换(路由):根据请求报文的目标IP和目标PORT将其转发至后端主机集群中的某台服务器(根据调度算法): 不能够实现应用层的 ...

  2. 超详细!一文带你了解 LVS 负载均衡集群!

    作者 | JackTian 来源 | 杰哥的IT之旅(ID:Jake_Internet) 前言 如今,在各种互联网应用中,随着站点对硬件性能.响应速度.服务稳定性.数据可靠性等要求也越来越高,单台服务 ...

  3. LVS 负载均衡集群(一)| 超详细!一文带你了解 LVS 负载均衡集群

    前言 如今,在各种互联网应用中,随着站点对硬件性能.响应速度.服务稳定性.数据可靠性等要求也越来越高,单台服务器也将难以无法承担所有的访问需求.当然了,除了使用性价比高的设备和专用负载分流设备外,还有 ...

  4. LVS 负载均衡集群详细介绍

    目录 0 前言 1 什么是 LVS? 3 为什么要用 LVS? 4 LVS 的组成及作用 5 负载均衡的由来及所带来的好处 6 LVS 负载均衡集群的类型 7 DNS / 软硬件负载均衡的类型 8 L ...

  5. 高性能Linux服务器 第11章 构建高可用的LVS负载均衡集群

    高性能Linux服务器 第11章 构建高可用的LVS负载均衡集群 libnet软件包<-依赖-heartbeat(包含ldirectord插件(需要perl-MailTools的rpm包)) l ...

  6. 集群(一)——LVS负载均衡集群

    集群(一)--LVS负载均衡集群 一.企业群集应用 1.群集的含义 2.问题出现 3.解决办法 4.根据群集所针对的目标差异进行分类 ①.负载均衡群集 ②.高可用群集 ③.高性能运算群集 二.负载均衡 ...

  7. LVS负载均衡集群概念

    LVS负载均衡集群概念 一.群集的含义 集群.群集 由多台主机构成,但对外,只表现为一个整体,只提供一个访问入口(域名或IP),相当于一台大型计算机. 1.群集存在的必要 互联网应用中,随着站点对硬件 ...

  8. ①lvs负载均衡集群 详解

    文章目录 负载均衡集群 1.集群是什么? 7.七层的负载均衡(基于虚拟的URL或主机IP的负载均衡) 8.四层负载与七层负载的区别 LVS 实现四层负载均衡项目实战 1.LVS 介绍 2.LVS 优势 ...

  9. LVS负载均衡集群——NAT

    目录 一.集群与分布式 1.1.集群的含义 1.2.lvs模型 1.3.系统性能扩展方式 1.4.集群的三种类型 1.5.LVS的负载调度算法 1.6.集群设计原则 1.7.负载均衡集群架构 ​二.L ...

最新文章

  1. python爬取疫情信息html.xpath p标签_python xpath 如何过滤div中的script和style标签
  2. Core Graphics
  3. 如何扩展Dojo tree成chekbox tree
  4. 两个排序数组合并第k或前k个最小值问题
  5. ReactNative实现图集功能
  6. 苹果13英寸MacBook Pro有望下月更新 搭载M2芯片
  7. 50阶乘c语言思想,求10000的阶乘(c语言代码实现)
  8. MySQL常用命令集锦
  9. python word文档转html
  10. 尚德计算机科学与技术网课,计算机科学与技术
  11. EayRadius 于 2013-7-19 进行体验度更新,增加用户体验度
  12. 【python、matlab】sRGB颜色空间与线性sRGB空间转换
  13. Android攻城狮fragment
  14. Ice飞冰注意问题和可视化组件《三》
  15. ExcelJs导出Excel文件并设置单元格样式
  16. 数学基础知识(扩展欧几里得定理)
  17. 中国城市人口排名(最新版)
  18. 北大软微2021计算机考研难度,2021北京大学软微计算机智能科技方向考研报录情况及备考经验分享...
  19. 商汤科技自动驾驶研究员2019校招笔试第一题-跳台阶(每次可跳1~m级,跳到第n级的跳法总数)
  20. 根据指定字母,顺序输出若干相邻字母 C语言

热门文章

  1. vue 打包之后不兼容ie_vue中使用的一些问题(IE不兼容,打包样式不生效)
  2. python解析器打包_打包发布Python模块的方法详解
  3. linux的网络管理,Linux下的网络管理工具—OpenNMS
  4. 深入浅出linux驱动,Linux Kernel 字符驱动的深入浅出讲解
  5. python 读取pdf 两栏_python 读取pdf
  6. 乌班图 修改ip_Ubuntu临时和永久修改ip地址掩码和网关
  7. oracle 完整约束,【oracle】完整性約束
  8. redis cluster迁移相关
  9. 用VB如读取内存地址
  10. Linux下Grub命令配置详解