目录

Unet++网络

Dense connection

deep supervision

模型复现

Unet++

数据集准备

模型训练

训练结果


Unet++:《UNet++: A Nested U-Net Architecture for Medical Image Segmentation》

作者对Unet和Unet++的理解:研习U-Net

延续前文:语义分割系列2-Unet(pytorch实现)

本文将介绍Unet++网络,在pytorch框架上复现Unet++,并在Camvid数据集上进行训练。


Unet++网络

Dense connection

Unet++继承了Unet的结构,同时又借鉴了DenseNet的稠密连接方式(图1中各种分支)。

图1 Unet++网络结构

作者通过各层之间的稠密连接,互相连接起来,就像Denset那样,前前后后每一个模块互相作用,每一个模块都能看到彼此,那对彼此互相熟悉,分割效果自然就会变好。

在实际分割中,一次次的下采样自然会丢掉一些细节特征,在Unet中是使用skip connection来恢复这些细节,但能否做的更好呢?Unet++就给出了答案,这种稠密连接的方式,每一层都尽量多的保存这种细节信息和全局信息,一层层之间架起桥梁互相沟通,最后共享给最后一层,实现全局信息和局部信息的保留和重构。

deep supervision

当然,简单的将各个模块连接起来是会实现很好的效果。而我们又能发现,一个Unet++其实是很多个不同深度的Unet++叠加。那么,每一个深度的Unet++是不是就都可以输出一个loss?答案自然是可以的。

所以,作者提出了deep supervision,也就是监督每一个深度的Unet++的输出,通过一定的方式来叠加Loss(比如加权的方式),这样就得到了一个经由1、2、3、4层的Unet++的加权Loss(图2 不同深度Unet++融合)。

图2 不同深度Unet++融合

那么,deep supervision又有什么用呢?-剪枝

既然Unet++由多个不同深度的Unet++叠加起来,那么随意去掉一层,前向传播的梯度不会受到任何变化,但你发现Unet++第三个输出的效果和第四个输出效果差不多时,那就可以毫不犹豫删去4层深度的Unet++。比如,直接删去图3中棕色部分,就可以实现剪枝。这样,就得到了更加轻量化的网络。

图3 剪枝模型

模型复现

Unet++

为了更直观一些,我把代码中的所有符号都和网络结构中对应上了。

import torch
import torch.nn as nn
class ContinusParalleConv(nn.Module):# 一个连续的卷积模块,包含BatchNorm 在前 和 在后 两种模式def __init__(self, in_channels, out_channels, pre_Batch_Norm = True):super(ContinusParalleConv, self).__init__()self.in_channels = in_channelsself.out_channels = out_channelsif pre_Batch_Norm:self.Conv_forward = nn.Sequential(nn.BatchNorm2d(self.in_channels),nn.ReLU(),nn.Conv2d(self.in_channels, self.out_channels, 3, padding=1),nn.BatchNorm2d(out_channels),nn.ReLU(),nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1))else:self.Conv_forward = nn.Sequential(nn.Conv2d(self.in_channels, self.out_channels, 3, padding=1),nn.BatchNorm2d(out_channels),nn.ReLU(),nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1),nn.BatchNorm2d(self.out_channels),nn.ReLU())def forward(self, x):x = self.Conv_forward(x)return xclass UnetPlusPlus(nn.Module):def __init__(self, num_classes, deep_supervision=False):super(UnetPlusPlus, self).__init__()self.num_classes = num_classesself.deep_supervision = deep_supervisionself.filters = [64, 128, 256, 512, 1024]self.CONV3_1 = ContinusParalleConv(512*2, 512, pre_Batch_Norm = True)self.CONV2_2 = ContinusParalleConv(256*3, 256, pre_Batch_Norm = True)self.CONV2_1 = ContinusParalleConv(256*2, 256, pre_Batch_Norm = True)self.CONV1_1 = ContinusParalleConv(128*2, 128, pre_Batch_Norm = True)self.CONV1_2 = ContinusParalleConv(128*3, 128, pre_Batch_Norm = True)self.CONV1_3 = ContinusParalleConv(128*4, 128, pre_Batch_Norm = True)self.CONV0_1 = ContinusParalleConv(64*2, 64, pre_Batch_Norm = True)self.CONV0_2 = ContinusParalleConv(64*3, 64, pre_Batch_Norm = True)self.CONV0_3 = ContinusParalleConv(64*4, 64, pre_Batch_Norm = True)self.CONV0_4 = ContinusParalleConv(64*5, 64, pre_Batch_Norm = True)self.stage_0 = ContinusParalleConv(3, 64, pre_Batch_Norm = False)self.stage_1 = ContinusParalleConv(64, 128, pre_Batch_Norm = False)self.stage_2 = ContinusParalleConv(128, 256, pre_Batch_Norm = False)self.stage_3 = ContinusParalleConv(256, 512, pre_Batch_Norm = False)self.stage_4 = ContinusParalleConv(512, 1024, pre_Batch_Norm = False)self.pool = nn.MaxPool2d(2)self.upsample_3_1 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=4, stride=2, padding=1) self.upsample_2_1 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=1) self.upsample_2_2 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=1) self.upsample_1_1 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=4, stride=2, padding=1) self.upsample_1_2 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=4, stride=2, padding=1) self.upsample_1_3 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=4, stride=2, padding=1) self.upsample_0_1 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=4, stride=2, padding=1) self.upsample_0_2 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=4, stride=2, padding=1) self.upsample_0_3 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=4, stride=2, padding=1) self.upsample_0_4 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=4, stride=2, padding=1) # 分割头self.final_super_0_1 = nn.Sequential(nn.BatchNorm2d(64),nn.ReLU(),nn.Conv2d(64, self.num_classes, 3, padding=1),)        self.final_super_0_2 = nn.Sequential(nn.BatchNorm2d(64),nn.ReLU(),nn.Conv2d(64, self.num_classes, 3, padding=1),)        self.final_super_0_3 = nn.Sequential(nn.BatchNorm2d(64),nn.ReLU(),nn.Conv2d(64, self.num_classes, 3, padding=1),)        self.final_super_0_4 = nn.Sequential(nn.BatchNorm2d(64),nn.ReLU(),nn.Conv2d(64, self.num_classes, 3, padding=1),)        def forward(self, x):x_0_0 = self.stage_0(x)x_1_0 = self.stage_1(self.pool(x_0_0))x_2_0 = self.stage_2(self.pool(x_1_0))x_3_0 = self.stage_3(self.pool(x_2_0))x_4_0 = self.stage_4(self.pool(x_3_0))x_0_1 = torch.cat([self.upsample_0_1(x_1_0) , x_0_0], 1)x_0_1 =  self.CONV0_1(x_0_1)x_1_1 = torch.cat([self.upsample_1_1(x_2_0), x_1_0], 1)x_1_1 = self.CONV1_1(x_1_1)x_2_1 = torch.cat([self.upsample_2_1(x_3_0), x_2_0], 1)x_2_1 = self.CONV2_1(x_2_1)x_3_1 = torch.cat([self.upsample_3_1(x_4_0), x_3_0], 1)x_3_1 = self.CONV3_1(x_3_1)x_2_2 = torch.cat([self.upsample_2_2(x_3_1), x_2_0, x_2_1], 1)x_2_2 = self.CONV2_2(x_2_2)x_1_2 = torch.cat([self.upsample_1_2(x_2_1), x_1_0, x_1_1], 1)x_1_2 = self.CONV1_2(x_1_2)x_1_3 = torch.cat([self.upsample_1_3(x_2_2), x_1_0, x_1_1, x_1_2], 1)x_1_3 = self.CONV1_3(x_1_3)x_0_2 = torch.cat([self.upsample_0_2(x_1_1), x_0_0, x_0_1], 1)x_0_2 = self.CONV0_2(x_0_2)x_0_3 = torch.cat([self.upsample_0_3(x_1_2), x_0_0, x_0_1, x_0_2], 1)x_0_3 = self.CONV0_3(x_0_3)x_0_4 = torch.cat([self.upsample_0_4(x_1_3), x_0_0, x_0_1, x_0_2, x_0_3], 1)x_0_4 = self.CONV0_4(x_0_4)if self.deep_supervision:out_put1 = self.final_super_0_1(x_0_1)out_put2 = self.final_super_0_2(x_0_2)out_put3 = self.final_super_0_3(x_0_3)out_put4 = self.final_super_0_4(x_0_4)return [out_put1, out_put2, out_put3, out_put4]else:return self.final_super_0_4(x_0_4)if __name__ == "__main__":print("deep_supervision: False")deep_supervision = Falsedevice = torch.device('cpu')inputs = torch.randn((1, 3, 224, 224)).to(device)model = UnetPlusPlus(num_classes=3, deep_supervision=deep_supervision).to(device)outputs = model(inputs)print(outputs.shape)    print("deep_supervision: True")deep_supervision = Truemodel = UnetPlusPlus(num_classes=3, deep_supervision=deep_supervision).to(device)outputs = model(inputs)for out in outputs:print(out.shape)

测试结果如下

数据集准备

数据集使用Camvid数据集,可在CamVid数据集的创建和使用-pytorch中参考构建方法。

# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os.path as osp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):"""CamVid Dataset. Read images, apply augmentation and preprocessing transformations.Args:images_dir (str): path to images foldermasks_dir (str): path to segmentation masks folderclass_values (list): values of classes to extract from segmentation maskaugmentation (albumentations.Compose): data transfromation pipeline (e.g. flip, scale, etc.)preprocessing (albumentations.Compose): data preprocessing (e.g. noralization, shape manipulation, etc.)"""def __init__(self, images_dir, masks_dir):self.transform = A.Compose([A.Resize(224, 224),A.HorizontalFlip(),A.VerticalFlip(),A.Normalize(),ToTensorV2(),]) self.ids = os.listdir(images_dir)self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]def __getitem__(self, i):# read dataimage = np.array(Image.open(self.images_fps[i]).convert('RGB'))mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))image = self.transform(image=image,mask=mask)return image['image'], image['mask'][:,:,0]def __len__(self):return len(self.ids)# 设置数据集路径
DATA_DIR = r'dataset\camvid' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')train_dataset = CamVidDataset(x_train_dir, y_train_dir,
)
val_dataset = CamVidDataset(x_valid_dir, y_valid_dir,
)train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=True,drop_last=True)

模型训练

model = UnetPlusPlus(num_classes=33).cuda()
#载入预训练模型
#model.load_state_dict(torch.load(r"checkpoints/Unet++_25.pth"),strict=False)
from d2l import torch as d2l
from tqdm import tqdm
import pandas as pd
#损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss(ignore_index=255)
#选用adam优化器来训练
optimizer = optim.SGD(model.parameters(),lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1, last_epoch=-1)#训练50轮
epochs_num = 50
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,scheduler,devices=d2l.try_all_gpus()):timer, num_batches = d2l.Timer(), len(train_iter)animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],legend=['train loss', 'train acc', 'test acc'])net = nn.DataParallel(net, device_ids=devices).to(devices[0])loss_list = []train_acc_list = []test_acc_list = []epochs_list = []time_list = []for epoch in range(num_epochs):# Sum of training loss, sum of training accuracy, no. of examples,# no. of predictionsmetric = d2l.Accumulator(4)for i, (features, labels) in enumerate(train_iter):timer.start()l, acc = d2l.train_batch_ch13(net, features, labels.long(), loss, trainer, devices)metric.add(l, acc, labels.shape[0], labels.numel())timer.stop()if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(metric[0] / metric[2], metric[1] / metric[3],None))test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)animator.add(epoch + 1, (None, None, test_acc))scheduler.step()print(f"epoch {epoch+1} --- loss {metric[0] / metric[2]:.3f} ---  train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- cost time {timer.sum()}")#---------保存训练数据---------------df = pd.DataFrame()loss_list.append(metric[0] / metric[2])train_acc_list.append(metric[1] / metric[3])test_acc_list.append(test_acc)epochs_list.append(epoch)time_list.append(timer.sum())df['epoch'] = epochs_listdf['loss'] = loss_listdf['train_acc'] = train_acc_listdf['test_acc'] = test_acc_listdf['time'] = time_listdf.to_excel("savefile/Unet++_camvid1.xlsx")#----------------保存模型-------------------if np.mod(epoch+1, 5) == 0:torch.save(model.state_dict(), f'checkpoints/Unet++_{epoch+1}.pth')

开始训练

train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num,scheduler)

训练结果

Unet++训练结果

语义分割系列6-Unet++(pytorch实现)相关推荐

  1. 语义分割系列14-DMNet(pytorch)实现

    DMNet:<Dynamic Multi-Scale Filters for Semantic Segmentation> 发布于2019ICCV. 有意思的是,DMNet的作者和APCN ...

  2. 语义分割系列2-Unet(pytorch实现)

    Unet发布于MICCAI.其论文的名字也说得相对很明白,用于生物医学图像分割. <U-Net: Convolutional Networks for Biomedical Image Segm ...

  3. 语义分割系列24-PointRend(pytorch实现)

    PointRend: Image Segmentation as Rendering 论文链接:PointRend 本文将介绍: PointRend的原理 PointRend代码实现 PointRen ...

  4. 语义分割系列19-EMANet(pytorch实现)

    EMANet:<Expectation-Maximization Attention Networks for Semantic Segmentation> 发布于2019ICCV,一作的 ...

  5. 语义分割系列11-DAnet(pytorch实现)

    DAnet:Dual Attention Network for Scene Segmentation 发布于CVPR2019,本文将进行DAnet的论文讲解和复现工作. 论文部分 主要思想 DAne ...

  6. 憨批的语义分割重制版6——Pytorch 搭建自己的Unet语义分割平台

    憨批的语义分割重制版6--Pytorch 搭建自己的Unet语义分割平台 注意事项 学习前言 什么是Unet模型 代码下载 Unet实现思路 一.预测部分 1.主干网络介绍 2.加强特征提取结构 3. ...

  7. 语义分割系列论文 ParseNet

    语义分割系列论文 ParseNet 核心思想--Global Context 理论感受野的大小(Receptive Field) 实际感受野的大小 此文章如何扩大感受野? 疑点(读者可以忽略本节) 总 ...

  8. 憨批的语义分割重制版9——Pytorch 搭建自己的DeeplabV3+语义分割平台

    憨批的语义分割重制版9--Pytorch 搭建自己的DeeplabV3+语义分割平台 注意事项 学习前言 什么是DeeplabV3+模型 代码下载 DeeplabV3+实现思路 一.预测部分 1.主干 ...

  9. UNet语义分割模型的使用-Pytorch

    1.概述 最近有时间,跑了一下UNet模型,因为自己的深度学习基础不扎实,导致用了一些时间.目前只停留在使用和理解别人模型的基础上,对于优化模型的相关方法还有待学习. 众所周知,UNent是进行语义分 ...

最新文章

  1. 通用的底层埋点都是怎么做的?
  2. [Android] Bitmap OOM解决办法二
  3. fastjson的值过滤器ValueFilter || fastjson输出字段为Null的两种
  4. QT中使用QSettings保存应用程序配置信息
  5. Exception和RuntimeException的区别
  6. 如何掌握java API的方法
  7. CCKS2018参会总结项目
  8. jmeter环境部署
  9. Java笔记-通过注解和插件自动生成get/set和toString方法,使代码结构清晰
  10. 名片管理系统python详解_Python综合应用名片管理系统案例详解
  11. 一张图解释什么是遗传算法_什么是智慧水务决策支持系统?从一张图说起
  12. Linux中的sort排序
  13. matlab三相逆变电路仿真,matlab三相逆变电路设计与仿真介绍.doc
  14. 我是如何同时在字节和微信成功拿到实习转正offer!
  15. Windows窗口程序
  16. android平板和ipad区别,iPad和安卓平板差距大吗?亲身经历告诉你,平板该如何挑选...
  17. Halcon提取中心线
  18. 「或许我们都应该学会接受,喜欢的人不一定喜欢自己吧~」电影《盛夏未来》戳心台词!世界上没有那么多刚刚好~
  19. PCA主成分分析遥感影像融合
  20. SpringBoot集成腾讯云短信实现注册/登录功能

热门文章

  1. 如何使用.NET来打造一个QQ界面
  2. 关于Xshell无法连接VM中的openEuler的解决思路
  3. 2021年茶艺师(中级)复审考试及茶艺师(中级)理论考试
  4. 【转】如何成为一名黑客--Eric Steven Raymond
  5. 【计算机基础】中英文常用名词对照
  6. 能Ping通外网但就是不能打开所有网页的解决办法
  7. 产业转型季运营商现离职潮
  8. Flutter开发之——Icon图标
  9. 英语对学计算机有多重要,英语对计算机专业的重要性及如何提高英语水平
  10. 华硕h81m一k跳线图_主板跳线接法