DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率

目录

输出结果

代码设计


输出结果

更新……

代码设计

import mnist_loader
import networktraining_data, validation_data, test_data = mnist_loader.load_data_wrapper()  print("training_data")
print(type(training_data))
print(list(training_data))
print(training_data[0][0].shape)
print(training_data[0][1].shape)  net = network.Network([784, 30, 10])
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
import random  import numpy as npclass Network(object):         def __init__(self, sizes): """The list ``sizes`` contains the number of neurons in therespective layers of the network.  For example, if the listwas [2, 3, 1] then it would be a three-layer network, with thefirst layer containing 2 neurons, the second layer 3 neurons,and the third layer 1 neuron.  The biases and weights for thenetwork are initialized randomly, using a Gaussiandistribution with mean 0, and variance 1.  Note that the firstlayer is assumed to be an input layer, and by convention wewon't set any biases for those neurons, since biases are onlyever used in computing the outputs from later layers."""self.num_layers = len(sizes) self.sizes = sizes          self.biases = [np.random.randn(y, 1) for y in sizes[1:]]self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]def feedforward(self, a):   """Return the output of the network if ``a`` is input."""for b, w in zip(self.biases, self.weights):a = sigmoid(np.dot(w, a)+b)return adef SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):"""Train the neural network using mini-batch stochasticgradient descent.  The ``training_data`` is a list of tuples``(x, y)`` representing the training inputs and the desiredoutputs.  The other non-optional parameters areself-explanatory.  If ``test_data`` is provided then thenetwork will be evaluated against the test data after eachepoch, and partial progress printed out.  This is useful fortracking progress, but slows things down substantially."""if test_data:               n_test = len(test_data) n = len(training_data) for j in xrange(epochs):    random.shuffle(training_data) mini_batches = [training_data[k:k+mini_batch_size]for k in xrange(0, n, mini_batch_size)]  for mini_batch in mini_batches:    self.update_mini_batch(mini_batch, eta)if test_data:               print ("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test))else: print ("Epoch {0} complete".format(j))def update_mini_batch(self, mini_batch, eta):   """Update the network's weights and biases by applyinggradient descent using backpropagation to a single mini batch.The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``is the learning rate."""nabla_b = [np.zeros(b.shape) for b in self.biases]   nabla_w = [np.zeros(w.shape) for w in self.weights]for x, y in mini_batch:   delta_nabla_b, delta_nabla_w = self.backprop(x, y)  nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]  nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]self.biases = [b-(eta/len(mini_batch))*nb  for b, nb in zip(self.biases, nabla_b)]def backprop(self, x, y):  """Return a tuple ``(nabla_b, nabla_w)`` representing thegradient for the cost function C_x.  ``nabla_b`` and``nabla_w`` are layer-by-layer lists of numpy arrays, similarto ``self.biases`` and ``self.weights``."""nabla_b = [np.zeros(b.shape) for b in self.biases]nabla_w = [np.zeros(w.shape) for w in self.weights]# feedforwardactivation = xactivations = [x] # list to store all the activations, layer by layerzs = [] # list to store all the z vectors, layer by layerfor b, w in zip(self.biases, self.weights):z = np.dot(w, activation)+bzs.append(z)activation = sigmoid(z)activations.append(activation)# backward passdelta = self.cost_derivative(activations[-1], y) * \sigmoid_prime(zs[-1])nabla_b[-1] = deltanabla_w[-1] = np.dot(delta, activations[-2].transpose())# Note that the variable l in the loop below is used a little# differently to the notation in Chapter 2 of the book.  Here,# l = 1 means the last layer of neurons, l = 2 is the# second-last layer, and so on.  It's a renumbering of the# scheme in the book, used here to take advantage of the fact# that Python can use negative indices in lists.for l in xrange(2, self.num_layers):z = zs[-l]sp = sigmoid_prime(z)delta = np.dot(self.weights[-l+1].transpose(), delta) * spnabla_b[-l] = deltanabla_w[-l] = np.dot(delta, activations[-l-1].transpose())return (nabla_b, nabla_w)def evaluate(self, test_data):#评估,"""Return the number of test inputs for which the neuralnetwork outputs the correct result. Note that the neuralnetwork's output is assumed to be the index of whicheverneuron in the final layer has the highest activation."""test_results = [(np.argmax(self.feedforward(x)), y)for (x, y) in test_data]return sum(int(x == y) for (x, y) in test_results) def cost_derivative(self, output_activations, y):  """Return the vector of partial derivatives \partial C_x /\partial a for the output activations."""return (output_activations-y)def sigmoid(z):   """The sigmoid function."""return 1.0/(1.0+np.exp(-z))def sigmoid_prime(z):"""Derivative of the sigmoid function."""return sigmoid(z)*(1-sigmoid(z))
import pickle as cPickle
import gzipimport numpy as npdef load_data():"""Return the MNIST data as a tuple containing the training data,the validation data, and the test data.The ``training_data`` is returned as a tuple with two entries.The first entry contains the actual training images.  This is anumpy ndarray with 50,000 entries.  Each entry is, in turn, anumpy ndarray with 784 values, representing the 28 * 28 = 784pixels in a single MNIST image.The second entry in the ``training_data`` tuple is a numpy ndarraycontaining 50,000 entries.  Those entries are just the digitvalues (0...9) for the corresponding images contained in the firstentry of the tuple.The ``validation_data`` and ``test_data`` are similar, excepteach contains only 10,000 images.This is a nice data format, but for use in neural networks it'shelpful to modify the format of the ``training_data`` a little.That's done in the wrapper function ``load_data_wrapper()``, seebelow."""f = gzip.open('../data/mnist.pkl.gz', 'rb')training_data, validation_data, test_data = cPickle.load(f,encoding='bytes')  #(f,encoding='bytes')f.close()return (training_data, validation_data, test_data)def load_data_wrapper():"""Return a tuple containing ``(training_data, validation_data,test_data)``. Based on ``load_data``, but the format is moreconvenient for use in our implementation of neural networks.In particular, ``training_data`` is a list containing 50,0002-tuples ``(x, y)``.  ``x`` is a 784-dimensional numpy.ndarraycontaining the input image.  ``y`` is a 10-dimensionalnumpy.ndarray representing the unit vector corresponding to thecorrect digit for ``x``.``validation_data`` and ``test_data`` are lists containing 10,0002-tuples ``(x, y)``.  In each case, ``x`` is a 784-dimensionalnumpy.ndarry containing the input image, and ``y`` is thecorresponding classification, i.e., the digit values (integers)corresponding to ``x``.Obviously, this means we're using slightly different formats forthe training data and the validation / test data.  These formatsturn out to be the most convenient for use in our neural networkcode."""tr_d, va_d, te_d = load_data()training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]training_results = [vectorized_result(y) for y in tr_d[1]]training_data = zip(training_inputs, training_results)validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]validation_data = zip(validation_inputs, va_d[1])test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]test_data = zip(test_inputs, te_d[1])return (training_data, validation_data, test_data)def vectorized_result(j):"""Return a 10-dimensional unit vector with a 1.0 in the jthposition and zeroes elsewhere.  This is used to convert a digit(0...9) into a corresponding desired output from the neuralnetwork."""e = np.zeros((10, 1))e[j] = 1.0return e

DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写图片识别94%

DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率相关推荐

  1. DL之NN:NN算法(本地数据集50000张训练集图片)进阶优化之三种参数改进,进一步提高手写数字图片识别的准确率

    DL之NN:NN算法(本地数据集50000张训练集图片)进阶优化之三种参数改进,进一步提高手写数字图片识别的准确率 导读 上一篇文章,比较了三种算法实现对手写数字识别,其中,SVM和神经网络算法表现非 ...

  2. TF之LoR:基于tensorflow利用逻辑回归算LoR法实现手写数字图片识别提高准确率

    TF之LoR:基于tensorflow利用逻辑回归算LoR法实现手写数字图片识别提高准确率 目录 输出结果 设计代码 输出结果 设计代码 #TF之LoR:基于tensorflow实现手写数字图片识别准 ...

  3. DL之RBM:基于RBM实现手写数字图片识别提高准确率

    DL之RBM:基于RBM实现手写数字图片识别提高准确率 目录 输出结果 设计代码 输出结果 设计代码 import numpy as np import matplotlib.pyplot as pl ...

  4. DL之NN/CNN:NN算法进阶优化(本地数据集50000张训练集图片),六种不同优化算法实现手写数字图片识别逐步提高99.6%准确率

    DL之NN/CNN:NN算法进阶优化(本地数据集50000张训练集图片),六种不同优化算法实现手写数字图片识别逐步提高99.6%准确率 目录 设计思路 设计代码 设计思路 设计代码 import mn ...

  5. DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness、SVM、NN各自的准确率

    DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness.SVM.NN各自的准确率 目录 数据集下 ...

  6. DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测

    DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测 目录 输出结果 设计思路 核心代码 输出结果 下边两张 ...

  7. DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练、预测(95%)

    DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练.预测(95%) 目录 数据集展示 输出结果 设计代码 数据集展示 先查看sklearn自带di ...

  8. DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测

    DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测 目录 输出结果 设计思路 核心代码 输出结果 1.10 ...

  9. DL之DNN:利用DNN【784→50→100→10】算法对MNIST手写数字图片识别数据集进行预测、模型优化

    DL之DNN:利用DNN[784→50→100→10]算法对MNIST手写数字图片识别数据集进行预测.模型优化 导读 目的是建立三层神经网络,进一步理解DNN内部的运作机制 目录 输出结果 设计思路 ...

最新文章

  1. 织梦php首页老是自动恢复,dede首页网址自动加上index.html问题解决方法
  2. 小波的秘密1_小波变换概况与综述
  3. 20应用统计考研复试要点(part15)--应用多元分析
  4. [转]npm生成的package.json文件中依赖项版本号前的波浪号(~)和插入符号(^)是啥意思?
  5. Eclipse设置Courier New字体
  6. 状态空间模型中参数的贝叶斯估计
  7. docker基础容器中bash: vi: command not found问题解决
  8. Ext.form.field.Spinner微调字段
  9. 逆天!百度AI音箱重磅升级:最大梦想实现
  10. Nginx与tomcat组合的简单使用
  11. 最新四级联动数据json
  12. Cholesky Decomposition(Cholesky分解)
  13. 大数据的三大理念解析
  14. w7计算机用户密码设置,Win7开机密码怎么设置 Win7电脑设置开机密码图文教程
  15. STM32串口中断接收一帧数据
  16. PGSQL 模糊查询不区分大小写
  17. linux命令察看图片
  18. 【第39题】位与 的应用 | 一句话消除末尾连续的 1
  19. 最好玩的计算机游戏排行,10款好玩的电脑单机游戏 好玩的单机游戏排行
  20. 喻红叶《Java并发-ReentrantReadWriteLock源码分析》

热门文章

  1. Java类集框架 —— HashMap源码分析
  2. [Leetcode] 445. Add Two Numbers II
  3. 使用批处理执行sql 语句
  4. WCF与 Web Service的区别
  5. 炸!业界难题,跨库分页的几种常见方案
  6. 阿里巴巴技术专家三画:如何画好架构图
  7. 为什么Google上十亿行代码都放在同一个仓库里?
  8. Android: RecyclerView.ViewHolder、Adapter
  9. 网络:TCP/UDP
  10. java基础求三角形的面积