DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测

目录

输出结果

设计思路

核心代码


输出结果

下边两张图对应查看,可知,数字0有965个是被准确识别到!

1.10.0
Size of:
- Training-set:     55000
- Validation-set:   5000
- Test-set:     10000
Epoch 1/1128/55000 [..............................] - ETA: 14:24 - loss: 2.3439 - acc: 0.0938256/55000 [..............................] - ETA: 14:05 - loss: 2.2695 - acc: 0.1016384/55000 [..............................] - ETA: 13:20 - loss: 2.2176 - acc: 0.1302512/55000 [..............................] - ETA: 13:30 - loss: 2.1608 - acc: 0.2109640/55000 [..............................] - ETA: 13:29 - loss: 2.0849 - acc: 0.2500768/55000 [..............................] - ETA: 13:23 - loss: 2.0309 - acc: 0.2734896/55000 [..............................] - ETA: 13:30 - loss: 1.9793 - acc: 0.29461024/55000 [..............................] - ETA: 13:23 - loss: 1.9105 - acc: 0.33691152/55000 [..............................] - ETA: 13:22 - loss: 1.8257 - acc: 0.3776
……
53760/55000 [============================>.] - ETA: 18s - loss: 0.2106 - acc: 0.9329
53888/55000 [============================>.] - ETA: 16s - loss: 0.2103 - acc: 0.9330
54016/55000 [============================>.] - ETA: 14s - loss: 0.2100 - acc: 0.9331
54144/55000 [============================>.] - ETA: 13s - loss: 0.2096 - acc: 0.9333
54272/55000 [============================>.] - ETA: 11s - loss: 0.2092 - acc: 0.9334
54400/55000 [============================>.] - ETA: 9s - loss: 0.2089 - acc: 0.9335
54528/55000 [============================>.] - ETA: 7s - loss: 0.2086 - acc: 0.9336
54656/55000 [============================>.] - ETA: 5s - loss: 0.2082 - acc: 0.9337
54784/55000 [============================>.] - ETA: 3s - loss: 0.2083 - acc: 0.9337
54912/55000 [============================>.] - ETA: 1s - loss: 0.2082 - acc: 0.9337
55000/55000 [==============================] - 837s 15ms/step - loss: 0.2080 - acc: 0.933832/10000 [..............................] - ETA: 21s160/10000 [..............................] - ETA: 8s 288/10000 [..............................] - ETA: 6s448/10000 [>.............................] - ETA: 5s576/10000 [>.............................] - ETA: 5s736/10000 [=>............................] - ETA: 4s864/10000 [=>............................] - ETA: 4s1024/10000 [==>...........................] - ETA: 4s1152/10000 [==>...........................] - ETA: 4s1312/10000 [==>...........................] - ETA: 4s1440/10000 [===>..........................] - ETA: 4s1600/10000 [===>..........................] - ETA: 3s1728/10000 [====>.........................] - ETA: 3s
……3008/10000 [========>.....................] - ETA: 3s3168/10000 [========>.....................] - ETA: 3s3296/10000 [========>.....................] - ETA: 3s3456/10000 [=========>....................] - ETA: 2s
……5248/10000 [==============>...............] - ETA: 2s5376/10000 [===============>..............] - ETA: 2s5536/10000 [===============>..............] - ETA: 2s5664/10000 [===============>..............] - ETA: 1s5792/10000 [================>.............] - ETA: 1s
……7360/10000 [=====================>........] - ETA: 1s7488/10000 [=====================>........] - ETA: 1s7648/10000 [=====================>........] - ETA: 1s7776/10000 [======================>.......] - ETA: 1s7936/10000 [======================>.......] - ETA: 0s8064/10000 [=======================>......] - ETA: 0s8224/10000 [=======================>......] - ETA: 0s
……9760/10000 [============================>.] - ETA: 0s9920/10000 [============================>.] - ETA: 0s
10000/10000 [==============================] - 4s 449us/step
loss 0.05686537345089018
acc 0.982
acc: 98.20%
[[ 965    0    4    0    0    0    4    1    2    4][   0 1128    3    0    0    0    0    1    3    0][   0    0 1028    0    0    0    0    1    3    0][   0    0   10  991    0    2    0    2    3    2][   0    0    3    0  967    0    1    1    1    9][   2    0    1    7    1  863    5    1    4    8][   2    3    0    0    3    2  946    0    2    0][   0    1   17    1    1    0    0  987    2   19][   2    0    9    2    0    1    0    1  955    4][   1    4    3    2    8    0    0    0    1  990]]_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 784)               0
_________________________________________________________________
reshape (Reshape)            (None, 28, 28, 1)         0
_________________________________________________________________
layer_conv1 (Conv2D)         (None, 28, 28, 16)        416
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 14, 14, 16)        0
_________________________________________________________________
layer_conv2 (Conv2D)         (None, 14, 14, 36)        14436
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 7, 7, 36)          0
_________________________________________________________________
flatten (Flatten)            (None, 1764)              0
_________________________________________________________________
dense (Dense)                (None, 128)               225920
_________________________________________________________________
dense_1 (Dense)              (None, 10)                1290
=================================================================
Total params: 242,062
Trainable params: 242,062
Non-trainable params: 0
_________________________________________________________________
(5, 5, 1, 16)
(1, 28, 28, 16)

设计思路

核心代码

后期更新……

path_model = 'Functional_model.keras'  from tensorflow.python.keras.models import load_model
model2_1 = load_model(path_model)      model_weights_path = 'Functional_model_weights.keras'
model2_1.save_weights(model_weights_path )
model2_1.load_weights(model_weights_path, by_name=True )
model2_1.load_weights(model_weights_path)  result = model.evaluate(x=data.x_test,y=data.y_test)for name, value in zip(model.metrics_names, result):print(name, value)
print("{0}: {1:.2%}".format(model.metrics_names[1], result[1]))y_pred = model.predict(x=data.x_test)
cls_pred = np.argmax(y_pred, axis=1)
plot_example_errors(cls_pred)
plot_confusion_matrix(cls_pred)     images = data.x_test[0:9]
cls_true = data.y_test_cls[0:9]
y_pred = model.predict(x=images)
cls_pred = np.argmax(y_pred, axis=1)
title = 'MNIST(Sequential Model): plot predicted example, resl VS predict'
plot_images(title, images=images,               cls_true=cls_true,cls_pred=cls_pred)

DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测相关推荐

  1. DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测

    DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测 目录 输出结果 设计思路 核心代码 输出结果 1.10 ...

  2. DL之DNN:利用DNN【784→50→100→10】算法对MNIST手写数字图片识别数据集进行预测、模型优化

    DL之DNN:利用DNN[784→50→100→10]算法对MNIST手写数字图片识别数据集进行预测.模型优化 导读 目的是建立三层神经网络,进一步理解DNN内部的运作机制 目录 输出结果 设计思路 ...

  3. DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练、预测(95%)

    DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练.预测(95%) 目录 数据集展示 输出结果 设计代码 数据集展示 先查看sklearn自带di ...

  4. TF之DNN:利用DNN【784→500→10】对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程

    TF之DNN:利用DNN[784→500→10]对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程 目录 输出结果 案例理解DNN过程思路 代码设计 输出结果 案 ...

  5. TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别

    TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别 目录 输出结果 代码设计 输出结果 代码设计 ...

  6. TF:利用是Softmax回归+GD算法实现MNIST手写数字图片识别(10000张图片测试得到的准确率为92%)

    TF:利用是Softmax回归+GD算法实现MNIST手写数字图片识别(10000张图片测试得到的准确率为92%) 目录 设计思路 全部代码 设计思路 全部代码 #TF:利用是Softmax回归+GD ...

  7. TF之CNN:利用sklearn(自带手写数字图片识别数据集)使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线

    TF之CNN:利用sklearn(自带手写数字图片识别数据集)使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线 目录 输出结果 设计代码 输出结果 设计代码 ...

  8. ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类

    ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 metrics.adjusted_ran ...

  9. TF:基于CNN(2+1)实现MNIST手写数字图片识别准确率提高到99%

    TF:基于CNN(2+1)实现MNIST手写数字图片识别准确率提高到99% 导读 与Softmax回归模型相比,使用两层卷积的神经网络模型借助了卷积的威力,准确率高非常大的提升. 目录 输出结果 代码 ...

最新文章

  1. 笛卡尔积 php,PHP自定义函数生成笛卡尔积
  2. sgdisk 磁盘操作命令
  3. 静态方法里面不能调用非静态属性
  4. MFC中OnTimer函数的使用方法
  5. 【ZOJ - 4019】Schrödinger's Knapsack (dp,背包,贪心,组内贪心组间dp)
  6. 解决.quartz.ObjectAlreadyExistsException: Unable to store Job : ‘jyGroup.jyJob‘, because one already
  7. 计算机专业马来西亚,去马来西亚读计算机专业如何
  8. [转载] python __import__ 搜索路径详解
  9. 怎么单选_第一届化妆品分类大赛丨用过的化妆刷、过期的口红…该怎么扔
  10. spark graphx入门
  11. Go基础-变量的定义
  12. vue.js手册_Vue手册:Vue.js的完整介绍
  13. fastjson将json字符串转化成map的五种方法
  14. Java面试复习体系总结(2021版,持续更新)
  15. PHY之MDIO解析
  16. 希腊计数法罗马计数法
  17. 关于Windows下模拟Shift+END(功能键)无效问题
  18. figma对比sketch有什么优势和不足?
  19. floor()函数与round()函数
  20. 怎样使用Markdown输入数学公式

热门文章

  1. java 代码 内存泄露_如何用Java编写一段代码引发内存泄露
  2. 以列表形式输出_python格式化输出总结
  3. Weka学习五(ROC简介)
  4. 卡尔曼滤波的原理说明
  5. 构造方法和方法的重载。
  6. vSphere利用NTP为主机同步时间
  7. android 继承dialog自定义对话框
  8. 那一顿,我撸串撸懂了云计算!
  9. 如何优雅的处理业务逻辑中的定时和延时问题?
  10. Java 中的注解是如何工作的?