吴恩达deeplearning.ai课程作业,自己写的答案。
补充说明:
1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学习方法,况且作业也不算难。
2. 关于评论中有人说我是抄袭,注释还没别人详细,复制下来还运行不过。答复是:做伸手党之前,请先搞清这个作业是干什么的。大家都是从GitHub上下载原始的作业,然后根据代码前面的提示(通常会指定函数和公式)来编写代码,而且后面还有expected output供你比对,如果程序正确,结果一般来说是一样的。请不要无脑喷,说什么跟别人的答案一样的。说到底,我们要做的就是,看他的文字部分,根据提示在代码中加入部分自己的代码。我们自己要写的部分只有那么一小部分代码。
3. 由于实在很反感无脑喷子,故禁止了下面的评论功能,请见谅。如果有问题,请私信我,在力所能及的范围内会尽量帮忙。

Regularization

Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious problem, if the training dataset is not big enough. Sure it does well on the training set, but the learned network doesn’t generalize to new examples that it has never seen!

You will learn to: Use regularization in your deep learning models.

Let’s first import the packages you are going to use.

# import packages
import numpy as np
import matplotlib.pyplot as plt
from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec
from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters
import sklearn
import sklearn.datasets
import scipy.io
from testCases import *%matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
/root/deeplearning.ai/homework/Course2 Improving Deep Neural Network/Class2 Week1/assignment1/reg_utils.py:85: SyntaxWarning: assertion is always true, perhaps remove parentheses?assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
/root/deeplearning.ai/homework/Course2 Improving Deep Neural Network/Class2 Week1/assignment1/reg_utils.py:86: SyntaxWarning: assertion is always true, perhaps remove parentheses?assert(parameters['W' + str(l)].shape == layer_dims[l], 1)

Problem Statement: You have just been hired as an AI expert by the French Football Corporation. They would like you to recommend positions where France’s goal keeper should kick the ball so that the French team’s players can then hit it with their head.

Figure 1 : Football field
The goal keeper kicks the ball in the air, the players of each team are fighting to hit the ball with their head

They give you the following 2D dataset from France’s past 10 games.

train_X, train_Y, test_X, test_Y = load_2D_dataset()

Each dot corresponds to a position on the football field where a football player has hit the ball with his/her head after the French goal keeper has shot the ball from the left side of the football field.
- If the dot is blue, it means the French player managed to hit the ball with his/her head
- If the dot is red, it means the other team’s player hit the ball with their head

Your goal: Use a deep learning model to find the positions on the field where the goalkeeper should kick the ball.

Analysis of the dataset: This dataset is a little noisy, but it looks like a diagonal line separating the upper left half (blue) from the lower right half (red) would work well.

You will first try a non-regularized model. Then you’ll learn how to regularize it and decide which model you will choose to solve the French Football Corporation’s problem.

1 - Non-regularized model

You will use the following neural network (already implemented for you below). This model can be used:
- in regularization mode – by setting the lambd input to a non-zero value. We use “lambd” instead of “lambda” because “lambda” is a reserved keyword in Python.
- in dropout mode – by setting the keep_prob to a value less than one

You will first try the model without any regularization. Then, you will implement:
- L2 regularization – functions: “compute_cost_with_regularization()” and “backward_propagation_with_regularization()
- Dropout – functions: “forward_propagation_with_dropout()” and “backward_propagation_with_dropout()

In each part, you will run this model with the correct inputs so that it calls the functions you’ve implemented. Take a look at the code below to familiarize yourself with the model.

def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, lambd = 0, keep_prob = 1):"""Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.Arguments:X -- input data, of shape (input size, number of examples)Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples)learning_rate -- learning rate of the optimizationnum_iterations -- number of iterations of the optimization loopprint_cost -- If True, print the cost every 10000 iterationslambd -- regularization hyperparameter, scalarkeep_prob - probability of keeping a neuron active during drop-out, scalar.Returns:parameters -- parameters learned by the model. They can then be used to predict."""grads = {}costs = []                            # to keep track of the costm = X.shape[1]                        # number of exampleslayers_dims = [X.shape[0], 20, 3, 1]# Initialize parameters dictionary.parameters = initialize_parameters(layers_dims)# Loop (gradient descent)for i in range(0, num_iterations):# Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.if keep_prob == 1:a3, cache = forward_propagation(X, parameters)elif keep_prob < 1:a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)# Cost functionif lambd == 0:cost = compute_cost(a3, Y)else:cost = compute_cost_with_regularization(a3, Y, parameters, lambd)# Backward propagation.assert(lambd==0 or keep_prob==1)    # it is possible to use both L2 regularization and dropout, # but this assignment will only explore one at a timeif lambd == 0 and keep_prob == 1:grads = backward_propagation(X, Y, cache)elif lambd != 0:grads = backward_propagation_with_regularization(X, Y, cache, lambd)elif keep_prob < 1:grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)# Update parameters.parameters = update_parameters(parameters, grads, learning_rate)# Print the loss every 10000 iterationsif print_cost and i % 10000 == 0:print("Cost after iteration {}: {}".format(i, cost))if print_cost and i % 1000 == 0:costs.append(cost)# plot the costplt.plot(costs)plt.ylabel('cost')plt.xlabel('iterations (x1,000)')plt.title("Learning rate =" + str(learning_rate))plt.show()return parameters

Let’s train the model without any regularization, and observe the accuracy on the train/test sets.

parameters = model(train_X, train_Y)
print ("On the training set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)
Cost after iteration 0: 0.6557412523481002
Cost after iteration 10000: 0.1632998752572417
Cost after iteration 20000: 0.13851642423284755

On the training set:
Accuracy: 0.947867298578
On the test set:
Accuracy: 0.915

The train accuracy is 94.8% while the test accuracy is 91.5%. This is the baseline model (you will observe the impact of regularization on this model). Run the following code to plot the decision boundary of your model.

plt.title("Model without regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

The non-regularized model is obviously overfitting the training set. It is fitting the noisy points! Lets now look at two techniques to reduce overfitting.

2 - L2 Regularization

The standard way to avoid overfitting is called L2 regularization. It consists of appropriately modifying your cost function, from:

J=−1m∑i=1m(y(i)log(a[L](i))+(1−y(i))log(1−a[L](i)))(1)(1)J=−1m∑i=1m(y(i)log⁡(a[L](i))+(1−y(i))log⁡(1−a[L](i)))

J = -\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} \tag{1}
To:

Jregularized=−1m∑i=1m(y(i)log(a[L](i))+(1−y(i))log(1−a[L](i)))cross-entropy cost+1mλ2∑l∑k∑jW[l]2k,jL2 regularization cost(2)(2)Jregularized=−1m∑i=1m(y(i)log⁡(a[L](i))+(1−y(i))log⁡(1−a[L](i)))⏟cross-entropy cost+1mλ2∑l∑k∑jWk,j[l]2⏟L2 regularization cost

J_{regularized} = \small \underbrace{-\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} }_\text{cross-entropy cost} + \underbrace{\frac{1}{m} \frac{\lambda}{2} \sum\limits_l\sum\limits_k\sum\limits_j W_{k,j}^{[l]2} }_\text{L2 regularization cost} \tag{2}

Let’s modify your cost and observe the consequences.

Exercise: Implement compute_cost_with_regularization() which computes the cost given by formula (2). To calculate ∑k∑jW[l]2k,j∑k∑jWk,j[l]2\sum\limits_k\sum\limits_j W_{k,j}^{[l]2} , use :

np.sum(np.square(Wl))

Note that you have to do this for W[1]W[1]W^{[1]}, W[2]W[2]W^{[2]} and W[3]W[3]W^{[3]}, then sum the three terms and multiply by 1mλ21mλ2 \frac{1}{m} \frac{\lambda}{2} .

# GRADED FUNCTION: compute_cost_with_regularizationdef compute_cost_with_regularization(A3, Y, parameters, lambd):"""Implement the cost function with L2 regularization. See formula (2) above.Arguments:A3 -- post-activation, output of forward propagation, of shape (output size, number of examples)Y -- "true" labels vector, of shape (output size, number of examples)parameters -- python dictionary containing parameters of the modelReturns:cost - value of the regularized loss function (formula (2))"""m = Y.shape[1]W1 = parameters["W1"]W2 = parameters["W2"]W3 = parameters["W3"]cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost### START CODE HERE ### (approx. 1 line)L2_regularization_cost = lambd / (2 * m) * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3)))### END CODER HERE ###cost = cross_entropy_cost + L2_regularization_costreturn cost
A3, Y_assess, parameters = compute_cost_with_regularization_test_case()print("cost = " + str(compute_cost_with_regularization(A3, Y_assess, parameters, lambd = 0.1)))
cost = 1.78648594516

Expected Output:

cost 1.78648594516

Of course, because you changed the cost, you have to change backward propagation as well! All the gradients have to be computed with respect to this new cost.

Exercise: Implement the changes needed in backward propagation to take into account regularization. The changes only concern dW1, dW2 and dW3. For each, you have to add the regularization term’s gradient (ddW(12λmW2)=λmWddW(12λmW2)=λmW\frac{d}{dW} ( \frac{1}{2}\frac{\lambda}{m} W^2) = \frac{\lambda}{m} W).

# GRADED FUNCTION: backward_propagation_with_regularizationdef backward_propagation_with_regularization(X, Y, cache, lambd):"""Implements the backward propagation of our baseline model to which we added an L2 regularization.Arguments:X -- input dataset, of shape (input size, number of examples)Y -- "true" labels vector, of shape (output size, number of examples)cache -- cache output from forward_propagation()lambd -- regularization hyperparameter, scalarReturns:gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables"""m = X.shape[1](Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cachedZ3 = A3 - Y### START CODE HERE ### (approx. 1 line)dW3 = 1./m * np.dot(dZ3, A2.T) + lambd / m * W3### END CODE HERE ###db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)dA2 = np.dot(W3.T, dZ3)dZ2 = np.multiply(dA2, np.int64(A2 > 0))### START CODE HERE ### (approx. 1 line)dW2 = 1./m * np.dot(dZ2, A1.T) + lambd / m * W2### END CODE HERE ###db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)dA1 = np.dot(W2.T, dZ2)dZ1 = np.multiply(dA1, np.int64(A1 > 0))### START CODE HERE ### (approx. 1 line)dW1 = 1./m * np.dot(dZ1, X.T) + lambd / m * W1### END CODE HERE ###db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,"dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}return gradients
X_assess, Y_assess, cache = backward_propagation_with_regularization_test_case()grads = backward_propagation_with_regularization(X_assess, Y_assess, cache, lambd = 0.7)
print ("dW1 = "+ str(grads["dW1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("dW3 = "+ str(grads["dW3"]))
dW1 = [[-0.25604646  0.12298827 -0.28297129][-0.17706303  0.34536094 -0.4410571 ]]
dW2 = [[ 0.79276486  0.85133918][-0.0957219  -0.01720463][-0.13100772 -0.03750433]]
dW3 = [[-1.77691347 -0.11832879 -0.09397446]]

Expected Output:

dW1 [[-0.25604646 0.12298827 -0.28297129] [-0.17706303 0.34536094 -0.4410571 ]]
dW2 [[ 0.79276486 0.85133918] [-0.0957219 -0.01720463] [-0.13100772 -0.03750433]]
dW3 [[-1.77691347 -0.11832879 -0.09397446]]

Let’s now run the model with L2 regularization (λ=0.7)(λ=0.7)(\lambda = 0.7). The model() function will call:
- compute_cost_with_regularization instead of compute_cost
- backward_propagation_with_regularization instead of backward_propagation

parameters = model(train_X, train_Y, lambd = 0.7)
print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)
Cost after iteration 0: 0.6974484493131264
Cost after iteration 10000: 0.2684918873282239
Cost after iteration 20000: 0.2680916337127301

On the train set:
Accuracy: 0.938388625592
On the test set:
Accuracy: 0.93

Congrats, the test set accuracy increased to 93%. You have saved the French football team!

You are not overfitting the training data anymore. Let’s plot the decision boundary.

plt.title("Model with L2-regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

Observations:
- The value of λλ\lambda is a hyperparameter that you can tune using a dev set.
- L2 regularization makes your decision boundary smoother. If λλ\lambda is too large, it is also possible to “oversmooth”, resulting in a model with high bias.

What is L2-regularization actually doing?:

L2-regularization relies on the assumption that a model with small weights is simpler than a model with large weights. Thus, by penalizing the square values of the weights in the cost function you drive all the weights to smaller values. It becomes too costly for the cost to have large weights! This leads to a smoother model in which the output changes more slowly as the input changes.

What you should remember – the implications of L2-regularization on:
- The cost computation:
- A regularization term is added to the cost
- The backpropagation function:
- There are extra terms in the gradients with respect to weight matrices
- Weights end up smaller (“weight decay”):
- Weights are pushed to smaller values.

3 - Dropout

Finally, dropout is a widely used regularization technique that is specific to deep learning.
It randomly shuts down some neurons in each iteration. Watch these two videos to see what this means!

Figure 2 : Drop-out on the second hidden layer.
At each iteration, you shut down (= set to zero) each neuron of a layer with probability 1−keep_prob1−keep_prob1 - keep\_prob or keep it with probability keep_probkeep_probkeep\_prob (50% here). The dropped neurons don’t contribute to the training in both the forward and backward propagations of the iteration.

Figure 3 : Drop-out on the first and third hidden layers.
1st1st1^{st} layer: we shut down on average 40% of the neurons. 3rd3rd3^{rd} layer: we shut down on average 20% of the neurons.

When you shut some neurons down, you actually modify your model. The idea behind drop-out is that at each iteration, you train a different model that uses only a subset of your neurons. With dropout, your neurons thus become less sensitive to the activation of one other specific neuron, because that other neuron might be shut down at any time.

3.1 - Forward propagation with dropout

Exercise: Implement the forward propagation with dropout. You are using a 3 layer neural network, and will add dropout to the first and second hidden layers. We will not apply dropout to the input layer or output layer.

Instructions:
You would like to shut down some neurons in the first and second layers. To do that, you are going to carry out 4 Steps:
1. In lecture, we dicussed creating a variable d[1]d[1]d^{[1]} with the same shape as a[1]a[1]a^{[1]} using np.random.rand() to randomly get numbers between 0 and 1. Here, you will use a vectorized implementation, so create a random matrix D[1]=[d[1](1)d[1](2)...d[1](m)]D[1]=[d[1](1)d[1](2)...d[1](m)]D^{[1]} = [d^{[1](1)} d^{[1](2)} ... d^{[1](m)}] of the same dimension as A[1]A[1]A^{[1]}.
2. Set each entry of D[1]D[1]D^{[1]} to be 0 with probability (1-keep_prob) or 1 with probability (keep_prob), by thresholding values in D[1]D[1]D^{[1]} appropriately. Hint: to set all the entries of a matrix X to 0 (if entry is less than 0.5) or 1 (if entry is more than 0.5) you would do: X = (X < 0.5). Note that 0 and 1 are respectively equivalent to False and True.
3. Set A[1]A[1]A^{[1]} to A[1]∗D[1]A[1]∗D[1]A^{[1]} * D^{[1]}. (You are shutting down some neurons). You can think of D[1]D[1]D^{[1]} as a mask, so that when it is multiplied with another matrix, it shuts down some of the values.
4. Divide A[1]A[1]A^{[1]} by keep_prob. By doing this you are assuring that the result of the cost will still have the same expected value as without drop-out. (This technique is also called inverted dropout.)

# GRADED FUNCTION: forward_propagation_with_dropoutdef forward_propagation_with_dropout(X, parameters, keep_prob = 0.5):"""Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.Arguments:X -- input dataset, of shape (2, number of examples)parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":W1 -- weight matrix of shape (20, 2)b1 -- bias vector of shape (20, 1)W2 -- weight matrix of shape (3, 20)b2 -- bias vector of shape (3, 1)W3 -- weight matrix of shape (1, 3)b3 -- bias vector of shape (1, 1)keep_prob - probability of keeping a neuron active during drop-out, scalarReturns:A3 -- last activation value, output of the forward propagation, of shape (1,1)cache -- tuple, information stored for computing the backward propagation"""np.random.seed(1)# retrieve parametersW1 = parameters["W1"]b1 = parameters["b1"]W2 = parameters["W2"]b2 = parameters["b2"]W3 = parameters["W3"]b3 = parameters["b3"]# LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOIDZ1 = np.dot(W1, X) + b1A1 = relu(Z1)### START CODE HERE ### (approx. 4 lines)         # Steps 1-4 below correspond to the Steps 1-4 described above. D1 = np.random.rand(A1.shape[0],A1.shape[1])                                         # Step 1: initialize matrix D1 = np.random.rand(..., ...)D1 = D1 < keep_prob                                      # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold)A1 = A1 * D1                                         # Step 3: shut down some neurons of A1A1 = A1 / keep_prob                                        # Step 4: scale the value of neurons that haven't been shut down### END CODE HERE ###Z2 = np.dot(W2, A1) + b2A2 = relu(Z2)### START CODE HERE ### (approx. 4 lines)D2 = np.random.rand(A2.shape[0],A2.shape[1])                                         # Step 1: initialize matrix D2 = np.random.rand(..., ...)D2 = D2 < keep_prob                                         # Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold)A2 = A2 * D2                                         # Step 3: shut down some neurons of A2A2 = A2 / keep_prob                                      # Step 4: scale the value of neurons that haven't been shut down### END CODE HERE ###Z3 = np.dot(W3, A2) + b3A3 = sigmoid(Z3)cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)return A3, cache
X_assess, parameters = forward_propagation_with_dropout_test_case()A3, cache = forward_propagation_with_dropout(X_assess, parameters, keep_prob = 0.7)
print ("A3 = " + str(A3))
A3 = [[ 0.36974721  0.00305176  0.04565099  0.49683389  0.36974721]]

Expected Output:

A3 [[ 0.36974721 0.00305176 0.04565099 0.49683389 0.36974721]]

3.2 - Backward propagation with dropout

Exercise: Implement the backward propagation with dropout. As before, you are training a 3 layer network. Add dropout to the first and second hidden layers, using the masks D[1]D[1]D^{[1]} and D[2]D[2]D^{[2]} stored in the cache.

Instruction:
Backpropagation with dropout is actually quite easy. You will have to carry out 2 Steps:
1. You had previously shut down some neurons during forward propagation, by applying a mask D[1]D[1]D^{[1]} to A1. In backpropagation, you will have to shut down the same neurons, by reapplying the same mask D[1]D[1]D^{[1]} to dA1.
2. During forward propagation, you had divided A1 by keep_prob. In backpropagation, you’ll therefore have to divide dA1 by keep_prob again (the calculus interpretation is that if A[1]A[1]A^{[1]} is scaled by keep_prob, then its derivative dA[1]dA[1]dA^{[1]} is also scaled by the same keep_prob).

# GRADED FUNCTION: backward_propagation_with_dropoutdef backward_propagation_with_dropout(X, Y, cache, keep_prob):"""Implements the backward propagation of our baseline model to which we added dropout.Arguments:X -- input dataset, of shape (2, number of examples)Y -- "true" labels vector, of shape (output size, number of examples)cache -- cache output from forward_propagation_with_dropout()keep_prob - probability of keeping a neuron active during drop-out, scalarReturns:gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables"""m = X.shape[1](Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cachedZ3 = A3 - YdW3 = 1./m * np.dot(dZ3, A2.T)db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)dA2 = np.dot(W3.T, dZ3)### START CODE HERE ### (≈ 2 lines of code)dA2 = dA2 * D2              # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagationdA2 = dA2 / keep_prob              # Step 2: Scale the value of neurons that haven't been shut down### END CODE HERE ###dZ2 = np.multiply(dA2, np.int64(A2 > 0))dW2 = 1./m * np.dot(dZ2, A1.T)db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)dA1 = np.dot(W2.T, dZ2)### START CODE HERE ### (≈ 2 lines of code)dA1 = dA1 * D1              # Step 1: Apply mask D1 to shut down the same neurons as during the forward propagationdA1 = dA1 / keep_prob              # Step 2: Scale the value of neurons that haven't been shut down### END CODE HERE ###dZ1 = np.multiply(dA1, np.int64(A1 > 0))dW1 = 1./m * np.dot(dZ1, X.T)db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,"dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}return gradients
X_assess, Y_assess, cache = backward_propagation_with_dropout_test_case()gradients = backward_propagation_with_dropout(X_assess, Y_assess, cache, keep_prob = 0.8)print ("dA1 = " + str(gradients["dA1"]))
print ("dA2 = " + str(gradients["dA2"]))
dA1 = [[ 0.36544439  0.         -0.00188233  0.         -0.17408748][ 0.65515713  0.         -0.00337459  0.         -0.        ]]
dA2 = [[ 0.58180856  0.         -0.00299679  0.         -0.27715731][ 0.          0.53159854 -0.          0.53159854 -0.34089673][ 0.          0.         -0.00292733  0.         -0.        ]]

Expected Output:

dA1 [[ 0.36544439 0. -0.00188233 0. -0.17408748] [ 0.65515713 0. -0.00337459 0. -0. ]]
dA2 [[ 0.58180856 0. -0.00299679 0. -0.27715731] [ 0. 0.53159854 -0. 0.53159854 -0.34089673] [ 0. 0. -0.00292733 0. -0. ]]

Let’s now run the model with dropout (keep_prob = 0.86). It means at every iteration you shut down each neurons of layer 1 and 2 with 24% probability. The function model() will now call:
- forward_propagation_with_dropout instead of forward_propagation.
- backward_propagation_with_dropout instead of backward_propagation.

parameters = model(train_X, train_Y, keep_prob = 0.86, learning_rate = 0.3)print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)
Cost after iteration 0: 0.6543912405149825/root/deeplearning.ai/homework/Course2 Improving Deep Neural Network/Class2 Week1/assignment1/reg_utils.py:236: RuntimeWarning: divide by zero encountered in loglogprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
/root/deeplearning.ai/homework/Course2 Improving Deep Neural Network/Class2 Week1/assignment1/reg_utils.py:236: RuntimeWarning: invalid value encountered in multiplylogprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)Cost after iteration 10000: 0.0610169865749056
Cost after iteration 20000: 0.060582435798513114

On the train set:
Accuracy: 0.928909952607
On the test set:
Accuracy: 0.95

Dropout works great! The test accuracy has increased again (to 95%)! Your model is not overfitting the training set and does a great job on the test set. The French football team will be forever grateful to you!

Run the code below to plot the decision boundary.

plt.title("Model with dropout")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

Note:
- A common mistake when using dropout is to use it both in training and testing. You should use dropout (randomly eliminate nodes) only in training.
- Deep learning frameworks like tensorflow, PaddlePaddle, keras or caffe come with a dropout layer implementation. Don’t stress - you will soon learn some of these frameworks.

What you should remember about dropout:
- Dropout is a regularization technique.
- You only use dropout during training. Don’t use dropout (randomly eliminate nodes) during test time.
- Apply dropout both during forward and backward propagation.
- During training time, divide each dropout layer by keep_prob to keep the same expected value for the activations. For example, if keep_prob is 0.5, then we will on average shut down half the nodes, so the output will be scaled by 0.5 since only the remaining half are contributing to the solution. Dividing by 0.5 is equivalent to multiplying by 2. Hence, the output now has the same expected value. You can check that this works even when keep_prob is other values than 0.5.

4 - Conclusions

Here are the results of our three models:

model train accuracy test accuracy
3-layer NN without regularization 95% 91.5%
3-layer NN with L2-regularization 94% 93%
3-layer NN with dropout 93% 95%

Note that regularization hurts training set performance! This is because it limits the ability of the network to overfit to the training set. But since it ultimately gives better test accuracy, it is helping your system.

Congratulations for finishing this assignment! And also for revolutionizing French football. :-)

What we want you to remember from this notebook:
- Regularization will help you reduce overfitting.
- Regularization will drive your weights to lower values.
- L2 regularization and Dropout are two very effective regularization techniques.

吴恩达深度学习课程deeplearning.ai课程作业:Class 2 Week 1 2.Regularization相关推荐

  1. 吴恩达深度学习第二周--logistic回归作业1

    吴恩达深度学习第二周–logistic回归作业1 本系列为吴恩达老师深度学习作业的总结,其中参考了很多优秀的文章,本文为了方便日后的复习与巩固,更为详细的作业讲解参考 目录 吴恩达深度学习第二周--l ...

  2. 吴恩达深度学习之tensorflow2.0 课程

    课链接 吴恩达深度学习之tensorflow2.0入门到实战 2019年最新课程 最佳配合吴恩达实战的教程 代码资料 自己取 链接:https://pan.baidu.com/s/1QrTV3KvKv ...

  3. 吴恩达深度学习-Course4第三周作业 yolo.h5文件读取错误解决方法

    这个yolo.h5文件走了不少弯路呐,不过最后终于搞好了,现在把最详细的脱坑过程记录下来,希望小伙伴们少走些弯路. 最初的代码是从下面这个大佬博主的百度网盘下载的,但是h5文件无法读取.(22条消息) ...

  4. 吴恩达深度学习的实用层面编程作业:正则化Regularization

  5. 吴恩达深度学习的实用层面编程作业:初始化Initialization

  6. 360题带你走进深度学习!吴恩达深度学习课程测试题中英对照版发布

    吴恩达的深度学习课程(deepLearning.ai)是公认的入门深度学习的宝典,本站将课程的课后测试题进行了翻译,建议初学者学习.所有题目都翻译完毕,适合英文不好的同学学习. 主要翻译者:黄海广 内 ...

  7. github标星8331+:吴恩达深度学习课程资源(完整笔记、中英文字幕视频、python作业,提供百度云镜像!)...

    吴恩达老师的深度学习课程(deeplearning.ai),可以说是深度学习入门的最热门课程,我和志愿者编写了这门课的笔记,并在github开源,star数达到8331+,曾经有相关报道文章.为解决g ...

  8. 吴恩达深度学习课程之第四门课 卷积神经网络 第二周 深度卷积网络

    本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai <深度学习课程 笔记 (V5.1 )> 第二周 深度卷积网络 2.1 为什么要进行实例探究?(Why look at ...

  9. 吴恩达深度学习课程笔记之卷积神经网络(2nd week)

    0 参考资料 [1]  大大鹏/Bilibili资料 - Gitee.com [2] [中英字幕]吴恩达深度学习课程第四课 - 卷积神经网络_哔哩哔哩_bilibili [3]  深度学习笔记-目录 ...

  10. 吴恩达 深度学习1 2022, 浙大AI第一课

    强推![浙大公开课]2022B站最好最全的机器学习课程,从入门到实战!人工智能/AI/机器学习/数学基础_哔哩哔哩_bilibili 我们规定了行为和收益函数后,就不管了,构造一个算法,让计算机自己去 ...

最新文章

  1. 如何读取csv文件中第n行数据python-python数据处理之如何选取csv文件中某几行的数据...
  2. 最讨厌心灵鸡汤 所有失败最终都是人不行
  3. 操作系统:优先级反转
  4. Maven 编译使用 rt.jar
  5. atlas和ajaxpro以及微软企业级类库在一起得web配置文件
  6. SQL Where in list 问题
  7. 管控研发部门USB设备
  8. 机器学习速成课程 | 练习 | Google Development——编程练习:合成特征和离群值
  9. 数据库的四大特性和事务隔离级别
  10. linux环境编程做的是什么,Linux环境
  11. kubernetes集群搭建
  12. 浅谈C#中的延“.NET研究”迟加载(2)——善用virtual
  13. Oracle数据的导入导出
  14. python生成exe文件太大了_Pyinstaller打包生成exe文件过大,四种常用处理方法集锦---嵌入式Python-02...
  15. labview支持python免费_ni labview 2018
  16. 深度学习剖根问底:SGD算法的优化和变种
  17. 对HTTP异步接口进行性能测试
  18. 6.Celeste Headlee: 10 ways to have a better conversation | TED Talk
  19. 什么是Bounding Box、anchor box?
  20. linux 卸载dnw命令,linux下面安装dnw

热门文章

  1. linux误删视频恢复吗,linux 误删文件恢复
  2. mysql 事物gljbie_图片转成base64格式上传至数据库
  3. C语言实验——矩阵转置_JAVA
  4. c++连接mongodb出错
  5. 无法解析的外部符号 __imp__timeGetTime@0
  6. 【opencv】20.直方图均衡化的数学原理
  7. Python-OpenCV 处理图像(三):图像像素点操作
  8. 数据结构与算法(4)——优先队列和堆
  9. C#命名规则和编码规范
  10. 系统分析师零散知识点