(一)SVM的八股简介

支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。
支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。

以上是经常被有关SVM 的学术文献引用的介绍,有点八股,我来逐一分解并解释一下。

Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》 是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果, 能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了 一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。

所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。

结构风险最小听上去文绉绉,其实说的也无非是下面这回事。

机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的 (如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多 大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。

这 个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差 无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确 的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维 很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够 逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛一毛,经验风险最小化原则只在这占 很小比例的样本上做到没有误差,当然不能保证在更大比例的真实文本上也没有误差。

统计学习因此而引入了泛化误差界的概念,就是指真实风险应该由两部分内容刻画,一是经验风险,代表了分类器在给定样本上的误差;二是置信风险,代表了我们在多大程度上可以信任分类器在未知文本上分类的结果。很显然,第二部分是没有办法精确计算的,因此只能给出一个估计的区间,也使得整个误差只能计算上界,而无法计算准确的值(所以叫做泛化误差界,而不叫泛化误差)。

置信风险与两个量有关,一是样本数量,显然给定的样本数量越大,我们的学习结果越有可能正确,此时置信风险越小;二是分类函数的VC维,显然VC维越大,推广能力越差,置信风险会变大。

泛化误差界的公式为:

R(w)≤Remp(w)+Ф(n/h)

公式中R(w)就是真实风险,Remp(w)就是经验风险,Ф(n/h)就是置信风险。统计学习的目标从经验风险最小化变为了寻求经验风险与置信风险的和最小,即结构风险最小。

SVM正是这样一种努力最小化结构风险的算法。

SVM其他的特点就比较容易理解了。

小样本,并不是说样本的绝对数量少(实际上,对任何算法来说,更多的样本几乎总是能带来更好的效果),而是说与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。

非线性,是指SVM擅长应付样本数据线性不可分的情况,主要通过松弛变量(也有人叫惩罚变量)和核函数技术来实现,这一部分是SVM的精髓,以后会详细讨论。多说一句,关于文本分类这个问题究竟是不是线性可分的,尚没有定论,因此不能简单的认为它是线性可分的而作简化处理,在水落石出之前,只好先当它是线性不可分的(反正线性可分也不过是线性不可分的一种特例而已,我们向来不怕方法过于通用)。

高维模式识别是指样本维数很高,例如文本的向量表示,如果没有经过另一系列文章(《文本分类入门》)中提到过的降维处理,出现几万维的情况很正常,其他算法基本就没有能力应付了,SVM却可以,主要是因为SVM 产生的分类器很简洁,用到的样本信息很少(仅仅用到那些称之为“支持向量”的样本,此为后话),使得即使样本维数很高,也不会给存储和计算带来大麻烦(相对照而言,kNN算法在分类时就要用到所有样本,样本数巨大,每个样本维数再一高,这日子就没法过了……)。

http://www.blogjava.net/zhenandaci/archive/2008/06/20/209446.html

转载于:https://www.cnblogs.com/549294286/p/3300451.html

【转】SVM入门(一)SVM的八股简介相关推荐

  1. SVM入门(一)至(三)(转)

    按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅. (一)SVM的八股简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于 ...

  2. SVM入门(八)松弛变量(转)

    转载地址:SVM入门(八)松弛变量 现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而变成了线性可分的.就像下图这样: 圆形和方形的点各有成千上万个(毕竟,这就是我们训练集中文档的数 ...

  3. 【人脸识别】基于 Gabor+SVM和PCA+SVM实现人脸识别matlab源码含 GUI

    1 简介 随着经济的快速发展,互联网的普及,信息安全逐渐被人们所重视.人脸识别技术作为保护信息安全的重要手段之一,也逐渐被研究学者所重视.人脸识别作为计算机视觉技术和生物特征识别技术的一个重要分支,模 ...

  4. 支持向量机SVM详细原理,Libsvm工具箱详解,svm参数说明,svm应用实例,神经网络1000案例之15

    目录 支持向量机SVM的详细原理 SVM的定义 SVM理论 Libsvm工具箱详解 简介 参数说明 易错及常见问题 SVM应用实例,基于SVM的股票价格预测 支持向量机SVM的详细原理 SVM的定义 ...

  5. .NetCore微服务Surging新手傻瓜式 入门教程 学习日志---结构简介(二)

    .NetCore微服务Surging新手傻瓜式 入门教程 学习日志---结构简介(二) 原文:.NetCore微服务Surging新手傻瓜式 入门教程 学习日志---结构简介(二) 先上项目解决方案图 ...

  6. ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

    ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测.评估 目录 输出结果 设计思路 核心代码 输出结果 Fitting 3 folds for ...

  7. ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

    ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测.评估 目录 输出结果 设计思路 核心代码 输出结果 Fitting 3 folds for ...

  8. ML之SVM:利用SVM算法对手写数字图片识别数据集(PCA降维处理)进行预测并评估模型(两种算法)性能

    ML之SVM:利用SVM算法对手写数字图片识别数据集(PCA降维处理)进行预测并评估模型(两种算法)性能 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 estimator = PC ...

  9. ML之SVM:基于SVM(支持向量机)之SVC算法对手写数字图片识别进行预测

    ML之SVM:基于SVM(支持向量机)之SVC算法对手写数字图片识别进行预测 目录 输出结果 设计思路 核心代码 输出结果 设计思路 核心代码 X_train = ss.fit_transform(X ...

最新文章

  1. iphone UIView的一些基本方法理解
  2. ADF12C 在线预览PDF文件 afinlineFrame
  3. 从事安卓开发6年,我都有哪些收获?
  4. oracle菜鸟学习之 分析函数-排序
  5. 高速电路EDA设计第一次实验
  6. 卡耐基大学计算机专业分类,卡内基梅隆大学计算机专业
  7. 学生签到系统c代码_C语言实现简单学生学籍管理系统
  8. Leetcode--198. 打家劫舍
  9. sdh管理单元指针_SDH设备上STM-1接口是啥玩意
  10. C++ const用法 尽可能使用const
  11. 新农大计算机学院照片,【新生指南】小团带你逛校园(内附农大全景图~)
  12. jsp学习札记————参数传值
  13. 聊天工具机器人开发_聊天机器人-精致的交流工具? 还是您的客户服务团队不可或缺的成员?...
  14. python3编码得到中文_Python3的unicode编码转换成中文的问题及解决方案
  15. 中国电子教育产业前景规划与未来投资方向预测报告2022年版
  16. weblogic新建一个managed server并启动
  17. java开发环境变量的配置
  18. 什么是uid?什么是Auth?什么是验证器?
  19. python二进制和图片转换
  20. SWT之Text换行

热门文章

  1. 左神算法基础班4_4_3在二叉树中找到一个节点的后继节点
  2. spring的controller是单例模式,但是是多线程,各个线程之间不影响
  3. 阿里微服务专家自己手写Spring Boot 实现一个简单的自动配置模块
  4. 20分钟打造你的Bootstrap站点
  5. 基于.NET的俄罗斯方块课程设计
  6. Flink 完美搭档:数据存储层上的 Pravega
  7. flink1.12在ubuntu下面的编译记录(转载+自己整理)
  8. interactive_timeout和wait_timeout之间的区别
  9. awk获取+sed替换+paste命令追加一列
  10. csv文件用excel打开有多行是空的,用sublime打开空白行没有''处理方案