什么是线程安全?

在拥有共享数据多条线程并行执行的程序中,线程安全的代码会通过同步机制保证各个线程都可以正常且正确的执行,不会出现数据污染等意外情况。


如何保证线程安全?

  1. 共享的资源加把,保证每个资源变量每时每刻至多被一个线程占用。
  2. 让线程也拥有资源,不用去共享进程中的资源。如: 使用threadlocal可以为每个线程的维护一个私有的本地变量。

什么是单例模式?

单例模式指在整个系统生命周期里,保证一个类只能产生一个实例,确保该类的唯一性

单例模式分类

单例模式可以分为懒汉式饿汉式,两者之间的区别在于创建实例的时间不同

  • 懒汉式:指系统运行中,实例并不存在,只有当需要使用该实例时,才会去创建并使用实例。(这种方式要考虑线程安全)
  • 饿汉式:指系统一运行,就初始化创建实例,当需要时,直接调用即可。(本身就线程安全,没有多线程的问题)

单例类特点

  • 构造函数和析构函数为private类型,目的禁止外部构造和析构
  • 拷贝构造和赋值构造函数为private类型,目的是禁止外部拷贝和赋值,确保实例的唯一性
  • 类里有个获取实例的静态函数,可以全局访问

01 普通懒汉式单例 ( 线程不安全 )

///  普通懒汉式实现 -- 线程不安全 //
#include <iostream> // std::cout
#include <mutex>    // std::mutex
#include <pthread.h> // pthread_createclass SingleInstance
{public:// 获取单例对象static SingleInstance *GetInstance();// 释放单例,进程退出时调用static void deleteInstance();// 打印单例地址void Print();private:// 将其构造和析构成为私有的, 禁止外部构造和析构SingleInstance();~SingleInstance();// 将其拷贝构造和赋值构造成为私有函数, 禁止外部拷贝和赋值SingleInstance(const SingleInstance &signal);const SingleInstance &operator=(const SingleInstance &signal);private:// 唯一单例对象指针static SingleInstance *m_SingleInstance;
};//初始化静态成员变量
SingleInstance *SingleInstance::m_SingleInstance = NULL;SingleInstance* SingleInstance::GetInstance()
{if (m_SingleInstance == NULL){m_SingleInstance = new (std::nothrow) SingleInstance;  // 没有加锁是线程不安全的,当线程并发时会创建多个实例}return m_SingleInstance;
}void SingleInstance::deleteInstance()
{if (m_SingleInstance){delete m_SingleInstance;m_SingleInstance = NULL;}
}void SingleInstance::Print()
{std::cout << "我的实例内存地址是:" << this << std::endl;
}SingleInstance::SingleInstance()
{std::cout << "构造函数" << std::endl;
}SingleInstance::~SingleInstance()
{std::cout << "析构函数" << std::endl;
}
///  普通懒汉式实现 -- 线程不安全  //// 线程函数
void *PrintHello(void *threadid)
{// 主线程与子线程分离,两者相互不干涉,子线程结束同时子线程的资源自动回收pthread_detach(pthread_self());// 对传入的参数进行强制类型转换,由无类型指针变为整形数指针,然后再读取int tid = *((int *)threadid);std::cout << "Hi, 我是线程 ID:[" << tid << "]" << std::endl;// 打印实例地址SingleInstance::GetInstance()->Print();pthread_exit(NULL);
}#define NUM_THREADS 5 // 线程个数int main(void)
{pthread_t threads[NUM_THREADS] = {0};int indexes[NUM_THREADS] = {0}; // 用数组来保存i的值int ret = 0;int i = 0;std::cout << "main() : 开始 ... " << std::endl;for (i = 0; i < NUM_THREADS; i++){std::cout << "main() : 创建线程:[" << i << "]" << std::endl;indexes[i] = i; //先保存i的值// 传入的时候必须强制转换为void* 类型,即无类型指针ret = pthread_create(&threads[i], NULL, PrintHello, (void *)&(indexes[i]));if (ret){std::cout << "Error:无法创建线程," << ret << std::endl;exit(-1);}}// 手动释放单实例的资源SingleInstance::deleteInstance();std::cout << "main() : 结束! " << std::endl;return 0;
}

普通懒汉式单例运行结果:

从运行结果可知,单例构造函数创建了两个,内存地址分别为0x7f3c980008c00x7f3c900008c0,所以普通懒汉式单例只适合单进程不适合多线程,因为是线程不安全的。


02 加锁的懒汉式单例 ( 线程安全 )

///  加锁的懒汉式实现  //
class SingleInstance
{public:// 获取单实例对象static SingleInstance *&GetInstance();//释放单实例,进程退出时调用static void deleteInstance();// 打印实例地址void Print();private:// 将其构造和析构成为私有的, 禁止外部构造和析构SingleInstance();~SingleInstance();// 将其拷贝构造和赋值构造成为私有函数, 禁止外部拷贝和赋值SingleInstance(const SingleInstance &signal);const SingleInstance &operator=(const SingleInstance &signal);private:// 唯一单实例对象指针static SingleInstance *m_SingleInstance;static std::mutex m_Mutex;
};//初始化静态成员变量
SingleInstance *SingleInstance::m_SingleInstance = NULL;
std::mutex SingleInstance::m_Mutex;SingleInstance *&SingleInstance::GetInstance()
{//  这里使用了两个 if判断语句的技术称为双检锁;好处是,只有判断指针为空的时候才加锁,//  避免每次调用 GetInstance的方法都加锁,锁的开销毕竟还是有点大的。if (m_SingleInstance == NULL) {std::unique_lock<std::mutex> lock(m_Mutex); // 加锁if (m_SingleInstance == NULL){m_SingleInstance = new (std::nothrow) SingleInstance;}}return m_SingleInstance;
}void SingleInstance::deleteInstance()
{std::unique_lock<std::mutex> lock(m_Mutex); // 加锁if (m_SingleInstance){delete m_SingleInstance;m_SingleInstance = NULL;}
}void SingleInstance::Print()
{std::cout << "我的实例内存地址是:" << this << std::endl;
}SingleInstance::SingleInstance()
{std::cout << "构造函数" << std::endl;
}SingleInstance::~SingleInstance()
{std::cout << "析构函数" << std::endl;
}
///  加锁的懒汉式实现  //

加锁的懒汉式单例的运行结果:

从运行结果可知,只创建了一个实例,内存地址是0x7f28b00008c0,所以加了互斥锁的普通懒汉式是线程安全的


03 内部静态变量的懒汉单例(C++11 线程安全)

///  内部静态变量的懒汉实现  //
class Single
{public:// 获取单实例对象static Single &GetInstance();// 打印实例地址void Print();private:// 禁止外部构造Single();// 禁止外部析构~Single();// 禁止外部复制构造Single(const Single &signal);// 禁止外部赋值操作const Single &operator=(const Single &signal);
};Single &Single::GetInstance()
{// 局部静态特性的方式实现单实例static Single signal;return signal;
}void Single::Print()
{std::cout << "我的实例内存地址是:" << this << std::endl;
}Single::Single()
{std::cout << "构造函数" << std::endl;
}Single::~Single()
{std::cout << "析构函数" << std::endl;
}
///  内部静态变量的懒汉实现  //

内部静态变量的懒汉单例的运行结果:

-std=c++0x编译是使用了C++11的特性,在C++11内部静态变量的方式里是线程安全的,只创建了一次实例,内存地址是0x6016e8,这个方式非常推荐,实现的代码最少!

[root@lincoding singleInstall]#g++  SingleInstance.cpp -o SingleInstance -lpthread -std=c++0x


04 饿汉式单例 (本身就线程安全)

// 饿汉实现 /
class Singleton
{
public:// 获取单实例static Singleton* GetInstance();// 释放单实例,进程退出时调用static void deleteInstance();// 打印实例地址void Print();private:// 将其构造和析构成为私有的, 禁止外部构造和析构Singleton();~Singleton();// 将其拷贝构造和赋值构造成为私有函数, 禁止外部拷贝和赋值Singleton(const Singleton &signal);const Singleton &operator=(const Singleton &signal);private:// 唯一单实例对象指针static Singleton *g_pSingleton;
};// 代码一运行就初始化创建实例 ,本身就线程安全
Singleton* Singleton::g_pSingleton = new (std::nothrow) Singleton;Singleton* Singleton::GetInstance()
{return g_pSingleton;
}void Singleton::deleteInstance()
{if (g_pSingleton){delete g_pSingleton;g_pSingleton = NULL;}
}void Singleton::Print()
{std::cout << "我的实例内存地址是:" << this << std::endl;
}Singleton::Singleton()
{std::cout << "构造函数" << std::endl;
}Singleton::~Singleton()
{std::cout << "析构函数" << std::endl;
}
// 饿汉实现 /

饿汉式单例的运行结果:

从运行结果可知,饿汉式在程序一开始就构造函数初始化了,所以本身就线程安全的

C++ 线程安全的单例模式总结相关推荐

  1. Android之线程安全的单例模式,Adapter注意事项之引用传值

    线程安全的单例模式 单位模式一般写法如下: public static FestivalLab mInstance; private FestivalLab() { } public static F ...

  2. java 静态内部类 线程安全问题_单例模式的七种写法, 面试题:线程安全的单例模式...

    http://cantellow.iteye.com/blog/838473 http://meizhi.iteye.com/blog/537563 第一种(懒汉,线程不安全): Java代码  pu ...

  3. C++实现线程安全的单例模式

    C++实现线程安全的单例模式 1.单例模式 一个简单的单例模式很容易实现:构造函数声明为private或protect防止被外部函数实例化,内部保存一个private static的类指针保存唯一的实 ...

  4. 生产者消费者模型、信号量、线程池以及单例模式的实现

    生产者消费者模型!!---对典型的应用场景设计的解决方案 生产者与消费者模型应用场景:有线程不断的生产数据,有线程不断的处理数据. 数据的生产与数据的处理:放在同一个线程中完成,因为执行流只有一个,那 ...

  5. 静态内部类、静态变量的加载次数-理解静态内部类实现线程安全的单例模式

    百度众说纷纭的情况下就不如自己写例子测试理论,话不多说,上代码: public class Sta {public static long date=System.currentTimeMillis( ...

  6. 静态内部类、静态变量的加载次数-理解静态内部类实现线程安全的单例模式懒加载

    原贴:https://www.cnblogs.com/suncoolcat/p/3362230.html 写的很详细,需细细品味. 百度众说纷纭的情况下就不如自己写例子测试理论,话不多说,上代码: p ...

  7. JAVA的多线程、死锁、线程间通信、如何规避死锁、线程安全的单例模式

    主要内容: 多线程 线程和进程间的关系 Java中的线程理论 Java中线程类的实现方式 Java中线程的常用方法 线程安全性问题 线程间通信 线程的死锁 如何规避死锁 线程安全的单例模式 多线程 线 ...

  8. C#中线程安全的单例模式

    一.单例模式 ①单例模式的定义:是用来保证这个类在运行期间只会被创建一个实例,并提供一个访问它的全局访问点. ②单例模式的作用:保证一个类只有一个访问实例,节省系统资源. ③单例模式的特点:私有构造方 ...

  9. java线程池使用单例模式

    一.线程池不使用单例模式 import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors;publ ...

  10. C++ static 变量和线程安全和单例模式

    static变量初始化顺序 1.1 全局变量.文件域的static变量和类的static成员变量在main函数执行之前初始化 1.2 局部静态变量在第一次被使用时初始化 static变量的线程安全 2 ...

最新文章

  1. Udacity机器人软件工程师课程笔记(十一)-ROS-编写ROS节点
  2. 虚拟主机上用Asp.net实现Urlrewrite
  3. 远程控制软件VNC教程和对内网机器控制的实现
  4. windows自带反编译chm文件
  5. 随机微分过程matlab求数值解,随机微分方程数值解.pdf
  6. Windows上使用Git管理文件
  7. XPath和lxml类库
  8. 软件应用:HexorBase Tool 实战测试!
  9. SQLyog 使用教程
  10. 用matlab计算矩阵的权重,用Excel计算层次分析法的矩阵权重分析
  11. 发动机冒黑烟_发动机冒黑烟常见的23个原因和解决方法
  12. 如何制作龙芯系统安装U盘
  13. 为什么群发邮件会退回:怎么做来避免邮件退回并提高群发邮件到达率
  14. windows server 2003 桌面图标有蓝底如何解决
  15. 荷兰量子生态联盟投资110万欧元开发超导量子处理器
  16. js实现对数组每一项加1的三种方法
  17. 最低成本DIY视频遥控车方案:ESP32-CAM视频遥控车
  18. SQL22 统计各个部门的工资记录数
  19. spring-retry
  20. 帝国cms 留言反馈 问题

热门文章

  1. 小米 MIUI 12 Magisk root教程(无需刷REC)
  2. NLP系列之文本分类
  3. excel导出文本格式设置为数值(easypoi)
  4. DNF私服商业服搭建教程
  5. ssm房屋租赁管理系统ssm房屋管理系统JSP网上租房系统JSP房产信息网站房屋租赁系统房屋
  6. 分享 5 个实用的 Java 开源论坛系统!
  7. 霍尔探头对高斯计测量的影响
  8. iconfont 阿里巴巴矢量图标库 引入图标不显示
  9. 第6-5课:五子棋游戏的相关算法
  10. 各类曲线的参数方程_常见曲线的参数方程