ML之LoR&Bagging&RF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测

目录

输出结果

设计思路

核心代码


输出结果

1、数据集可视化以及统计分析

2、优化baseline模型

ML之LoR&Bagging&RF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——优化baseline模型

3、模型融合

ML之LoR&Bagging&RF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合

设计思路

核心代码

LoR算法

clf_LoR = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6)
clf_LoR.fit(X, y)#LoR算法
class LogisticRegression Found at: sklearn.linear_model.logisticclass LogisticRegression(BaseEstimator, LinearClassifierMixin, SparseCoefMixin):"""Logistic Regression (aka logit, MaxEnt) classifier.In the multiclass case, the training algorithm uses the one-vs-rest (OvR)scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'.(Currently the 'multinomial' option is supported only by the 'lbfgs','sag' and 'newton-cg' solvers.)This class implements regularized logistic regression using the'liblinear' library, 'newton-cg', 'sag' and 'lbfgs' solvers. It can handleboth dense and sparse input. Use C-ordered arrays or CSR matricescontaining 64-bit floats for optimal performance; any other input formatwill be converted (and copied).The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularizationwith primal formulation. The 'liblinear' solver supports both L1 and L2regularization, with a dual formulation only for the L2 penalty.Read more in the :ref:`User Guide <logistic_regression>`.Parameters----------penalty : str, 'l1' or 'l2', default: 'l2'Used to specify the norm used in the penalization. The 'newton-cg','sag' and 'lbfgs' solvers support only l2 penalties... versionadded:: 0.19l1 penalty with SAGA solver (allowing 'multinomial' + L1)dual : bool, default: FalseDual or primal formulation. Dual formulation is only implemented forl2 penalty with liblinear solver. Prefer dual=False whenn_samples > n_features.tol : float, default: 1e-4Tolerance for stopping criteria.C : float, default: 1.0Inverse of regularization strength; must be a positive float.Like in support vector machines, smaller values specify strongerregularization.fit_intercept : bool, default: TrueSpecifies if a constant (a.k.a. bias or intercept) should beadded to the decision function.intercept_scaling : float, default 1.Useful only when the solver 'liblinear' is usedand self.fit_intercept is set to True. In this case, x becomes[x, self.intercept_scaling],i.e. a "synthetic" feature with constant value equal tointercept_scaling is appended to the instance vector.The intercept becomes ``intercept_scaling * synthetic_feature_weight``.Note! the synthetic feature weight is subject to l1/l2 regularizationas all other features.To lessen the effect of regularization on synthetic feature weight(and therefore on the intercept) intercept_scaling has to be increased.class_weight : dict or 'balanced', default: NoneWeights associated with classes in the form ``{class_label: weight}``.If not given, all classes are supposed to have weight one.The "balanced" mode uses the values of y to automatically adjustweights inversely proportional to class frequencies in the input dataas ``n_samples / (n_classes * np.bincount(y))``.Note that these weights will be multiplied with sample_weight (passedthrough the fit method) if sample_weight is specified... versionadded:: 0.17*class_weight='balanced'*random_state : int, RandomState instance or None, optional, default: NoneThe seed of the pseudo random number generator to use when shufflingthe data.  If int, random_state is the seed used by the random numbergenerator; If RandomState instance, random_state is the random numbergenerator; If None, the random number generator is the RandomStateinstance used by `np.random`. Used when ``solver`` == 'sag' or'liblinear'.solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'},default: 'liblinear'Algorithm to use in the optimization problem.- For small datasets, 'liblinear' is a good choice, whereas 'sag' and'saga' are faster for large ones.- For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs'handle multinomial loss; 'liblinear' is limited to one-versus-restschemes.- 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty, whereas'liblinear' and 'saga' handle L1 penalty.Note that 'sag' and 'saga' fast convergence is only guaranteed onfeatures with approximately the same scale. You canpreprocess the data with a scaler from sklearn.preprocessing... versionadded:: 0.17Stochastic Average Gradient descent solver... versionadded:: 0.19SAGA solver.max_iter : int, default: 100Useful only for the newton-cg, sag and lbfgs solvers.Maximum number of iterations taken for the solvers to converge.multi_class : str, {'ovr', 'multinomial'}, default: 'ovr'Multiclass option can be either 'ovr' or 'multinomial'. If the optionchosen is 'ovr', then a binary problem is fit for each label. Elsethe loss minimised is the multinomial loss fit acrossthe entire probability distribution. Does not work for liblinearsolver... versionadded:: 0.18Stochastic Average Gradient descent solver for 'multinomial' case.verbose : int, default: 0For the liblinear and lbfgs solvers set verbose to any positivenumber for verbosity.warm_start : bool, default: FalseWhen set to True, reuse the solution of the previous call to fit asinitialization, otherwise, just erase the previous solution.Useless for liblinear solver... versionadded:: 0.17*warm_start* to support *lbfgs*, *newton-cg*, *sag*, *saga* solvers.n_jobs : int, default: 1Number of CPU cores used when parallelizing over classes ifmulti_class='ovr'". This parameter is ignored when the ``solver``is setto 'liblinear' regardless of whether 'multi_class' is specified ornot. If given a value of -1, all cores are used.Attributes----------coef_ : array, shape (1, n_features) or (n_classes, n_features)Coefficient of the features in the decision function.`coef_` is of shape (1, n_features) when the given problemis binary.intercept_ : array, shape (1,) or (n_classes,)Intercept (a.k.a. bias) added to the decision function.If `fit_intercept` is set to False, the intercept is set to zero.`intercept_` is of shape(1,) when the problem is binary.n_iter_ : array, shape (n_classes,) or (1, )Actual number of iterations for all classes. If binary or multinomial,it returns only 1 element. For liblinear solver, only the maximumnumber of iteration across all classes is given.See also--------SGDClassifier : incrementally trained logistic regression (when giventhe parameter ``loss="log"``).sklearn.svm.LinearSVC : learns SVM models using the same algorithm.Notes-----The underlying C implementation uses a random number generator toselect features when fitting the model. It is thus not uncommon,to have slightly different results for the same input data. Ifthat happens, try with a smaller tol parameter.Predict output may not match that of standalone liblinear in certaincases. See :ref:`differences from liblinear <liblinear_differences>`in the narrative documentation.References----------LIBLINEAR -- A Library for Large Linear Classificationhttp://www.csie.ntu.edu.tw/~cjlin/liblinear/SAG -- Mark Schmidt, Nicolas Le Roux, and Francis BachMinimizing Finite Sums with the Stochastic Average Gradienthttps://hal.inria.fr/hal-00860051/documentSAGA -- Defazio, A., Bach F. & Lacoste-Julien S. (2014).SAGA: A Fast Incremental Gradient Method With Supportfor Non-Strongly Convex Composite Objectiveshttps://arxiv.org/abs/1407.0202Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descentmethods for logistic regression and maximum entropy models.Machine Learning 85(1-2):41-75.http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf"""def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1):self.penalty = penaltyself.dual = dualself.tol = tolself.C = Cself.fit_intercept = fit_interceptself.intercept_scaling = intercept_scalingself.class_weight = class_weightself.random_state = random_stateself.solver = solverself.max_iter = max_iterself.multi_class = multi_classself.verbose = verboseself.warm_start = warm_startself.n_jobs = n_jobsdef fit(self, X, y, sample_weight=None):"""Fit the model according to the given training data.Parameters----------X : {array-like, sparse matrix}, shape (n_samples, n_features)Training vector, where n_samples is the number of samples andn_features is the number of features.y : array-like, shape (n_samples,)Target vector relative to X.sample_weight : array-like, shape (n_samples,) optionalArray of weights that are assigned to individual samples.If not provided, then each sample is given unit weight... versionadded:: 0.17*sample_weight* support to LogisticRegression.Returns-------self : objectReturns self."""if not isinstance(self.C, numbers.Number) or self.C < 0:raise ValueError("Penalty term must be positive; got (C=%r)" % self.C)if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0:raise ValueError("Maximum number of iteration must be positive;"" got (max_iter=%r)" % self.max_iter)if not isinstance(self.tol, numbers.Number) or self.tol < 0:raise ValueError("Tolerance for stopping criteria must be ""positive; got (tol=%r)" % self.tol)if self.solver in ['newton-cg']:_dtype = [np.float64, np.float32]else:_dtype = np.float64X, y = check_X_y(X, y, accept_sparse='csr', dtype=_dtype, order="C")check_classification_targets(y)self.classes_ = np.unique(y)n_samples, n_features = X.shape_check_solver_option(self.solver, self.multi_class, self.penalty, self.dual)if self.solver == 'liblinear':if self.n_jobs != 1:warnings.warn("'n_jobs' > 1 does not have any effect when"" 'solver' is set to 'liblinear'. Got 'n_jobs'"" = {}.".format(self.n_jobs))self.coef_, self.intercept_, n_iter_ = _fit_liblinear(X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, sample_weight=sample_weight)self.n_iter_ = np.array([n_iter_])return selfif self.solver in ['sag', 'saga']:max_squared_sum = row_norms(X, squared=True).max()else:max_squared_sum = Nonen_classes = len(self.classes_)classes_ = self.classes_if n_classes < 2:raise ValueError("This solver needs samples of at least 2 classes"" in the data, but the data contains only one"" class: %r" % classes_[0])if len(self.classes_) == 2:n_classes = 1classes_ = classes_[1:]if self.warm_start:warm_start_coef = getattr(self, 'coef_', None)else:warm_start_coef = Noneif warm_start_coef is not None and self.fit_intercept:warm_start_coef = np.append(warm_start_coef, self.intercept_[:np.newaxis], axis=1)self.coef_ = list()self.intercept_ = np.zeros(n_classes)# Hack so that we iterate only once for the multinomial case.if self.multi_class == 'multinomial':classes_ = [None]warm_start_coef = [warm_start_coef]if warm_start_coef is None:warm_start_coef = [None] * n_classespath_func = delayed(logistic_regression_path)# The SAG solver releases the GIL so it's more efficient to use# threads for this solver.if self.solver in ['sag', 'saga']:backend = 'threading'else:backend = 'multiprocessing'fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=backend)(path_func(X, y, pos_class=class_, Cs=[self.C], fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=self.solver, multi_class=self.multi_class, max_iter=self.max_iter, class_weight=self.class_weight, check_input=False, random_state=self.random_state, coef=warm_start_coef_, penalty=self.penalty, max_squared_sum=max_squared_sum, sample_weight=sample_weight) for (class_, warm_start_coef_) in zip(classes_, warm_start_coef))fold_coefs_, _, n_iter_ = zip(*fold_coefs_)self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:0]if self.multi_class == 'multinomial':self.coef_ = fold_coefs_[0][0]else:self.coef_ = np.asarray(fold_coefs_)self.coef_ = self.coef_.reshape(n_classes, n_features + int(self.fit_intercept))if self.fit_intercept:self.intercept_ = self.coef_[:-1]self.coef_ = self.coef_[::-1]return selfdef predict_proba(self, X):"""Probability estimates.The returned estimates for all classes are ordered by thelabel of classes.For a multi_class problem, if multi_class is set to be "multinomial"the softmax function is used to find the predicted probability ofeach class.Else use a one-vs-rest approach, i.e calculate the probabilityof each class assuming it to be positive using the logistic function.and normalize these values across all the classes.Parameters----------X : array-like, shape = [n_samples, n_features]Returns-------T : array-like, shape = [n_samples, n_classes]Returns the probability of the sample for each class in the model,where classes are ordered as they are in ``self.classes_``."""if not hasattr(self, "coef_"):raise NotFittedError("Call fit before prediction")calculate_ovr = self.coef_.shape[0] == 1 or self.multi_class == "ovr"if calculate_ovr:return super(LogisticRegression, self)._predict_proba_lr(X)else:return softmax(self.decision_function(X), copy=False)def predict_log_proba(self, X):"""Log of probability estimates.The returned estimates for all classes are ordered by thelabel of classes.Parameters----------X : array-like, shape = [n_samples, n_features]Returns-------T : array-like, shape = [n_samples, n_classes]Returns the log-probability of the sample for each class in themodel, where classes are ordered as they are in ``self.classes_``."""return np.log(self.predict_proba(X))

相关文章
EL之Bagging:kaggle比赛之利用泰坦尼克号数据集建立Bagging模型对每个人进行获救是否预测
ML之LoR:kaggle比赛之利用泰坦尼克号数据集建立LoR模型对每个人进行获救是否预测
ML之RF:kaggle比赛之利用泰坦尼克号数据集建立RF模型对每个人进行获救是否预测
ML之SVM:基于Js代码利用SVM算法的实现根据Kaggle数据集预测泰坦尼克号生存人员

ML之LoRBaggingRF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测(最全)相关推荐

  1. ML之LoRBaggingRF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——优化baseline模型

    ML之LoR&Bagging&RF:依次利用LoR.Bagging.RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测--优化baseline模型 目录 模型优 ...

  2. ML之LoRBaggingRF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合

    ML之LoR&Bagging&RF:依次利用Bagging.RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测--模型融合 目录 输出结果 设计思路 核心代码 ...

  3. ML之LoRBaggingRF:依次利用LoR、Bagging、RF算法对titanic(泰坦尼克号)数据集 (Kaggle经典案例)获救人员进行二分类预测(最全)

    ML之LoR&Bagging&RF:依次利用LoR.Bagging.RF算法对titanic(泰坦尼克号)数据集 (Kaggle经典案例)获救人员进行二分类预测 目录 输出结果 设计思 ...

  4. ML之LoRSGD:基于LoR(逻辑回归)、SGD梯度下降算法对乳腺癌肿瘤(10+1)进行二分类预测(良/恶性)

    ML之LoR&SGD:基于LoR(逻辑回归).SGD梯度下降算法对乳腺癌肿瘤(10+1)进行二分类预测(良/恶性) 目录 输出结果 设计思路 核心代码 输出结果 breast-cancer s ...

  5. ML之FE之FS:特征工程/数据预处理—特征选择之利用过滤式filter、包装式wrapper、嵌入式Embedded方法(RF/SF)进行特征选择(mushroom蘑菇数据集二分类预测)最全案例应用

    ML之FE之FS:特征工程/数据预处理-特征选择之利用过滤式filter.包装式wrapper.嵌入式Embedded方法(RF/SF)进行特征选择(mushroom蘑菇数据集二分类预测)案例应用 利 ...

  6. ML之xgboostGBM:基于xgboostGBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测

    ML之xgboost&GBM:基于xgboost&GBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测 目录 输出结果 设计思路 核心代码 输 ...

  7. ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)

    ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测.推理) 目录 利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/ ...

  8. ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)

    ML:基于自定义数据集利用Logistic.梯度下降算法GD.LoR逻辑回归.Perceptron感知器.支持向量机(SVM_Linear.SVM_Rbf).LDA线性判别分析算法进行二分类预测(决策 ...

  9. ML之PDP:基于titanic泰坦尼克是否获救二分类预测数据集利用PDP部分依赖图对RF随机森林实现模型可解释性案例

    ML之PDP:基于titanic泰坦尼克是否获救二分类预测数据集利用PDP部分依赖图对RF随机森林实现模型可解释性案例 目录 基于titanic泰坦尼克是否获救二分类预测数据集利用PDP部分依赖图对R ...

最新文章

  1. 程序员的幸福:上个月被裁拿赔偿,这个月找到涨薪50%的工作
  2. cocos2d中CCAnimation的使用(cocos2d 1.0以上版本)
  3. Mysql VARCHAR(X) vs TEXT
  4. 9.2.4 .net core 通过ViewComponent封装控件
  5. CSS Dock Menu:JS+CSS 仿苹果MAC机桌面导航菜单
  6. Flink 有状态计算的状态容错
  7. 【干货】2021百度营销通案.pdf(附下载链接)
  8. 【软件教程】Spring Tool Suite(STS)
  9. 软件项目管理第4版课后习题[附解析]第七章
  10. 弘辽科技:你吃的粽子,撑起百亿市场
  11. vue3大屏电子数字滚动显示动效
  12. windows server2012 R2 离线中文语言包下载与安装
  13. 用什么 软件测试无线频段,Wirelessmon无线频段与信号强度扫描工具软件使用技巧...
  14. Dukto在路由器联互联网的情况下传输文件是否会耗互联网流量?
  15. 软件测试用例篇总结概述
  16. 嵌入式系统——ADS和AXD的基本操作
  17. 日记500字初中计算机课,周末初中日记500字
  18. 小米8青春版android版本,小米8青春版和小米8什么区别 小米8青春版和小米8对比...
  19. 数据中台 第8章 数据资产管理
  20. JSP+MySQL基于SSM框架的教室管理系统设计与实现

热门文章

  1. 自己在CODING过程中遇到的问题以及解决(C/VC)
  2. CSS 基础:文本和字体(4)思维导图
  3. Python 的电子邮件编程
  4. 用FlashBoot轻松制作瑞星杀毒U盘!
  5. JavaScript零散知识点总结
  6. javascript创建类方法汇总(包含es6语法)
  7. 创业互联网公司如何搭建自己的技术架构
  8. MySQL 中主键的几种表设计组合的实际应用效果
  9. 自学架构设计的一个好方法
  10. Java线程详解(12)-有返回值的线程