ML之LoR&Bagging&RF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合

目录

输出结果

设计思路

核心代码


输出结果

设计思路

核心代码

RF算法

clf=RandomForestClassifier(n_estimators=500, criterion='entropy', max_depth=5, min_samples_split=2,min_samples_leaf=1, max_features='auto',    bootstrap=False, oob_score=False, n_jobs=1, random_state=seed,verbose=0)class RandomForestClassifier Found at: sklearn.ensemble.forestclass RandomForestClassifier(ForestClassifier):"""A random forest classifier.A random forest is a meta estimator that fits a number of decision treeclassifiers on various sub-samples of the dataset and use averaging toimprove the predictive accuracy and control over-fitting.The sub-sample size is always the same as the originalinput sample size but the samples are drawn with replacement if`bootstrap=True` (default).Read more in the :ref:`User Guide <forest>`.Parameters----------n_estimators : integer, optional (default=10)The number of trees in the forest.criterion : string, optional (default="gini")The function to measure the quality of a split. Supported criteria are"gini" for the Gini impurity and "entropy" for the information gain.Note: this parameter is tree-specific.max_features : int, float, string or None, optional (default="auto")The number of features to consider when looking for the best split:- If int, then consider `max_features` features at each split.- If float, then `max_features` is a percentage and`int(max_features * n_features)` features are considered at eachsplit.- If "auto", then `max_features=sqrt(n_features)`.- If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").- If "log2", then `max_features=log2(n_features)`.- If None, then `max_features=n_features`.Note: the search for a split does not stop until at least onevalid partition of the node samples is found, even if it requires toeffectively inspect more than ``max_features`` features.max_depth : integer or None, optional (default=None)The maximum depth of the tree. If None, then nodes are expanded untilall leaves are pure or until all leaves contain less thanmin_samples_split samples.min_samples_split : int, float, optional (default=2)The minimum number of samples required to split an internal node:- If int, then consider `min_samples_split` as the minimum number.- If float, then `min_samples_split` is a percentage and`ceil(min_samples_split * n_samples)` are the minimumnumber of samples for each split... versionchanged:: 0.18Added float values for percentages.min_samples_leaf : int, float, optional (default=1)The minimum number of samples required to be at a leaf node:- If int, then consider `min_samples_leaf` as the minimum number.- If float, then `min_samples_leaf` is a percentage and`ceil(min_samples_leaf * n_samples)` are the minimumnumber of samples for each node... versionchanged:: 0.18Added float values for percentages.min_weight_fraction_leaf : float, optional (default=0.)The minimum weighted fraction of the sum total of weights (of allthe input samples) required to be at a leaf node. Samples haveequal weight when sample_weight is not provided.max_leaf_nodes : int or None, optional (default=None)Grow trees with ``max_leaf_nodes`` in best-first fashion.Best nodes are defined as relative reduction in impurity.If None then unlimited number of leaf nodes.min_impurity_split : float,Threshold for early stopping in tree growth. A node will splitif its impurity is above the threshold, otherwise it is a leaf... deprecated:: 0.19``min_impurity_split`` has been deprecated in favor of``min_impurity_decrease`` in 0.19 and will be removed in 0.21.Use ``min_impurity_decrease`` instead.min_impurity_decrease : float, optional (default=0.)A node will be split if this split induces a decrease of the impuritygreater than or equal to this value.The weighted impurity decrease equation is the following::N_t / N * (impurity - N_t_R / N_t * right_impurity- N_t_L / N_t * left_impurity)where ``N`` is the total number of samples, ``N_t`` is the number ofsamples at the current node, ``N_t_L`` is the number of samples in theleft child, and ``N_t_R`` is the number of samples in the right child.``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,if ``sample_weight`` is passed... versionadded:: 0.19bootstrap : boolean, optional (default=True)Whether bootstrap samples are used when building trees.oob_score : bool (default=False)Whether to use out-of-bag samples to estimatethe generalization accuracy.n_jobs : integer, optional (default=1)The number of jobs to run in parallel for both `fit` and `predict`.If -1, then the number of jobs is set to the number of cores.random_state : int, RandomState instance or None, optional (default=None)If int, random_state is the seed used by the random number generator;If RandomState instance, random_state is the random number generator;If None, the random number generator is the RandomState instance usedby `np.random`.verbose : int, optional (default=0)Controls the verbosity of the tree building process.warm_start : bool, optional (default=False)When set to ``True``, reuse the solution of the previous call to fitand add more estimators to the ensemble, otherwise, just fit a wholenew forest.class_weight : dict, list of dicts, "balanced","balanced_subsample" or None, optional (default=None)Weights associated with classes in the form ``{class_label: weight}``.If not given, all classes are supposed to have weight one. Formulti-output problems, a list of dicts can be provided in the sameorder as the columns of y.Note that for multioutput (including multilabel) weights should bedefined for each class of every column in its own dict. For example,for four-class multilabel classification weights should be[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of[{1:1}, {2:5}, {3:1}, {4:1}].The "balanced" mode uses the values of y to automatically adjustweights inversely proportional to class frequencies in the input dataas ``n_samples / (n_classes * np.bincount(y))``The "balanced_subsample" mode is the same as "balanced" except thatweights are computed based on the bootstrap sample for every treegrown.For multi-output, the weights of each column of y will be multiplied.Note that these weights will be multiplied with sample_weight (passedthrough the fit method) if sample_weight is specified.Attributes----------estimators_ : list of DecisionTreeClassifierThe collection of fitted sub-estimators.classes_ : array of shape = [n_classes] or a list of such arraysThe classes labels (single output problem), or a list of arrays ofclass labels (multi-output problem).n_classes_ : int or listThe number of classes (single output problem), or a list containing thenumber of classes for each output (multi-output problem).n_features_ : intThe number of features when ``fit`` is performed.n_outputs_ : intThe number of outputs when ``fit`` is performed.feature_importances_ : array of shape = [n_features]The feature importances (the higher, the more important the feature).oob_score_ : floatScore of the training dataset obtained using an out-of-bag estimate.oob_decision_function_ : array of shape = [n_samples, n_classes]Decision function computed with out-of-bag estimate on the trainingset. If n_estimators is small it might be possible that a data pointwas never left out during the bootstrap. In this case,`oob_decision_function_` might contain NaN.Examples-------->>> from sklearn.ensemble import RandomForestClassifier>>> from sklearn.datasets import make_classification>>>>>> X, y = make_classification(n_samples=1000, n_features=4,...                            n_informative=2, n_redundant=0,...                            random_state=0, shuffle=False)>>> clf = RandomForestClassifier(max_depth=2, random_state=0)>>> clf.fit(X, y)RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',max_depth=2, max_features='auto', max_leaf_nodes=None,min_impurity_decrease=0.0, min_impurity_split=None,min_samples_leaf=1, min_samples_split=2,min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,oob_score=False, random_state=0, verbose=0, warm_start=False)>>> print(clf.feature_importances_)[ 0.17287856  0.80608704  0.01884792  0.00218648]>>> print(clf.predict([[0, 0, 0, 0]]))[1]Notes-----The default values for the parameters controlling the size of the trees(e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown andunpruned trees which can potentially be very large on some data sets. Toreduce memory consumption, the complexity and size of the trees should becontrolled by setting those parameter values.The features are always randomly permuted at each split. Therefore,the best found split may vary, even with the same training data,``max_features=n_features`` and ``bootstrap=False``, if the improvementof the criterion is identical for several splits enumerated during thesearch of the best split. To obtain a deterministic behaviour duringfitting, ``random_state`` has to be fixed.References----------.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.See also--------DecisionTreeClassifier, ExtraTreesClassifier"""def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None):super(RandomForestClassifier, self).__init__(base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_decrease", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight)self.criterion = criterionself.max_depth = max_depthself.min_samples_split = min_samples_splitself.min_samples_leaf = min_samples_leafself.min_weight_fraction_leaf = min_weight_fraction_leafself.max_features = max_featuresself.max_leaf_nodes = max_leaf_nodesself.min_impurity_decrease = min_impurity_decreaseself.min_impurity_split = min_impurity_split

ML之LoRBaggingRF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合相关推荐

  1. ML之LoRBaggingRF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测(最全)

    ML之LoR&Bagging&RF:依次利用LoR.Bagging.RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测 目录 输出结果 设计思路 核心代码 输出 ...

  2. ML之LoRBaggingRF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——优化baseline模型

    ML之LoR&Bagging&RF:依次利用LoR.Bagging.RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测--优化baseline模型 目录 模型优 ...

  3. ML之LoRBaggingRF:依次利用LoR、Bagging、RF算法对titanic(泰坦尼克号)数据集 (Kaggle经典案例)获救人员进行二分类预测(最全)

    ML之LoR&Bagging&RF:依次利用LoR.Bagging.RF算法对titanic(泰坦尼克号)数据集 (Kaggle经典案例)获救人员进行二分类预测 目录 输出结果 设计思 ...

  4. ML之Clustering之K-means:K-means算法简介、应用、经典案例之详细攻略

    ML之Clustering之K-means:K-means算法简介.应用.经典案例之详细攻略 目录 K-means算法简介 1.K-means算法适用的数据类型​ 2.K-Means算法的全局最优解和 ...

  5. ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练实现二分类预测(基于训练好的模型进行新数据预测)

    ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练实现二分类预测(基于训练好的模型进行新数据预测) 目录 输出结果 设计思路 核心代码 ...

  6. ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练(模型保存+可视化)实现二分类预测

    ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练(模型保存+可视化)实现二分类预测 目录 数据集简介 输出结果 设计思路 核心代码 数 ...

  7. ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)

    ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测.推理) 目录 利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/ ...

  8. ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测

    ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测 目录 输出结果 数据集展示 输出结果 1.k-NN 2.LoR 4.DT 5.RF ...

  9. ML之FE之FS:特征工程/数据预处理—特征选择之利用过滤式filter、包装式wrapper、嵌入式Embedded方法(RF/SF)进行特征选择(mushroom蘑菇数据集二分类预测)最全案例应用

    ML之FE之FS:特征工程/数据预处理-特征选择之利用过滤式filter.包装式wrapper.嵌入式Embedded方法(RF/SF)进行特征选择(mushroom蘑菇数据集二分类预测)案例应用 利 ...

最新文章

  1. linux 模拟生成 CAN 设备
  2. 十年技术,不要再迷茫
  3. LeetCode-Reverse Integer
  4. webstorm设置注释颜色_简单5步了解相关矩阵的注释热图
  5. 使用 yum 安装Docker(CentOS 7下)
  6. AS400: 对象属性Domain和State
  7. underscore.js _.map[Collections]
  8. WPF与WCF c#
  9. eclipse从入门到精通_JAVA成长之路入门学习路线
  10. Android之解决PC端上传http表单格式文件手机解析文件名乱码问题和PC浏览器下载文件的文件名显示乱码问题
  11. 格子里输出 java_蓝桥杯-格子中输出-java
  12. Vue.js 2.x笔记:指令(4)
  13. ldo和dcdc功耗_深度解析DCDC和LDO各自的原理和区别
  14. Leetcode PHP题解--D7 905. Sort Array By Parity
  15. VS2008+SQL2005 ASP.NET2.0数据库连接总结 (vs2005也可)----转载+说明
  16. R语言 echarts4r 不显示图形_【课程预告】清华定量俱乐部lt;R专场gt;第三讲——R可视化基础...
  17. 学习Linux必备的硬件基础一网打尽
  18. MySQL与Oracle 差异比较之五存储过程Function
  19. 100道Python练习题集合,拿去刷
  20. 如何在Mac上打开和使用AirPlay,以便在更大的显示器上进行屏幕镜像?

热门文章

  1. 获取另一个驱动的设备结构体_《rt-thread驱动框架分析》-i2c驱动
  2. vb6 datagrid表格垂直居中_Word文档中表格的定位方式
  3. Linux 文件查找(find)
  4. WCF采用 netTcpBinding 发生的Socket errors
  5. win7安装laravel
  6. 可以用计算机存储的东西
  7. 《妥协的完美主义:优秀产品经理的实践指南(卷二)》一1.2 交互设计不是横空出世...
  8. VISUAL STUDIO 2008 破解方法
  9. Spring框架中的设计模式(五)
  10. MySQL: load data infile 需要注意的点