5G的五项核心技术

这几个领军技术包括毫米波(millimeter waves)、大规模MIMO(massive MIMO)、小基站(small cells)、全双工模式(full duplex)、波束形成(beamforming)这五个技术。5G不再单纯地强调峰值速率,而是综合考虑8个技术指标:峰值速率、用户体验速率、频谱效率、移动性、时延、连接数密度、网络能量效率和流量密度。

5G术语

NR (New Radio)

MIMO    Multiple-Input Multiple-Output    多输入多输出
MUSA    Multi-User Shared Access    多用户共享接入
NOMA    Non-Orthogonal Multiple Access    非正交多址
OFDM    Orthogonal Frequency Division Multiplexing    正交频分复用
OFDMA    Orthogonal Frequency Division Multiple Access    正交频分多址
AMF(Access and Mobility Management Function)
UPF(User Plane Function)

5G定义的3大场景

eMBB(Enhance Mobile Broadband增强型移动带宽)

uRLLC(ultra Reliable LowLatency communication超高可靠与超低时延通信)

mMTC(Massive MachineType communicat海量物联网通信-大规模机器通信)

总体架构

NG-RAN节点包含两种类型:  

  1. gNB:提供NR用户平面和控制平面协议和功能  
  2. ng-eNB:提供E-UTRA用户平面和控制平面协议和功能  

gNB(NR节点)与ng-eNB之间通过Xn接口连接,gNB/ng-eNB通过NG-C接口与AMF(Access and Mobility Management Function)连接,通过NG-U接口与UPF(User Plane Function)连接。  

5G总体架构如下图所示,NG-RAN表示无线接入网,5GC表示核心网。

5G技术重要的发明

我已经在Qualcomm工作15年以上,大部分时间从事无线工作,目睹无线技术领域的许多变化和令人惊叹的创新,但没有什么能够和5G移动网络出现的根本性转变相提并论。过去几年,我一直领导Qualcomm Research项目,致力于设计让5G愿景变成现实的新无线空口以及新的5G网络架构。目前,3GPP 5G标准化工作正有序地推进,这项工作将制定名为5G新空口(5G NR)的全球规范,我们正积极致力于5G设计,以促进并加快其发展。让5G NR变成现实非常复杂。5G NR必须满足一系列不断扩展、多种多样的连接需求,它不仅将连接人,还要在广泛的行业和服务中连接并控制机器、物体和终端。统一空口要灵活且敏捷地应用合适的技术、频谱和带宽,以此满足每个应用的需求并支持面向未来服务与终端类型的高效复用。5G NR还需要充分利用大量可用频谱监管范式和频段中的每一点频谱 — 从1 GHz以下低频带到1 GHz至6 GHz中频带和称为毫米波的高频带。这要求在我们开创3G、4G和Wi-Fi时创建的基础上进行新技术创新。这里没有定义5G的单一技术组件。相反地,5G将从诸多截然不同的技术创新中被构建。Qualcomm是发明公司。多年来我们一直在开发这些5G构建模块 — 发明正突破并且会重新定义无线边界的5G新技术。我们已开发先进的5G NR原型系统,用于测试、演示和试验5G发明。现在,我们即将迎来5G移动网络,我们的无线发明正促进3GPP全球5G NR标准的制定,这将支持从2019年开始,基于符合标准的基础设施与终端来进行大规模5G部署。我在Qualcomm Research的工作最有成就感的一个方面是,看到我们的先进系统设计和无线技术从理论开始,一直到设计、标准化、实现和最终商用。下面我们快速浏览一下正让5G NR和我们的5G愿景变成现实的五大关键无线发明。

发明1:实现2n子载波间隔扩展的可扩展OFDM参数配置

5G NR设计中最重要的决定之一是选择无线电波形和多址接入技术。在已经评估并且将继续评估多种方式的同时,我们通过广泛研究(一年前在Qualcomm Research报告中发布)发现,正交频分复用(OFDM)体系 — 具体来说包括循环前缀正交频分复用(CP-OFDM)1 和离散傅里叶变换扩频正交频分复用(DFT-S OFDM)2 — 是面向5G增强型移动宽带(eMBB)和更多其他场景的正确选择。由于LTE在下行链路中使用OFDM并且在上行链路中使用DFT-S OFDM,我们的研究表明,上行链路支持DFT-S-OFDM和CP OFDM具有优势,基于场景自适应切换对于DFT-S OFDM的链路预算和MIMO空间复用都有好处。最近3GPP NR第14版研究项目同意在eMBB下行链路中支持CP-OFDM并且针对eMBB上行链路DFT-S-OFDM与CP-OFDM形成互补。既然今天已经在使用OFDM,那你或许会问“进一步创新路在何方?”答案是可扩展的OFDM复频参数配置(图1)。今天,通过OFDM音调(通常称为子载波)之间的15 kHz间隔——这几乎是固定的OFDM参数配置,LTE支持最多20 MHz的载波带宽。借助5G NR,我们已推出可扩展的OFDM参数配置,它能支持多种频谱频段/类型和部署模式。例如,5G NR必须能够在有更大信道宽度(例如数百MHz)的毫米波频段上工作。我们的设计引入能够随着信道宽度而扩展的OFDM子载波间隔,当FFT为更大带宽扩展尺寸的时候,也不会增加处理的复杂性。最近3GPP已在5G NR第14版研究项目中,选定了实现子载波间隔2n扩展的可扩展OFDM参数配置。

发明2:灵活、动态、自给式TDD子帧设计

5G NR设计的另一个关键组件是将支持网络运营商在相同频率上高效复用构想的(和无法预料的)5G服务的灵活框架。我们针对该5G NR框架设计的关键组件是自给式集成子帧。如图2所示,通过在相同子帧(例如,以TDD下行链路为中心的子帧)内包含数据传输和后解码确认来实现更低延迟。有了5G NR自给式集成子帧,每个传输都是在一个时期内完成的模块化事物(例如,下行授权 > 下行数据 > 保护时间 > 上行确认)。除更低延迟之外,该模块化子帧设计支持前向兼容性、自适应UL/DL配置、先进互易天线技术(例如,基于快速上行探测的下行大规模MIMO导向)以及通过增加子帧头(例如,免授权频谱的竞争解决头)支持的其他使用场景 — 让该项发明成为满足许多5G NR需求的关键技术。自给式集成子帧设计(例如,TDD下行链路)

发明#3:先进、灵活的LDPC信道编码

连同可扩展参数配置和灵活的5G NR服务框架,物理层设计应包括可提供稳健性能和灵活性的高效信道编码方案。尽管Turbo码一直非常适合3G和4G,但Qualcomm Research已证明,从复杂性和实现角度来看,当扩展到极高吞吐量和更大块长度时,低密度奇偶校验码(LDPC)具有优势,如图3所示。此外,LDPC编码已被证明,对于需要一个高效混合ARQ体系的无线衰落信道来说,它是理想的解决方案。因此,最近3GPP选定先进的LDPC作为eMBB数据信道编码方案。

发明4:先进大规模MIMO天线技术

我们的5G设计还促进MIMO天线技术发展。通过智能地使用更多天线,我们可以提升网络容量和覆盖面。即,更多空间数据流可以显著提高频谱效率(例如,借助多用户大规模MIMO),支持每赫兹传输更多比特,并且智能波束成形和波束跟踪可以通过在特定方向聚焦射频能量来扩展基站范围。我们已展示5G NR大规模MIMO技术将如何在具有3D波束成形能力的基站,利用2D天线阵列开启6 GHz以下频谱的更高频段。借助快速互易TDD大规模MIMO,我们的测试结果显示,面向在3 GHz至5GHz频段工作的5G NR新部署重用现有宏蜂窝基站是可行的。全新多用户大规模MIMO设计的这些测试结果显示,容量和小区边缘用户吞吐量显著提升,这对提供更统一的5G移动宽带用户体验很关键。我们的5G设计不仅面向宏/小型基站部署支持使用3至6 GHz频段的更高频率,而且将面向移动宽带开辟24 GHz以上频段毫米波新机会。在这些高频上可用的充裕频谱能够提供将重塑数据体验的极致数据速度和容量。但是,动用毫米波伴随着一系列自身挑战。在这些更高频段上传输,遭遇高得多的路径损失并且容易受阻挡。但正如我们通过广泛测试Qualcomm Research 5G毫米波原型系统所证明的那样,参阅图4,动用毫米波频段的创想不再遥不可及。我们正利用基站和终端中的大量天线单元以及智能波束成形和波束跟踪算法展示持续宽带通信,甚至包括非视距通信和终端移动。我们在该领域的早期研发已带来首款5G调制解调器 — 将支持早期5G毫米波试验和部署的高通骁龙X50 5G调制解调器。图4:Qualcomm Research 5G毫米波原型系统在28 GHz工作。

发明5:先进频谱共享技术

频谱是移动通信最重要的资源,获得更多频谱意味着网络可以提供更高用户吞吐量和容量。但是频谱稀缺,我们必须寻找充分利用现有资源的创新方式。今天,我们正开创频谱共享技术,例如LTE-U/LAA、LWA、LSA、CBRS和MulteFire。5G NR设计为原生支持全部频谱类型,灵活地利用潜在频谱共享新范式,因帧结构的设计具有前向兼容性。这创造在5G中将频谱共享提升到新水平的创新机会。这些创新将提供更多可用频谱,但也通过支持可动态适应载荷工况的协作式分层共享机制提高总体利用率。为了让其变成现实,最近我们发布5G NR频谱共享原型系统(图5),推动3GPP标准化并支持影响深远的试验。图5:5G NR频谱共享支持充分利用全部频谱类型。

5.5G技术

5G定义的三大场景已经无法支撑更多样性的物联场景需求。比如工业物联的应用,既需要海量连接,又需要上行大带宽,华为提出在eMBB和mMTC之间增加一个场景,命名为UCBC,聚焦上行能力的构建;还有一类应用,既需要超宽带,也需要低时延和高可靠,华为提出在eMBB和URLLC之间增加一个场景,命名为RTBC,聚焦宽带实时交互的能力构建;最后一类场景是泛能力集,比如车联网中的车路协同,既需要通信能力,又需要感知能力,华为提出新增HCS场景,聚焦通信和感知融合的能力构建。

这次5.5G概念的推出,目的就是进一步推动5G的发展。让原本的三大应用场景拓展成六大场景。三个新场景分别是上行能力的构建、宽带实时交互能力的构建以及通信和感知融合能力的构建。

HCS

HCS融合感知通信,助力自动驾驶发展

HCS主要使能的是车联网和无人机两大场景,支撑自动驾驶是关键需求。这两大场景对无线蜂窝网络都提出,既要提供通信能力,又要提供感知能力。通过将蜂窝网络MassiveMIMO的波束扫描技术应用于感知领域,使得HCS场景下既能够提供通信,又能够提供感知;如果延展到室内场景,还可提供定位服务。

UCBC

UCBC上行超宽带,加速千行百业智能化升级

UCBC场景支持上行超宽带体验,在5G能力基线,实现上行带宽能力10倍提升,满足企业生产制造等场景下,机器视觉、海量宽带物联等上传需求,加速千行百业智能化升级。同时,UCBC也能大幅提升手机在室内深度覆盖的用户体验,通过多频上行聚合以及上行超大天线阵列技术,可大幅提升上行容量和深度覆盖的用户体验。

RTBC

RTBC宽带实时交互,打造“身临其境”的沉浸式体验

RTBC场景支持大带宽和低交互时延,能力目标是在给定时延下的带宽提升10倍,打造人与虚拟世界交互时的沉浸式体验,比如XR Pro和全息应用等。通过广义载波快速扩大管道能力,和E2E跨层的XR体验保证机制,可以有效提供大带宽实时交互的能力。

5G的五项核心技术和5.5G相关的技术相关推荐

  1. 5G基础知识学习(十五)—NSA手机的5G信号是怎么显示的?

    5G基础知识学习(十五)-NSA手机的5G信号是怎么显示的? 参考网址:http://www.txrjy.com/thread-1106049-1-1.html 看完了前面的连载,相信大家对NSA也就 ...

  2. 5G通信名词释义详解【5G通信技术基础篇---istrangeboy精品博文】

    5G 名词释义 大家好,我是istrangeboy,随着社会的进步和技术的发展,5G生活离我们愈来愈近了,这里很高兴能和大家分享下5G通信技术的一些基础知识. 一.首先,我们来看一下5G 基本概念. ...

  3. 5G未商用,爱立信抛出5G专利许可费用标准为哪般

    日前,据外媒报道,瑞典电信巨头爱立信日前宣布公开其5G专利许可费.爱立信首席知识产权官(CIPO)古斯塔沃称,对于高端手持设备,爱立信的5G专利许可费设定为5美元/部,而对低端手持设备,许可费可以最低 ...

  4. 【每日新闻】大数据在安防行业应用前景依然值得期待 | 5G首个国际标准正式发布:5G手机明年发布...

    点击关注中国软件网 最新鲜的企业级干货聚集地 2018中国软件生态大会暨第十一届中国软件渠道大会首站在北京.天津.太原.郑州.济南站成功举行,同时拉开了覆盖上海.深圳.成都.西安等全国16个重点城市生 ...

  5. 2020中国5G发展及行业应用探索报告(上)|中国5G逆势发力,成为全球5G产业链重要力量,引领之势凸显...

    | 文章版权所有,未经授权请勿转载或使用  核心观点  1.中国5G逆势发力,步入快速建网期,疫情之下被频频点名寄予厚望: 2.5G标准专利.系统设备.芯片终端等均已就绪,中国成为全球5G产业链重要力 ...

  6. 华为高通5G华山论剑,一文看懂5G芯片背后的明争暗斗

    戳蓝字"CSDN云计算"关注我们哦! 来源:鲜枣课堂作者:小枣君 6月6日工信部正式发放5G商用牌照之后,国内5G网络建设的步伐大幅加快了.越来越多的城市出现了5G基站和5G信号, ...

  7. 五项挑战获四项第一,地平线霸榜Waymo自动驾驶算法挑战赛

    美国当地时间6月15日,Alphabet(Google母公司)旗下的自动驾驶公司Waymo在CVPR 2020自动驾驶Workshop上揭晓Waymo开放数据集挑战赛的结果,边缘AI芯片企业地平线斩获 ...

  8. Gartner 2022年新兴技术和趋势影响力雷达图中五项具有影响力的技术

    来源:Gartner公司 编辑:蒲蒲 如果一幢建筑能够告诉您暖通空调系统中的过滤器导致系统运行效率低下并需要更换,是不是会对您很有帮助?如果该系统还可以根据使用情况来调整暖风或通风呢?您目前的系统是否 ...

  9. 5G边缘计算:开源架起5G MEC生态发展新通路

    5G推动新一轮工业革命 过去‍‍人类经历了三次工业革命,‍‍每一次都带来了‍‍‍‍物质.能量或者信息的自由移动.第一次工业革命,‍‍有了蒸汽机和铁路作为管道,‍‍把煤炭运到各个地方,实现了物质的自由移 ...

最新文章

  1. 通过PageSpeed优化网站性能
  2. CloudCC CRM探讨如何建立完善的服务体系
  3. CRM呼叫中心和社交媒体集成的技术实现
  4. 黑马数据库html阶段考试,黑马web阶段web试题学生版.docx
  5. Connect 2016 白话脱口秀将在B站直播,我们的口号是quot; 微软大法好quot;
  6. 量子计算机如何确定量子状态,量子计算机六个量子位足以确定三个简单分子的基态...
  7. Web编码乱码解决原理方案
  8. Maria DB windows 安装
  9. 深度学习TensorFlow生产环境部署(环境准备篇)
  10. 微服务技术图片资源汇总
  11. 第二章 IOC的配置使用 --《跟我学Spring》笔记 张开涛
  12. 自行车html模板,自行车和配件HTML模板
  13. 图扑软件数字孪生油气管道站,搭建油气运输管控平台
  14. Win10/win11系统如何禁用笔记本自带键盘、笔记本键盘禁用后无法恢复解决办法【靠谱】
  15. win7笔记本外接显示器html,win7系统笔记本怎样外接一个显示器
  16. unity3D学习笔记1
  17. ionic开发记账软件《易跟金》
  18. useCallback 的问题和隐患的解决方案 - 胡耀(字节跳动)
  19. 百度地图--证书认证问题
  20. 微信公众帐号开发教程

热门文章

  1. ubuntu 下tftp服务器配置笔记
  2. 《可可西里》:一只被人类轮奸的藏羚羊
  3. web与web服务器的概念理解
  4. 洛必达法则——“高等数学”
  5. MADlib——基于SQL的数据挖掘解决方案(6)——数据转换之矩阵分解
  6. CS5266设计Typec转HDMI+PD+U2+U3四合一多功能拓展坞方案
  7. 如何计算近似纳什均衡_纳什-纳什解(Nash-in-Nash Solution)简介
  8. 《企业级大数据平台构建:架构与实现》阅读总结
  9. Windows Vista SP1
  10. UVM通信篇之五:TLM2通信