目录

  • 1. 知识归纳:
    • 1.1 定积分性质
    • 1.2 计算技巧公式:
  • 2. 不定积分
  • 3. 定积分
    • 3.1 积分定义解题
    • 3.2 积分技巧解题
  • 4. 练习解答

1. 知识归纳:

1.1 定积分性质

以下结论在 f ( x ) , g ( x ) , ∣ f ( x ) ∣ , f\left( x \right),g\left( x \right),\left| {f\left( x \right)} \right|, f(x),g(x),∣f(x)∣, 在 [ a , b ] [ a , c ] [ c , b ] \left[ {a,b} \right]\left[ {a,c} \right]\left[ {c,b} \right] [a,b][a,c][c,b] 可积,且 a < c < b a<c<b a<c<b

  1. (线性性质) ∫ a b [ α f ( x ) ± β g ( x ) ] d x = α ∫ a b f ( x ) d x ± β ∫ a b g ( x ) d x ( α β ∈ R ) \int_a^b {\left[ {\alpha f\left( x \right) \pm \beta g\left( x \right)} \right]dx} = \alpha \int_a^b {f\left( x \right)} dx \pm \beta \int_a^b {g\left( x \right)} dx\left( {\alpha \beta \in R} \right) ∫ab​[αf(x)±βg(x)]dx=α∫ab​f(x)dx±β∫ab​g(x)dx(αβ∈R)
  2. (非负性质) f ( x ) f\left( x \right) f(x) 在 [ a , b ] \left[ {a,b} \right] [a,b] 上非负可积,则 ∫ a b f ( x ) d x ≥ 0 \int_a^b {f\left(x \right)} dx \ge {\rm{0}} ∫ab​f(x)dx≥0
  3. (单调性)若 f ( x ) ≥ g ( x ) ( x ∈ [ a , b ] ) f\left( x \right) \ge g\left( x \right)\left( {x \in \left[ {a,b} \right]} \right) f(x)≥g(x)(x∈[a,b]),则 ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x \int_a^b {f\left( x \right)} dx \ge \int_a^b {g\left( x \right)} dx ∫ab​f(x)dx≥∫ab​g(x)dx
  4. 若 m ≤ f ( x ) ≤ M ( x ∈ [ a , b ] ) , m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m \le f\left( x \right) \le M\left( {x \in \left[ {a,b} \right]} \right),m\left( {b - a} \right) \le \int_a^b {f\left( x \right)} dx \le M\left( {b - a} \right) m≤f(x)≤M(x∈[a,b]),m(b−a)≤∫ab​f(x)dx≤M(b−a)
  5. ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \left| {\int_a^b {f\left( x \right)} dx} \right| \le \int_a^b {\left| {f\left( x \right)} \right|} dx ∣∣∣​∫ab​f(x)dx∣∣∣​≤∫ab​∣f(x)∣dx
  6. (区间可加性) ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_a^b {f\left( x \right)} dx{\rm{ = }}\int_a^c {f\left( x \right)} dx{\rm{ + }}\int_c^b {f\left( x \right)} dx ∫ab​f(x)dx=∫ac​f(x)dx+∫cb​f(x)dx
  7. (积分中值定理) ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int_a^b {f\left( x \right)} g\left( x \right)dx{\rm{ = }}f\left( \xi \right)\int_a^b {g\left( x \right)} dx ∫ab​f(x)g(x)dx=f(ξ)∫ab​g(x)dx 推论:令 g ( x ) = 1 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) g\left( x \right){\rm{ = 1}}\int_a^b {f\left( x \right)} dx{\rm{ = }}f\left( \xi \right)\left( {b - a} \right) g(x)=1∫ab​f(x)dx=f(ξ)(b−a), ( 积 分 中 值 : ∫ a b f ( x ) d x ( b − a ) ) \left(积分中值:{\frac{{\int_a^b {f\left( x \right)} dx}}{{\left( {b - a} \right)}}} \right) (积分中值:(b−a)∫ab​f(x)dx​)
  8. C a u c h y − S c h w a r t z 不 等 式 : ( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x ( 竞 赛 必 记 ) M i n k o w w s k i 不 等 式 : ( ∫ a b [ f ( x ) + g ( x ) ] 2 d x ) 1 2 ≤ ( ∫ a b f 2 ( x ) d x ) 1 2 + ( ∫ a b g 2 ( x ) d x ) 1 2 \begin{array}{l} Cauchy - Schwartz不等式:{\left( {\int_a^b {f\left( x \right)} g\left( x \right)dx} \right)^2} \le \int_a^b {{f^2}\left( x \right)} dx\int_a^b {{g^2}\left( x \right)} dx\left( {竞赛必记} \right)\\ Minkowwski不等式:{\left( {\int_a^b {{{\left[ {f\left( x \right) + g\left( x \right)} \right]}^2}dx} } \right)^{\frac{1}{2}}} \le {\left( {\int_a^b {{f^2}\left( x \right)} dx} \right)^{\frac{1}{2}}} + {\left( {\int_a^b {{g^2}\left( x \right)} dx} \right)^{\frac{1}{2}}} \end{array} Cauchy−Schwartz不等式:(∫ab​f(x)g(x)dx)2≤∫ab​f2(x)dx∫ab​g2(x)dx(竞赛必记)Minkowwski不等式:(∫ab​[f(x)+g(x)]2dx)21​≤(∫ab​f2(x)dx)21​+(∫ab​g2(x)dx)21​​
  9. 变上下限积分求导:一般,若 u ( x ) , v ( x ) u\left( x \right),v\left( x \right) u(x),v(x) ,是可微函数, f f f 是连续函数,则有: d d x ( ∫ v ( x ) u ( x ) f ( t ) d t ) = f ( u ( x ) ) u ′ ( x ) − f ( v ( x ) ) v ′ ( x ) \frac{d}{{dx}}\left( {\int_{v\left( x \right)}^{u\left( x \right)} {f\left( t \right)dt} } \right)=f(u(x))u'(x)-f(v(x))v'(x) dxd​(∫v(x)u(x)​f(t)dt)=f(u(x))u′(x)−f(v(x))v′(x)

1.2 计算技巧公式:

  1. f ( x ) f(x) f(x) 奇函数,则 ∫ − a a f ( x ) d x = 0 \int_{ - a}^a {f\left( x \right)} dx = 0 ∫−aa​f(x)dx=0

  2. f ( x ) f(x) f(x) 偶函数,则 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int_{ - a}^a {f\left( x \right)} dx = 2\int_0^a {f\left( x \right)} dx ∫−aa​f(x)dx=2∫0a​f(x)dx

  3. f ( x ) f(x) f(x) 周期函数 l l l 函数,则 ∫ a a + l f ( x ) d x = ∫ 0 l f ( x ) d x = ∫ − l 2 l 2 f ( x ) d x \int_a^{a + l} {f\left( x \right)} dx = \int_0^l {f\left( x \right)} dx = \int_{ - \frac{l}{2}}^{\frac{l}{2}} {f\left( x \right)} dx ∫aa+l​f(x)dx=∫0l​f(x)dx=∫−2l​2l​​f(x)dx

  4. (1). f ( x ) f(x) f(x) 在 [ 0 , a ] [0,a] [0,a] , [ 0 , a ] , ∫ 0 a f ( x ) d x = ∫ 0 a 2 f ( x ) d x + ∫ 0 a 2 f ( a − x ) d x \left[ {0,a} \right],\int_0^a {f\left( x \right)} dx = \int_0^{\frac{a}{2}} {f\left( x \right)} dx + \int_0^{\frac{a}{2}} {f\left( {a - x} \right)} dx [0,a],∫0a​f(x)dx=∫02a​​f(x)dx+∫02a​​f(a−x)dx

    ∫ 0 a f ( x ) d x = ∫ 0 a f ( a − x ) d x \int_0^a {f\left( x \right)} dx = \int_0^a {f\left( {a - x} \right)} dx ∫0a​f(x)dx=∫0a​f(a−x)dx (这个公式用的比较多)

    (2). f ( x ) f(x) f(x) 在 [ − a , a ] [-a,a] [−a,a] , ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{ - a}^a {f\left( x \right)} dx = \int_0^a {\left[ {f\left( x \right) + f\left( { - x} \right)} \right]dx} ∫−aa​f(x)dx=∫0a​[f(x)+f(−x)]dx

    ​ 补充: ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int_{\rm{0}}^\pi {xf\left( {\sin x} \right)} dx = \frac{\pi }{2}\int_{\rm{0}}^\pi {f\left( {\sin x} \right)} dx ∫0π​xf(sinx)dx=2π​∫0π​f(sinx)dx

2. 不定积分

例题1: ∫ 1 1 + x 4 d x \int {\frac{1}{{1 + {x^4}}}} dx ∫1+x41​dx

= 1 2 ∫ 1 + x 2 1 + x 4 − x 2 − 1 1 + x 4 d x = 1 2 ∫ d ( x − 1 x ) ( x − 1 x ) 2 + 2 − 1 2 ∫ d ( x + 1 x ) ( x + 1 x ) 2 − 2 = 1 2 2 arctan ⁡ 1 2 ( x − 1 x ) − 1 4 2 ln ⁡ ∣ x + 1 x − 2 x + 1 x + 2 ∣ + c ( x ≠ 0 ) \begin{array}{l} = \frac{1}{2}\int {\frac{{1 + {x^2}}}{{1 + {x^4}}} - \frac{{{x^2} - 1}}{{1 + {x^4}}}} dx = \frac{1}{2}\int {\frac{{d\left( {x - \frac{1}{x}} \right)}}{{{{\left( {x - \frac{1}{x}} \right)}^2} + 2}}} - \frac{1}{2}\int {\frac{{d\left( {x + \frac{1}{x}} \right)}}{{{{\left( {x + \frac{1}{x}} \right)}^2} - 2}}} \\\;\\ = \frac{1}{{2\sqrt 2 }}\arctan \frac{1}{{\sqrt 2 }}\left( {x - \frac{1}{x}} \right) - \frac{1}{{4\sqrt 2 }}\ln \left| {\frac{{x + \frac{1}{x} - \sqrt 2 }}{{x + \frac{1}{x} + \sqrt 2 }}} \right| + c\left( {x \ne 0} \right)\end{array} =21​∫1+x41+x2​−1+x4x2−1​dx=21​∫(x−x1​)2+2d(x−x1​)​−21​∫(x+x1​)2−2d(x+x1​)​=22 ​1​arctan2 ​1​(x−x1​)−42 ​1​ln∣∣∣​x+x1​+2 ​x+x1​−2 ​​∣∣∣​+c(x​=0)​

例题2: ∫ d x sin ⁡ 3 x cos ⁡ x \int {\frac{{dx}}{{{{\sin }^3}x\cos x}}} ∫sin3xcosxdx​

= ∫ sin ⁡ 2 x + cos ⁡ 2 x sin ⁡ 3 x cos ⁡ x d x = ∫ d tan ⁡ x tan ⁡ x + ∫ d sin ⁡ x sin ⁡ 3 x = ln ⁡ ∣ tan ⁡ x ∣ − 1 2 sin ⁡ 2 x + C \begin{array}{l} = \int {\frac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^3}x\cos x}}dx} = \int {\frac{{d\tan x}}{{\tan x}}} + \int {\frac{{d\sin x}}{{{{\sin }^3}x}}} \\ \;\\= \ln \left| {\tan x} \right| - \frac{1}{{2{{\sin }^2}x}} + C\end{array} =∫sin3xcosxsin2x+cos2x​dx=∫tanxdtanx​+∫sin3xdsinx​=ln∣tanx∣−2sin2x1​+C​

例题3: ∫ x + sin ⁡ x 1 + cos ⁡ x d x \int {\frac{{x + \sin x}}{{1 + \cos x}}} dx ∫1+cosxx+sinx​dx

= ∫ x 1 + cos ⁡ x d x + ∫ sin ⁡ x 1 + cos ⁡ x d x = ∫ x cos ⁡ 2 x 2 d x 2 + ∫ sin ⁡ x 1 + cos ⁡ x d x = x tan ⁡ x 2 − ∫ tan ⁡ x 2 d x + ∫ tan ⁡ x 2 d x = x tan ⁡ x 2 + C \begin{array}{l} = \int {\frac{x}{{1 + \cos x}}} dx + \int {\frac{{\sin x}}{{1 + \cos x}}} dx = \int {\frac{x}{{{{\cos }^2}\frac{x}{2}}}} d\frac{x}{2} + \int {\frac{{\sin x}}{{1 + \cos x}}} dx\\\;\\= x\tan \frac{x}{2} - \int {\tan \frac{x}{2}} dx + \int {\tan \frac{x}{2}} dx = x\tan \frac{x}{2} + C \end{array} =∫1+cosxx​dx+∫1+cosxsinx​dx=∫cos22x​x​d2x​+∫1+cosxsinx​dx=xtan2x​−∫tan2x​dx+∫tan2x​dx=xtan2x​+C​

例题4: ∫ 1 − x 1 + x d x x \int {\sqrt {\frac{{1 - x}}{{1 + x}}} } \frac{{dx}}{x} ∫1+x1−x​ ​xdx​ 令 t = 1 − x 1 + x , x = 1 − t 2 1 + t 2 , d x = − 4 t ( 1 + t 2 ) 2 d t {t = \sqrt {\frac{{1 - x}}{{1 + x}}} ,x = \frac{{1 - {t^2}}}{{1 + {t^2}}},dx = \frac{{ - 4t}}{{{{\left( {1 + {t^2}} \right)}^2}}}dt} t=1+x1−x​ ​,x=1+t21−t2​,dx=(1+t2)2−4t​dt

= ∫ t ⋅ − 4 t ( 1 + t 2 ) 2 1 − t 2 1 + t 2 d t = ∫ − 4 t 2 ( 1 + t 2 ) ( 1 − t 2 ) d t = 2 ∫ 1 1 + t 2 − 1 1 − t 2 d t {\rm{ = }}\int {t \cdot } \frac{{\frac{{ - 4t}}{{{{\left( {1 + {t^2}} \right)}^2}}}}}{{\frac{{1 - {t^2}}}{{1 + {t^2}}}}}dt = \int {\frac{{ - 4{t^2}}}{{\left( {1 + {t^2}} \right)\left( {1 - {t^2}} \right)}}} dt = 2\int {\frac{1}{{1 + {t^2}}}} - \frac{1}{{1 - {t^2}}}dt =∫t⋅1+t21−t2​(1+t2)2−4t​​dt=∫(1+t2)(1−t2)−4t2​dt=2∫1+t21​−1−t21​dt

= 2 arctan ⁡ t + ln ⁡ ∣ t − 1 t + 1 ∣ = 2 arctan ⁡ 1 − x 1 + x + ln ⁡ ∣ 1 − x − 1 + x 1 − x + 1 + x ∣ + C = 2\arctan t + \ln \left| {\frac{{t - 1}}{{t + 1}}} \right| = 2\arctan \sqrt {\frac{{1 - x}}{{1 + x}}} + \ln \left| {\frac{{\sqrt {1 - x} - \sqrt {1 + x} }}{{\sqrt {1 - x} + \sqrt {1 + x} }}} \right| + C =2arctant+ln∣∣​t+1t−1​∣∣​=2arctan1+x1−x​ ​+ln∣∣∣​1−x ​+1+x ​1−x ​−1+x ​​∣∣∣​+C

例题5(较难): ∫ e 2 x + 4 e x − 1 d x \int {\sqrt {{e^{2x}} + 4{e^x} - 1} } dx ∫e2x+4ex−1 ​dx 令 t = e x , d x = 1 t d t {t = {e^x},dx = \frac{1}{t}dt} t=ex,dx=t1​dt 即为 ∫ t 2 + 4 t − 1 t d t \int {\frac{{\sqrt {{t^2} + 4t - 1} }}{t}dt} ∫tt2+4t−1 ​​dt

解法一:

= t 2 + 4 t − 1 − ∫ t 2 + 2 t − t 2 − 4 t + 1 t 2 t 2 + 4 t − 1 d t = t 2 + 4 t − 1 + ∫ 2 t − 1 t 2 t 2 + 4 t − 1 d t = t 2 + 4 t − 1 + ∫ 2 t t 2 + 4 t − 1 d t − ∫ 1 t 2 t 2 + 4 t − 1 d t = t 2 + 4 t − 1 + 4 arctan ⁡ a − ( 4 arctan ⁡ a + 4 a − 2 1 + a 2 ) = t 2 + 4 t − 1 − 2 t + 10 t 2 + 2 t + t t 2 + 4 t − 1 + C \begin{array}{l} = \sqrt {{t^2} + 4t - 1} - \int {\frac{{{t^2} + 2t - {t^2} - 4t + 1}}{{{t^2}\sqrt {{t^2} + 4t - 1} }}} dt\\\;\\ = \sqrt {{t^2} + 4t - 1} + \int {\frac{{2t - 1}}{{{t^2}\sqrt {{t^2} + 4t - 1} }}} dt\\\;\\ = \sqrt {{t^2} + 4t - 1} + \int {\frac{2}{{t\sqrt {{t^2} + 4t - 1} }}} dt - \int {\frac{1}{{{t^2}\sqrt {{t^2} + 4t - 1} }}} dt = \sqrt {{t^2} + 4t - 1} + 4\arctan a - \left( {4\arctan a + \frac{{4a - 2}}{{1 + {a^2}}}} \right)\\\;\\ = \sqrt {{t^2} + 4t - 1} - \frac{2}{t} + \frac{{10}}{{{t^2} + 2t + t\sqrt {{t^2} + 4t - 1} }} + C \end{array} =t2+4t−1 ​−∫t2t2+4t−1 ​t2+2t−t2−4t+1​dt=t2+4t−1 ​+∫t2t2+4t−1 ​2t−1​dt=t2+4t−1 ​+∫tt2+4t−1 ​2​dt−∫t2t2+4t−1 ​1​dt=t2+4t−1 ​+4arctana−(4arctana+1+a24a−2​)=t2+4t−1 ​−t2​+t2+2t+tt2+4t−1 ​10​+C​

设 t 2 + 4 t − 1 = a − t → t = a 2 + 1 2 a + 4 , a − t = a 2 + 4 a − 1 2 a + 4 , d t = 2 a 2 + 8 a − 2 ( 2 a + 4 ) 2 d a \sqrt {{t^2} + 4t - 1} = a - t \to t = \frac{{{a^2} + 1}}{{2a + 4}},a - t = \frac{{{a^2} + 4a - 1}}{{2a + 4}},dt = \frac{{2{a^2} + 8a - 2}}{{{{\left( {2a + 4} \right)}^2}}}da t2+4t−1 ​=a−t→t=2a+4a2+1​,a−t=2a+4a2+4a−1​,dt=(2a+4)22a2+8a−2​da (这个方法需要掌握)

∫ 2 t t 2 + 4 t − 1 d t = 2 ∫ 1 a 2 + 1 2 a + 4 ⋅ a 2 + 4 a − 1 2 a + 4 ⋅ 2 a 2 + 8 a − 2 ( 2 a + 4 ) 2 d a = 4 ∫ 1 a 2 + 1 d a = 4 arctan ⁡ a ∫ 1 t 2 t 2 + 4 t − 1 d t = ∫ 1 ( a 2 + 1 2 a + 4 ) 2 ⋅ a 2 + 4 a − 1 2 a + 4 ⋅ 2 a 2 + 8 a − 2 ( 2 a + 4 ) 2 d a = 4 ∫ a + 2 ( a 2 + 1 ) 2 d a = 4 ∫ a ( a 2 + 1 ) 2 d a + 8 ∫ 1 ( a 2 + 1 ) 2 d a = 4 arctan ⁡ a + 4 a 1 + a 2 − 2 a 2 + 1 = 4 arctan ⁡ a + 4 a − 2 1 + a 2 4 ∫ a ( a 2 + 1 ) 2 d a = 2 ∫ d ( a 2 + 1 ) ( a 2 + 1 ) 2 = − 2 a 2 + 1 8 ∫ 1 ( a 2 + 1 ) 2 d a 8 ∫ 1 sec ⁡ 4 θ ⋅ sec ⁡ 2 θ d θ = 2 ∫ 1 + cos ⁡ 2 θ d 2 θ = 4 θ + 2 sin ⁡ 2 θ = 4 arctan ⁡ a + 4 a 1 + a 2 \begin{array}{l} \int {\frac{2}{{t\sqrt {{t^2} + 4t - 1} }}} dt = 2\int {\frac{1}{{\frac{{{a^2} + 1}}{{2a + 4}} \cdot \frac{{{a^2} + 4a - 1}}{{2a + 4}}}}} \cdot \frac{{2{a^2} + 8a - 2}}{{{{\left( {2a + 4} \right)}^2}}}da = 4\int {\frac{1}{{{a^2} + 1}}} da = 4\arctan a\\\;\\ \int {\frac{1}{{{t^2}\sqrt {{t^2} + 4t - 1} }}} dt = \int {\frac{1}{{{{\left( {\frac{{{a^2} + 1}}{{2a + 4}}} \right)}^2} \cdot \frac{{{a^2} + 4a - 1}}{{2a + 4}}}}} \cdot \frac{{2{a^2} + 8a - 2}}{{{{\left( {2a + 4} \right)}^2}}}da = 4\int {\frac{{a + 2}}{{{{\left( {{a^2} + 1} \right)}^2}}}} da\\\;\\ = 4\int {\frac{a}{{{{\left( {{a^2} + 1} \right)}^2}}}} da + 8\int {\frac{1}{{{{\left( {{a^2} + 1} \right)}^2}}}} da = 4\arctan a + \frac{{4a}}{{1 + {a^2}}} - \frac{2}{{{a^2} + 1}} = 4\arctan a + \frac{{4a - 2}}{{1 + {a^2}}}\\\;\\ 4\int {\frac{a}{{{{\left( {{a^2} + 1} \right)}^2}}}} da = 2\int {\frac{{d\left( {{a^2} + 1} \right)}}{{{{\left( {{a^2} + 1} \right)}^2}}}} = - \frac{2}{{{a^2} + 1}}\\\;\\ 8\int {\frac{1}{{{{\left( {{a^2} + 1} \right)}^2}}}} da8\int {\frac{1}{{{{\sec }^4}\theta }}} \cdot {\sec ^2}\theta d\theta = 2\int {1 + \cos 2\theta } d2\theta = 4\theta + 2\sin 2\theta = 4\arctan a + \frac{{4a}}{{1 + {a^2}}} \end{array} ∫tt2+4t−1 ​2​dt=2∫2a+4a2+1​⋅2a+4a2+4a−1​1​⋅(2a+4)22a2+8a−2​da=4∫a2+11​da=4arctana∫t2t2+4t−1 ​1​dt=∫(2a+4a2+1​)2⋅2a+4a2+4a−1​1​⋅(2a+4)22a2+8a−2​da=4∫(a2+1)2a+2​da=4∫(a2+1)2a​da+8∫(a2+1)21​da=4arctana+1+a24a​−a2+12​=4arctana+1+a24a−2​4∫(a2+1)2a​da=2∫(a2+1)2d(a2+1)​=−a2+12​8∫(a2+1)21​da8∫sec4θ1​⋅sec2θdθ=2∫1+cos2θd2θ=4θ+2sin2θ=4arctana+1+a24a​​

解法二:(倒代换) 令 x = 1 t , d t = − 1 x 2 d x {x = \frac{1}{t},dt = - \frac{1}{{{x^2}}}dx} x=t1​,dt=−x21​dx

= ∫ x ⋅ 1 + 4 x − x 2 x 2 d 1 x = t 2 + 4 t − 1 + ∫ x − 2 x 1 + 4 x − x 2 d x = t 2 + 4 t − 1 + ∫ 1 1 + 4 x − x 2 d x + 2 ∫ − 1 x 1 + 4 x − x 2 d x = t 2 + 4 t − 1 + ∫ 1 1 + 4 x − x 2 d x + 2 ∫ − 1 x 2 1 x 2 + 4 x − 1 d x = t 2 + 4 t − 1 + 2 ln ⁡ ∣ t + 2 + t 2 + 4 t − 1 ∣ + arcsin ⁡ ( 1 − 2 t 5 t ) + C \begin{array}{l} {\rm{ = }}\int {x \cdot \sqrt {\frac{{1 + 4x - {x^2}}}{{{x^2}}}} } d\frac{1}{x} = \sqrt {{t^2} + 4t - 1} + \int {\frac{{x - 2}}{{x\sqrt {1 + 4x - {x^2}} }}} dx\\\;\\ = \sqrt {{t^2} + 4t - 1} + \int {\frac{1}{{\sqrt {1 + 4x - {x^2}} }}} dx + 2\int {\frac{{ - 1}}{{x\sqrt {1 + 4x - {x^2}} }}} dx\\\;\\ = \sqrt {{t^2} + 4t - 1} + \int {\frac{1}{{\sqrt {1 + 4x - {x^2}} }}} dx + 2\int {\frac{{\frac{{ - 1}}{{{x^2}}}}}{{\sqrt {\frac{1}{{{x^2}}} + \frac{4}{x} - 1} }}} dx\\\;\\ = \sqrt {{t^2} + 4t - 1} + 2\ln \left| {t + 2 + \sqrt {{t^2} + 4t - 1} } \right| + \arcsin \left( {\frac{{1 - 2t}}{{\sqrt 5 t}}} \right){\rm{ + }}C \end{array} =∫x⋅x21+4x−x2​ ​dx1​=t2+4t−1 ​+∫x1+4x−x2 ​x−2​dx=t2+4t−1 ​+∫1+4x−x2 ​1​dx+2∫x1+4x−x2 ​−1​dx=t2+4t−1 ​+∫1+4x−x2 ​1​dx+2∫x21​+x4​−1 ​x2−1​​dx=t2+4t−1 ​+2ln∣∣​t+2+t2+4t−1 ​∣∣​+arcsin(5 ​t1−2t​)+C​

或 = t 2 + 4 t − 1 + 2 ln ⁡ ∣ t + 2 + t 2 + 4 t − 1 ∣ − arctan ⁡ ( 2 t − 1 t 2 + 4 t − 1 ) + C = \sqrt {{t^2} + 4t - 1} + 2\ln \left| {t + 2 + \sqrt {{t^2} + 4t - 1} } \right| - \arctan \left( {\frac{{2t - 1}}{{\sqrt {{t^2} + 4t - 1} }}} \right) + C =t2+4t−1 ​+2ln∣∣​t+2+t2+4t−1 ​∣∣​−arctan(t2+4t−1 ​2t−1​)+C

其中: ∫ 1 1 + 4 x − x 2 d x = ∫ 1 5 − ( x − 2 ) 2 d x = arcsin ⁡ ( x − 2 5 ) = arcsin ⁡ ( 1 − 2 t 5 t ) \int {\frac{1}{{\sqrt {1 + 4x - {x^2}} }}} dx = \int {\frac{1}{{\sqrt {5 - {{\left( {x - 2} \right)}^2}} }}dx} = \arcsin \left( {\frac{{x - 2}}{{\sqrt 5 }}} \right) = \arcsin \left( {\frac{{1 - 2t}}{{\sqrt 5 t}}} \right) ∫1+4x−x2 ​1​dx=∫5−(x−2)2 ​1​dx=arcsin(5 ​x−2​)=arcsin(5 ​t1−2t​)

∫ − 1 x 2 1 x 2 + 4 x − 1 d x = ∫ 1 ( 1 x + 2 ) 2 − 5 d 1 x = ∫ d t ( t + 2 ) 2 − 5 \begin{array}{l} \int {\frac{{\frac{{ - 1}}{{{x^2}}}}}{{\sqrt {\frac{1}{{{x^2}}} + \frac{4}{x} - 1} }}} dx = \int {\frac{1}{{\sqrt {{{\left( {\frac{1}{x} + 2} \right)}^2} - 5} }}} d\frac{1}{x}\\\;\\ = \int {\frac{{dt}}{{\sqrt {{{\left( {t + 2} \right)}^2} - 5} }}} \end{array} ∫x21​+x4​−1 ​x2−1​​dx=∫(x1​+2)2−5 ​1​dx1​=∫(t+2)2−5 ​dt​​

令 t + 2 = 5 sec ⁡ x , d t = 5 sec ⁡ x tan ⁡ x d x {t + 2 = \sqrt 5 \sec x,dt = \sqrt 5 \sec x\tan xdx} t+2=5 ​secx,dt=5 ​secxtanxdx

∫ sec ⁡ x d x = l n ∣ sec ⁡ x + tan ⁡ x ∣ = ln ⁡ ∣ t + 2 + t 2 + 4 t − 1 ∣ \begin{array}{l} \int {\sec xdx} = ln\left| {\sec x + \tan x} \right| = \ln \left| {t + 2 + \sqrt {{t^2} + 4t - 1} } \right|\end{array} ∫secxdx=ln∣secx+tanx∣=ln∣∣​t+2+t2+4t−1 ​∣∣​​

练习题1: ∫ 1 + x + x 2 x \int {\frac{{\sqrt {{\rm{1 + }}x + {x^2}} }}{x}} ∫x1+x+x2 ​​

3. 定积分

3.1 积分定义解题

例1:(定义法求积分) ∫ a b 1 x d x \int_a^b {\frac{1}{x}} dx ∫ab​x1​dx

解:令 x i = a ( b a ) i n , Δ x = x i + 1 − x i = a ( b a ) i n [ ( b a ) 1 n − 1 ] {x_i} = a{\left( {\frac{b}{a}} \right)^{\frac{i}{n}}},\Delta x = {x_{i + 1}} - {x_i} = a{\left( {\frac{b}{a}} \right)^{\frac{i}{n}}}\left[ {{{\left( {\frac{b}{a}} \right)}^{\frac{1}{n}}} - 1} \right] xi​=a(ab​)ni​,Δx=xi+1​−xi​=a(ab​)ni​[(ab​)n1​−1]

= lim ⁡ n → ∞ ∑ i = 0 n 1 a ( b a ) i n ⋅ a ( b a ) i n [ ( b a ) 1 n − 1 ] = lim ⁡ n → ∞ n ⋅ [ ( b a ) 1 n − 1 ] = lim ⁡ n → ∞ [ ( b a ) 1 n − 1 ] 1 n ( a x − 1 ∼ x ln ⁡ a ) = lim ⁡ n → ∞ 1 n ln ⁡ ( b a ) 1 n = ln ⁡ ( b a ) \begin{array}{l} = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 0}^n {\frac{1}{{a{{\left( {\frac{b}{a}} \right)}^{\frac{i}{n}}}}}} \cdot a{\left( {\frac{b}{a}} \right)^{\frac{i}{n}}}\left[ {{{\left( {\frac{b}{a}} \right)}^{\frac{1}{n}}} - 1} \right]\\\;\\ = \mathop {\lim }\limits_{n \to \infty } n \cdot \left[ {{{\left( {\frac{b}{a}} \right)}^{\frac{1}{n}}} - 1} \right] = \mathop {\lim }\limits_{n \to \infty } \frac{{\left[ {{{\left( {\frac{b}{a}} \right)}^{\frac{1}{n}}} - 1} \right]}}{{\frac{1}{n}}}\left( {{a^x} - 1 \sim x\ln a} \right)\\\;\\ = \mathop {\lim }\limits_{n \to \infty } \frac{{\frac{1}{n}\ln \left( {\frac{b}{a}} \right)}}{{\frac{1}{n}}} = \ln \left( {\frac{b}{a}} \right) \end{array} =n→∞lim​i=0∑n​a(ab​)ni​1​⋅a(ab​)ni​[(ab​)n1​−1]=n→∞lim​n⋅[(ab​)n1​−1]=n→∞lim​n1​[(ab​)n1​−1]​(ax−1∼xlna)=n→∞lim​n1​n1​ln(ab​)​=ln(ab​)​

例2:(利用积分定义求极限

I = lim ⁡ n → ∞ ( sin ⁡ π n n + 1 + sin ⁡ 2 π n n + 1 2 + ⋯ + sin ⁡ n π n n + 1 n ) = lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ i π n n + 1 i ≠ f ( i n ) ⋅ 1 n sin ⁡ π i n n + 1 < sin ⁡ i π n n + 1 i < sin ⁡ π i n n ( i = 1 , 2 , ⋯ , n ) ∴ lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ π i n ⋅ 1 n = ∫ 0 1 sin ⁡ π x d x = − 1 π cos ⁡ π x ∣ 0 1 = 2 π lim ⁡ n → ∞ n n + 1 ⋅ ∑ i = 1 n sin ⁡ π i n ⋅ 1 n = lim ⁡ n → ∞ n n + 1 ⋅ lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ π i n ⋅ 1 n = 1 ⋅ ∫ 0 1 sin ⁡ π x d x = 2 π \begin{array}{l} {\rm{I}} = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{{\sin \frac{\pi }{n}}}{{n + 1}} + \frac{{\sin \frac{{2\pi }}{n}}}{{n + \frac{1}{2}}} + \cdots + \frac{{\sin \frac{{n\pi }}{n}}}{{n + \frac{1}{n}}}} \right)\\\;\\ = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{{\sin \frac{{i\pi }}{n}}}{{n + \frac{1}{i}}}} \ne f\left( {\frac{i}{n}} \right) \cdot \frac{1}{n}\\\;\\ \frac{{\sin \pi \frac{i}{n}}}{{n + 1}} < \frac{{\sin \frac{{i\pi }}{n}}}{{n + \frac{1}{i}}} < \frac{{\sin \pi \frac{i}{n}}}{n}\left( {i = 1,2, \cdots ,n} \right)\\\;\\ \therefore \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\sin \pi \frac{i}{n}} \cdot \frac{1}{n} = \int_0^1 {\sin \pi x} dx = - \frac{1}{\pi }\cos \pi x|_0^1 = \frac{2}{\pi }\\\;\\ \mathop {\lim }\limits_{n \to \infty } \frac{n}{{n + 1}} \cdot \sum\limits_{i = 1}^n {\sin \pi \frac{i}{n}} \cdot \frac{1}{n} = \mathop {\lim }\limits_{n \to \infty } \frac{n}{{n + 1}} \cdot \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\sin \pi \frac{i}{n}} \cdot \frac{1}{n}\\\;\\ = 1 \cdot \int_0^1 {\sin \pi x} dx = \frac{2}{\pi } \end{array} I=n→∞lim​(n+1sinnπ​​+n+21​sinn2π​​+⋯+n+n1​sinnnπ​​)=n→∞lim​i=1∑n​n+i1​sinniπ​​​=f(ni​)⋅n1​n+1sinπni​​<n+i1​sinniπ​​<nsinπni​​(i=1,2,⋯,n)∴n→∞lim​i=1∑n​sinπni​⋅n1​=∫01​sinπxdx=−π1​cosπx∣01​=π2​n→∞lim​n+1n​⋅i=1∑n​sinπni​⋅n1​=n→∞lim​n+1n​⋅n→∞lim​i=1∑n​sinπni​⋅n1​=1⋅∫01​sinπxdx=π2​​

有夹逼定理,得 I = lim ⁡ n → ∞ ∑ i = 1 n sin ⁡ i π n n + 1 i = 2 π {\rm{I}} = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{i = 1}^n {\frac{{\sin \frac{{i\pi }}{n}}}{{n + \frac{1}{i}}}} = \frac{2}{\pi } I=n→∞lim​i=1∑n​n+i1​sinniπ​​=π2​

练习题2

( 1 ) . lim ⁡ n → ∞ ln ⁡ ( 1 + 1 n ) 2 ( 1 + 2 n ) 2 ⋯ ( 1 + n n ) 2 n ( 2 ) . lim ⁡ n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 2 + ⋯ + 1 n 2 + n 2 ) \begin{array}{l} \left( {\rm{1}} \right){\rm{.}}\mathop {\lim }\limits_{{\rm{n}} \to \infty } \ln \sqrt[n]{{{{\left( {1 + \frac{1}{n}} \right)}^2}{{\left( {1 + \frac{2}{n}} \right)}^2} \cdots {{\left( {1 + \frac{n}{n}} \right)}^2}}}\\ \left( 2 \right).\mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{{\sqrt {{n^2} + 1} }} + \frac{1}{{\sqrt {{n^2} + {2^2}} }} + \cdots + \frac{1}{{\sqrt {{n^2} + {n^2}} }}} \right) \end{array} (1).n→∞lim​lnn(1+n1​)2(1+n2​)2⋯(1+nn​)2 ​(2).n→∞lim​(n2+1 ​1​+n2+22 ​1​+⋯+n2+n2 ​1​)​

3.2 积分技巧解题

例题1: ∫ 0 π 4 ln ⁡ ( 1 + t a n x ) d x \int_0^{\frac{\pi }{4}} {\ln (1 + tanx)} dx ∫04π​​ln(1+tanx)dx

解:

= ∫ 0 π 4 ln ⁡ ( 1 + t a n ( π 4 − x ) ) d x = ∫ 0 π 4 ln ⁡ ( 2 1 + tan ⁡ x ) d x = ∫ 0 π 4 ln ⁡ 2 d x − ∫ 0 π 4 ln ⁡ ( 1 + t a n x ) d x → 原 式 = 1 2 ∫ 0 π 4 ln ⁡ 2 d x = π 8 ln ⁡ 2 \begin{array}{l} = \int_0^{\frac{\pi }{4}} {\ln (1 + tan(\frac{\pi }{4} - x))} dx\\\;\\ = \int_0^{\frac{\pi }{4}} {\ln (\frac{2}{{1 + \tan x}})} dx\\\;\\ = \int_0^{\frac{\pi }{4}} {\ln 2dx} {\rm{ - }}\int_0^{\frac{\pi }{4}} {\ln (1 + tanx)} dx \to 原式 {\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\int_0^{\frac{\pi }{4}} {\ln 2dx} {\rm{ = }}\frac{\pi }{{\rm{8}}}\ln 2 \end{array} =∫04π​​ln(1+tan(4π​−x))dx=∫04π​​ln(1+tanx2​)dx=∫04π​​ln2dx−∫04π​​ln(1+tanx)dx→原式=21​∫04π​​ln2dx=8π​ln2​

例题2: I = ∫ 2 4 x + 3 x + 3 + 9 − x d x I{\rm{ = }}\int_{\rm{2}}^{\rm{4}} {\frac{{\sqrt {x + 3} }}{{\sqrt {x + 3} + \sqrt {9 - x} }}} dx I=∫24​x+3 ​+9−x ​x+3 ​​dx

令 x + 3 = 9 − t , d x = − d t x + 3 = 9 - t,dx = - dt x+3=9−t,dx=−dt

I = ∫ 2 4 x + 3 x + 3 + 9 − x d x = − ∫ 4 2 9 − t 9 − t + 3 + t d t = ∫ 2 4 9 − x 9 − x + 3 + x d x = 1 2 [ ∫ 2 4 x + 3 x + 3 + 9 − x d x + ∫ 2 4 9 − x 9 − x + 3 + x d x ] = 1 2 ∫ 2 4 d x = 1 \begin{array}{l} I = \int_2^4 {\frac{{\sqrt {x + 3} }}{{\sqrt {x + 3} + \sqrt {9 - x} }}dx = - \int_4^2 {\frac{{\sqrt {9 - t} }}{{\sqrt {9 - t} + \sqrt {3 + t} }}} } dt = \int_2^4 {\frac{{\sqrt {9 - x} }}{{\sqrt {9 - x} + \sqrt {3 + x} }}} dx\\\;\\ = \frac{1}{2}\left[ {\int_2^4 {\frac{{\sqrt {x + 3} }}{{\sqrt {x + 3} + \sqrt {9 - x} }}dx + } \int_2^4 {\frac{{\sqrt {9 - x} }}{{\sqrt {9 - x} + \sqrt {3 + x} }}} dx} \right] = \frac{1}{2}\int_2^4 {dx} = 1 \end{array} I=∫24​x+3 ​+9−x ​x+3 ​​dx=−∫42​9−t ​+3+t ​9−t ​​dt=∫24​9−x ​+3+x ​9−x ​​dx=21​[∫24​x+3 ​+9−x ​x+3 ​​dx+∫24​9−x ​+3+x ​9−x ​​dx]=21​∫24​dx=1​

例题3: ∫ 0 a a − x x + a d x \int_{\rm{0}}^{\rm{a}} {\sqrt {\frac{{a - x}}{{x + a}}} } dx ∫0a​x+aa−x​ ​dx

解:令 x = a cos ⁡ t , t ∈ ( 0 , π 2 ) , d x = − a sin ⁡ t d t {{\rm{x}} = a\cos t,t \in (0,\frac{\pi }{2})},{dx = - a\sin tdt} x=acost,t∈(0,2π​),dx=−asintdt a − x x + a = 1 − cos ⁡ t 1 + cos ⁡ t = sin ⁡ 2 t 2 cos ⁡ 2 t 2 = tan ⁡ t 2 = sin ⁡ t 1 + cos ⁡ t = 1 − cos ⁡ t sin ⁡ t \sqrt {\frac{{a - x}}{{x + a}}} = \sqrt {\frac{{1 - \cos t}}{{1 + \cos t}}} = \sqrt {\frac{{{{\sin }^2}\frac{t}{2}}}{{{{\cos }^2}\frac{t}{2}}}} = \tan \frac{t}{2} = \frac{{\sin t}}{{1 + \cos t}} = \frac{{1 - \cos t}}{{\sin t}} x+aa−x​ ​=1+cost1−cost​ ​=cos22t​sin22t​​ ​=tan2t​=1+costsint​=sint1−cost​ (必须会)

= ∫ π 2 0 tan ⁡ t 2 ( − a s i n t ) d t = a ∫ 0 π 2 sin ⁡ 2 t 1 + cos ⁡ t d t = a ∫ 0 π 2 1 − cos ⁡ 2 t 1 + cos ⁡ t d t = a ∫ 0 π 2 1 + cos ⁡ t d t = π 2 a + a \begin{array}{l} = \int_{\frac{\pi }{2}}^0 {\tan \frac{t}{2}} ( - asint)dt\\\;\\ = a\int_0^{\frac{\pi }{2}} {\frac{{{{\sin }^2}t}}{{1 + \cos t}}} dt\\\;\\ = a\int_0^{\frac{\pi }{2}} {\frac{{1 - {{\cos }^2}t}}{{1 + \cos t}}} dt\\\;\\ = a\int_0^{\frac{\pi }{2}} {1 + \cos t} dt\\\;\\ = \frac{\pi }{2}a + a \end{array} =∫2π​0​tan2t​(−asint)dt=a∫02π​​1+costsin2t​dt=a∫02π​​1+cost1−cos2t​dt=a∫02π​​1+costdt=2π​a+a​

反常积分

∫ 0 ∞ 1 1 + x 4 d x \int_{\rm{0}}^\infty {\frac{{\rm{1}}}{{{\rm{1 + }}{x^4}}}} dx ∫0∞​1+x41​dx 令 t = 1 x {t = \frac{1}{x}} t=x1​

∫ 0 ∞ t 2 1 + t 4 d t = ∫ 0 ∞ x 2 1 + x 4 d x = 1 2 ∫ 0 ∞ 1 + x 2 1 + x 4 d x = 1 2 ∫ 0 ∞ d ( x − 1 x ) ( x − 1 x ) 2 + 2 = 1 2 2 arctan ⁡ 1 2 ( x − 1 x ) ∣ 0 ∞ = π 4 2 − ( − π 4 2 ) = π 2 2 \int_{\rm{0}}^\infty {\frac{{{t^2}}}{{{\rm{1 + }}{t^4}}}} dt = \int_{\rm{0}}^\infty {\frac{{{x^2}}}{{{\rm{1 + }}{x^4}}}} dx = \frac{1}{2}\int_0^\infty {\frac{{1 + {x^2}}}{{1 + {x^4}}}} dx\\\;\\ = \frac{1}{2}\int_0^\infty {\frac{{d\left( {x - \frac{1}{x}} \right)}}{{{{\left( {x - \frac{1}{x}} \right)}^2} + 2}}} = \left. {\frac{1}{{2\sqrt 2 }}\arctan \frac{1}{{\sqrt 2 }}\left( {x - \frac{1}{x}} \right)} \right|_0^\infty = \frac{\pi }{{4\sqrt 2 }} - \left( { - \frac{\pi }{{4\sqrt 2 }}} \right) = \frac{\pi }{{2\sqrt 2 }} ∫0∞​1+t4t2​dt=∫0∞​1+x4x2​dx=21​∫0∞​1+x41+x2​dx=21​∫0∞​(x−x1​)2+2d(x−x1​)​=22 ​1​arctan2 ​1​(x−x1​)∣∣∣​0∞​=42 ​π​−(−42 ​π​)=22 ​π​

(记忆)

I n = ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = ∫ 0 π 2 sin ⁡ n − 1 x d ( − cos ⁡ x ) = [ − sin ⁡ n − 1 x cos ⁡ x ] 0 π 2 + ∫ 0 π 2 cos ⁡ x d ( sin ⁡ n − 1 x ) = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x cos ⁡ 2 x d x = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x ( 1 − sin ⁡ 2 x ) d x = ( n − 1 ) ∫ 0 π 2 sin ⁡ n − 2 x d x − ( n − 1 ) ∫ 0 π 2 sin ⁡ n x d x → I n = ( n − 1 ) I n − 2 − ( n − 1 ) I n \begin{array}{l} {I_n} = \int_0^{\frac{\pi }{2}} {{{\sin }^n}x} dx = \int_0^{\frac{\pi }{2}} {{{\cos }^n}x} dx = \int_0^{\frac{\pi }{2}} {{{\sin }^{n - 1}}x} d\left( { - \cos x} \right)\\\;\\ = \left[ { - {{\sin }^{n - 1}}x\cos x} \right]_0^{\frac{\pi }{2}} + \int_0^{\frac{\pi }{2}} {\cos x} d\left( {{{\sin }^{n - 1}}x} \right)\\ = \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} {{{\sin }^{n - 2}}x} {\cos ^2}xdx = \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} {{{\sin }^{n - 2}}x} \left( {1 - {{\sin }^2}x} \right)dx\\\;\\ = \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} {{{\sin }^{n - 2}}x} dx - \left( {n - 1} \right)\int_0^{\frac{\pi }{2}} {{{\sin }^n}x} dx \to {I_n} = \left( {n - 1} \right){I_{n - 2}} - \left( {n - 1} \right){I_n}\end{array} In​=∫02π​​sinnxdx=∫02π​​cosnxdx=∫02π​​sinn−1xd(−cosx)=[−sinn−1xcosx]02π​​+∫02π​​cosxd(sinn−1x)=(n−1)∫02π​​sinn−2xcos2xdx=(n−1)∫02π​​sinn−2x(1−sin2x)dx=(n−1)∫02π​​sinn−2xdx−(n−1)∫02π​​sinnxdx→In​=(n−1)In−2​−(n−1)In​​

I n = n − 1 n I n − 2 → n 为 奇 数 I 2 m + 1 = 2 m ( 2 m − 2 ) ⋯ 42 ( 2 m + 1 ) ( 2 m − 1 ) ⋯ 31 = ( 2 m ) ! ! ( 2 m + 1 ) ! ! {I_n} = \frac{{n - 1}}{n}{I_{n - 2}} \to n 为奇数{I_{2m + 1}} = \frac{{2m\left( {2m - 2} \right) \cdots 42}}{{\left( {2m + 1} \right)\left( {2m - 1} \right) \cdots 31}} = \frac{{\left( {2m} \right)!!}}{{\left( {2m + 1} \right)!!}} In​=nn−1​In−2​→n为奇数I2m+1​=(2m+1)(2m−1)⋯312m(2m−2)⋯42​=(2m+1)!!(2m)!!​

n 为 偶 数 I 2 m = ( 2 m − 1 ) ( 2 m − 3 ) ⋯ 31 2 m ( 2 m − 2 ) ⋯ 42 = ( 2 m − 1 ) ! ! ( 2 m ) ! ! π 2 n为偶数{I_{2m}} = \frac{{\left( {2m - 1} \right)\left( {2m - 3} \right) \cdots 31}}{{2m\left( {2m - 2} \right) \cdots 42}} = \frac{{\left( {2m - 1} \right)!!}}{{\left( {2m} \right)!!}}\frac{\pi }{2} n为偶数I2m​=2m(2m−2)⋯42(2m−1)(2m−3)⋯31​=(2m)!!(2m−1)!!​2π​

练习题3

(1) ∫ 0 a x 2 a − x a + x d x \int_0^a {{x^2}\sqrt {\frac{{a - x}}{{a + x}}} } dx ∫0a​x2a+xa−x​ ​dx                (2) ∫ 0 1 ln ⁡ ( 1 + x ) 1 + x 2 d x \int_0^1 {\frac{{\ln \left( {1 + x} \right)}}{{1 + {x^2}}}} dx ∫01​1+x2ln(1+x)​dx

4. 练习解答

提示 题目解析都是由本人自己所写希望会有不同的做法与我分享,这里就不把答案直接放出来,本人会将答案放在另一篇blogs,等大家做完了点击这里一个链接:答案 。

微积分——巧解不定积分和定积分问题相关推荐

  1. 微积分知识点回顾与总结(五):不定积分,定积分,反常积分

    微积分知识点回顾与总结(五):不定积分,定积分 1.不定积分 2.定积分 3.牛顿-莱布尼茨(Newton-Leibnize) 4.积分中值定理及其推广 5.不定积分与定积分的工具包 6.反常积分 7 ...

  2. 不定积分、定积分的区别与联系

    前言:作者在学习微积分时曾对不定积分与定积分产生过许多疑惑,因此在思考总结过后,把自己理解的知识内容分享给大家. 第一:概念 1 不定积分(即反导数)是一种运算,类比于求导运算,求导是求函数的导函数, ...

  3. matlab 求不定积分与定积分

    求不定积分与定积分 %%计算不定积分 clc; clear; syms x; % 定义一个符号 x. f = 'x'; % 定义一个原函数 F = int(f, x); % 计算不定积分 disp(F ...

  4. 不定积分与定积分(高等数学)

    积分 定积分与不定积分的差别 不定积分的定义与计算 不定积分的定义 不定积分的计算 定积分的定义 定积分的计算 定积分与不定积分的差别 根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求 ...

  5. 不定积分与定积分的计算

    Contents 不定积分与定积分的计算 一.不定积分 原函数的定义 不定积分的定义 不定积分的性质 基本积分公式 进阶积分公式 二.不定积分的计算 1. 直接积分法 2. 凑微分法(第一类换元) 3 ...

  6. 2020年汤家凤直播讲解1800题基础篇手写笔记-不定积分和定积分部分

    写在前面:下面是汤家凤老师直播讲解1800题中不定积分.定积分部分的笔记,笔者已抄题并进行思路和答案记录. 文章目录 1 不定积分的计算 2 定积分 三角函数.Γ函数.周期函数的结论 1800 基础篇 ...

  7. matlab中函数或变量无法识别怎么办_用MATLAB巧解微分方程实例分析

    点"考研竞赛数学"↑可每天"涨姿势"哦! MATLAB巧解微分方程实例分析 王少华 西安电子科技大学 微分方程求解难, 字母一堆看着烦. 写错数字一时爽, 一直 ...

  8. 使用python的zipfile模块巧解word批量生成问题

    使用python的zipfile模块巧解word批量生成问题 任务需求 任务拆解 任务方案 方案一:使用python-docx.Document读取word文档 方案二:zipfile巧解word文档 ...

  9. MATLAB进行不定积分和定积分的求解

    声明:本文章中数据来自清风老师数学建模课程 文章目录 MATLAB进行不定积分和定积分的求解 1.不定积分的求解 2.定积分的求解 MATLAB进行不定积分和定积分的求解 1.不定积分的求解 使用in ...

最新文章

  1. MacBook Air写代码真香!包邮送一台!
  2. net平台c#语言如何实现支付宝payto接口
  3. android gridview不显示 自定义,Android gridview和自定义标题
  4. 佳铁怎样传输程序_佳铁传输4.0工具下载|佳铁传输4.0软件 4.0 官方最新版
  5. python mac电脑定时关机怎么设置_python实现电脑定时关机
  6. C#中的构造方法与对象初始化器
  7. 【机器学习】孤立森林-一个通过瞎胡乱分进行异常检测的算法
  8. Zookeeper 3.5启动时 8080端口被占用
  9. html2canvas 截图div_H5快照截图[html2canvas]+图片下载
  10. 王道408数据结构——第七章 查找
  11. HTML中关于图像和表格,链接等的知识
  12. 中缀试转后缀试及前缀试并计算其结果
  13. 华为USG防火墙双机热备(业务口工作在三层上下行连接路由器)
  14. 基于HAProxy的网站架构
  15. 在iOS中获取UIView的所有层级结构 相关
  16. 基于3D技术的机器视觉解决方案
  17. Python从入门到数据分析第一篇—Python简介- Python介绍与初探
  18. Git 工具 - 储藏(Stashing) git stash 暂存现在工作区的内容
  19. ubuntu搭建php运行环境
  20. 服务器的备份文件在哪里找,云服务器系统如何备份文件在哪里看

热门文章

  1. 在线表单信息收集+word模板展示信息(excel收集信息word打印)Excel一行或者多行信息导入word打印
  2. CBB电容的特点和原理用途
  3. Android手机智能定位并在地图上显示地址
  4. ACL2022 | 关系抽取和NER等论文分类整理
  5. 关于FPGA设计中的参数化设计
  6. Oracle 从回收站恢复表,Oracle从“回收站”恢复删除的表
  7. 诺基亚6x android9,诺基亚所有手机将先升安卓8.0 再升安卓9.0
  8. 2017年护师计算机职称考试,2017年护师资格考试报名时间
  9. 前端面试——浏览器兼容问题
  10. git 修改 changeId