上篇博文《LTE物理传输资源(3)-时频资源》的最后提到了PCFICH等几种下行物理信道,这篇博文本来想写PCFICH信道的,但在准备写PCFICH的时候,发现需要用到天线端口的相关内容,而这些内容目前还没有写。所以本文就先写天线端口和下行参考信号的相关内容。

1.天线端口(Antenna Port)和参考信号(Reference Signal)的关系

天线端口是一个逻辑上的概念,它与物理天线并没有一一对应的关系。在下行链路中,天线端口与下行参考信号(Reference signal)是一一对应的:如果通过多个物理天线来传输同一个参考信号,那么这些物理天线就对应同一个天线端口;而如果有两个不同的参考信号是从同一个物理天线中传输的,那么这个物理天线就对应两个独立的天线端口。

R9协议定义了四种下行参考信号,天线端口与这些参考信号的对应关系如下:

(1)小区特定参考信号(Cell-specific reference signals,CRS),或小区专用参考信号。CRS支持1个、2个、4个三种天线端口配置,对应的端口号分别是:p=0,p={0,1},p={0,1,2,3}。

(2)MBSFN参考信号(MBSFN reference signals),只在天线端口p=4中传输。这种信号用的不多,本文不涉及。

(3)UE特定参考信号(UE-specific reference signals),或UE专用参考信号,有的英文资料中也把这种信号称作解调参考信号(Demodulation reference signals,DM-RS)。可以在天线端口p=5,p=7,p=8,或p={7,8}中传输。这块内容在后面的博文中再写。

(4)定位参考信号(Positioning reference signals),只在天线端口p=6中传输。这种信号用的不多,本文不涉及。

2.小区特定参考信号的结构示意图

设计小区特定参考信号(Cell-specific reference signals)的目的并不是为了承载用户数据,而是在于提供一种技术手段,可以让终端进行下行信道的估计。终端可以通过对小区特定参考信号的测量,得到下行CQIPMIRI等信息。

在每个小区中,可以有1个、2个或4个小区特定参考信号,分别对应1个、2个或4个天线端口。对于一个支持PDSCH传输的小区,它的所有下行子帧(包括特殊子帧)均要传输小区特定参考信号,这些参考信号可以在端口0或端口0、1或端口0、1、2、3中传输。需要说明的是,小区特定参考信号只能在子载波间隔为15KHz的LTE系统中传输(还有一种专门用于MBSFN传输、子载波间隔是7.5KHz的情况还记得吗?请参考博文《LTE物理传输资源(1)-帧结构和OFDM符号》)。

下图是不同天线端口下,下行为Normal CP时小区特定参考信号的一种RE映射位置图。

之所以强调“一种”,是因为这个小区参考信号的RE位置与物理小区ID(还记得怎么获取吗?需要读取PSS和SSS,请参考博文《LTE小区搜索-物理小区ID和同步信号PSS、SSS》)、下行CP类型、频率偏移(k=0,1,2,3,4,5)有关,下面具体分析为什么小区参考信号是这样的位置。

3.小区特定参考信号承载的内容

在描述RE映射位置之前,有必要先介绍一下小区参考信号里映射的内容是什么。小区特定的参考信号实际上承载的是一个序列值(称为r序列),这个序列按照先时域后频域的规则映射到不同的RE中。每个OFDM符号内的参考信号都对应着1个长度为220个点的r序列,这些220个点的序列值均匀的分布在整个带宽中,每个序列点都映射到一个RE中。220个点对应的是110个RB的带宽,实际上有效的序列点个数还要看当前的实际带宽,比如当前带宽是10M,也就是说整个带宽只有50个RB,那么此时这220个序列点中,只有前面的100个序列点有效(一个OFDM符号中,每个RB有2个RE承载参考信号的序列点),此时终端只需要在每个OFDM符号中解析前100个序列点即可(当然,终端也没有办法解析出100以后的序列点)。

一个RE承载着一个小区特定参考信号的序列点,这些序列点组成了一个完整的序列r,这个序列r可以由下面的公式计算得到:

为方便理解,有必要对上面的公式做些说明:

(1)N_max_DLRB固定等于110,因此m的范围是[0,219],所以小区特定参考信号序列r包括220个点,即每个OFDM符号可以生成220个参考信号点。

(2)每个r序列对应2个C序列,这两个C序列分别对应r序列的实部和虚部。比如r(0)对应C(0)和C(1)这两个序列,r(219)对应C(438)和C(439)这两个序列,所以220个点的r序列对应了440个点的C序列,每个RE都承载了一个实部和一个虚部。

(3)C序列由序列x1和序列x2组成。因为mod2的存在,每个C、x1和x2序列的点都是0或1,即每个C、x1、x2序列的点均对应一个bit值(0或1)。所以,每个OFDM符号中,220个点的小区特定参考信号序列r由440个C序列点组成,对应的bit个数是440bits。换句话说,每个OFDM符号的小区特定参考信号,包括了440个bits的x1序列点和440个bits的x2序列点。

(4)对于x1序列,bit31由bit3和bit0推出;对于x2序列,bit31由bit3、bit2、bit1和bit0推出,示意如下(两个序列的其他bit值可以由公式递归推出)。

经过上面的分析,已经得到了小区特定参考信号序列r,下面再分析怎么将这些序列点映射到不同的RE中。

4.小区特定参考信号的映射

不是所有的RE都可以承载小区特定参考信号的序列r,符合条件的RE的坐标(k,l)需要满足下面这个公式。

其中:

(1)k表示子载波的偏移位置,范围是0-5。不同的载波偏移位置不同,如下图所示。

(2)l表示每个时隙中OFDM符号的偏移值。该值与天线端口号p、下行CP类型有关,见下表。所以说,前文给出的小区参考信号结构示意图只是其中的一个情况。

(3)相同的天线端口,在同个OFDM符号内,间隔6个子载波。天线端口0和1在每个时隙的第1和倒数第三个OFDM符号(L=0,L=4或L=3),天线端口2和3在每个时隙的第2个OFDM符号(L=1)。四个天线端口、下行Normal CP、频率偏移等于0(即N_cell_ID=0)时的示意图结构如下。

进一步分析上面的映射公式,可以推导出下面几个知识点:

(1)终端对小区特定参考信号的解析过程,发生在PSS和SSS的同步之后。公式中的N_cell_ID是当前小区的物理小区ID,终端只有在完成PSS和SSS的同步之后,才能获取到N_cell_ID以及子帧号和下行CP类型(原因参考博文《LTE小区搜索-物理小区ID和同步信号PSS、SSS》)。

(2)相邻小区的物理小区ID要保证模6值不同。从公式中可以看到,频域偏移k值与(N_cell_ID mod 6)有关。如果小区A和小区B是邻区,且N_cell_ID(A)=1,N_cell_ID(B)=7,那么会导致两个小区相同的天线端口p对应的小区特定参考信号的位置相同,从而相互间形成了干扰。

通过上述分析,就可以确定整个带宽中每个时隙的小区参考信号的位置了。下面是TDD制式、1.4MHz带宽、下行NormalCP、四天线端口时,整个带宽里的小区特定参考信号分布示意图(红色色块标注的RE位置)。

5.小区特定参考信号对应的天线端口数从哪获取

从前文描述可以知道,天线端口个数不同,会影响小区特定参考信号的位置,因此终端需要明确的知道当前LTE系统的天线端口个数。根据36212协议表5.3.1.1-1,eNB在传输PBCH的时候,会根据当前天线端口数来选择不同的CRC掩码,因此,终端可以通过解码PBCH,获取当前小区特定参考信号对应的天线端口数目。关于PBCH的相关内容,后续博文再写。

参考文献:

(1)3GPP TS 36.211 V9.1.0 (2010-03) Physical Channels and Modulation

(2)《4G LTE/LTE-Advanced for Mobile Broadband》

(3)http://dhagle.in/LTE

(4)http://www.sharetechnote.com/

(5)3GPP TS 36.212 V9.4.0 (2011-09) Multiplexing and channel coding

LTE下行物理层传输机制(1)-天线端口Antenna Port和小区特定参考信号CRS相关推荐

  1. LTE下行物理层传输机制(4)-CCE

    在之前的博文中已经讲到,小区专用参考信号的基本映射单位是RE(参考博文<LTE下行物理层传输机制(1)-天线端口Antenna Port和小区特定参考信号CRS>),PCFICH信道的基本 ...

  2. LTE下行物理层传输机制-PCFICH信道

    1.PCFICH信道的作用 PCFICH信道即物理控制格式指示信道,英文全称是Physical control format indicator channel,该信道中承载的内容CFI是当前子帧中控 ...

  3. LTE下行物理层传输机制(2)-PCFICH信道和资源组REG

    本篇博文主要包括的内容有: (1)什么是PCFICH信道,PCFICH信道的作用是什么 (2)REG是什么 (3)PCFICH信道实际在REG中映射的内容是什么 (4)PCFICH信道的位置在哪里 1 ...

  4. LTE下行物理层传输机制(3)-PHICH信道

    在阅读本文之前,建议先看下博文<LTE-TDD HARQ(1)-上行HARQ时序>,以便更好的理解本文内容. 本文主要包括的内容有: (1)什么是PHICH信道,它的作用是什么 (2)怎么 ...

  5. LTE上行物理层传输机制(2)-PUSCH上行跳频之Type2频率跳频

    博文<PUSCH上行跳频(1)-Type1频率跳频>里提到了为什么要使用PUSCH跳频,以及详细介绍了Type1方式的跳频,本文继续这个话题,介绍Type2方式的跳频. 1.采用PUSCH ...

  6. LTE小区特定参考信号

    1. 简介 小区特定参考信号(Cell-specific Reference Signal,CRS),通常也称作公共(Common)参考信号,因为小区特定参考信号可用于一个小区中的所有用户,而且无需对 ...

  7. LTE上行物理层传输机制(1)-PUSCH上行跳频之Type1频率跳频

    1.什么是PUSCH频率跳频(PUSCH Frequency Hopping) 博文<LTE下行物理层传输机制(9)-集中式和分布式资源映射>中提到了分布式的下行资源分配,这种资源分配方式 ...

  8. LTE成长笔记--下行参考信号:小区特定参考信号

    小区特定参考信号(Cell-specific reference signal) 下行参考信号是在时频资源网格中占有特定资源元素的预先定义的符号.LTE包括了多种类型的下行参考信号,下面介绍第一种下行 ...

  9. LTE上行物理层传输机制(3)-上行物理信道和参考信号的位置

    1.上行传输机制 与下行类似,当UE需要给eNB传递信息时,也是通过物理信道和参考信号发送的.上行物理信道包括PRACH随机接入信道.PUCCH控制信道.PUSCH共享信道,上行参考信号包括解调参考信 ...

最新文章

  1. 数组按时间(字符串-Date)排序
  2. Microsoft Power BI Desktop概念学习系列之Microsoft Power BI Desktop的官网自带示例数据(图文详解)...
  3. python数据分析知识整理_Python基础知识点总结:数据分析从0到大师必Mark的一篇!(上)...
  4. Android XML文件中设置字体
  5. access 子窗体 鼠标滚动不工作_Python GUI项目实战(五)明细信息窗体的完善
  6. 制作手风琴效果的注意事项(附代码)
  7. Mr.J--jQuery效果总结
  8. 探讨下在Delphi里面进程之间的数据共享
  9. STL之仿函数实现详解
  10. 如何备份linux磁盘空间,请问怎么备份整个硬盘又快又省空间?
  11. MySQL 创建函数入门
  12. Python攻关之模块(1)
  13. 非财务人员的财务培训教(一.二)------财务基础知识
  14. 一键卸载Ubuntu的火狐浏览器
  15. WWDC20 CoreImage 专题
  16. 常州大学新生赛 F-大佬的生日礼包
  17. 如何通过抽样分布估计你的模型的不确定性
  18. linux的gdb远程调试,嵌入式Linux的GDB远程调试如何实现呢?
  19. 【WIFI】WiFi-交互过程分析
  20. 【网络通信 -- 直播】FFMPEG 简介与常用命令总结

热门文章

  1. LibUIDK 学习------CSkinListCtrl控件消息响应事件
  2. c语言编程模拟机械钟表行走,C语言模拟时钟转动课设报告-附代码
  3. 实战nodejs写网络爬虫
  4. 写matlab代码思考1-条件语句判断条件怎么写好
  5. 国家食品药品监督管理局投诉举报
  6. 罗永浩压倒了王自如,但世界涛声依旧
  7. 半导体物理(上课)(介绍)
  8. 第二代身份证计算最后一位校验位-程序
  9. Android进程保活(如何尽可能避免APP被杀死)
  10. 【安全架构】COBIT vs TOGAF:哪个对网络安全更有利?