相对于SOCKET开发者,TCP创建过程和链接折除过程是由TCP/IP协议栈自动创建的.因此开发者并不需要控制这个过程.但是对于理解TCP底层运作机制,相当有帮助.

而且对于有网络协议工程师之类笔试,几乎是必考的内容.企业对这个问题热情之高,出乎我的意料:-)。有时上午面试前强调这个问题,并重复讲一次,下午几乎每一个人都被问到这个问题。
因此在这里详细解释一下这两个过程。
TCP三次握手
所谓三次握手(Three-way Handshake),是指建立一个TCP连接时,需要客户端和服务器总共发送3个包。
三次握手的目的是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号并交换 TCP 窗口大小信息.在socket编程中,客户端执行connect()时。将触发三次握手。
  • 第一次握手:
    客户端发送一个TCP的SYN标志位置1的包指明客户打算连接的服务器的端口,以及初始序号X,保存在包头的序列号(Sequence Number)字段里。
  • 第二次握手:
    服务器发回确认包(ACK)应答。即SYN标志位和ACK标志位均为1同时,将确认序号(Acknowledgement Number)设置为客户的I S N加1以.即X+1。

  • 第三次握手.
    客户端再次发送确认包(ACK) SYN标志位为0,ACK标志位为1.并且把服务器发来ACK的序号字段+1,放在确定字段中发送给对方.并且在数据段放写ISN的+1

SYN攻击

在三次握手过程中,服务器发送SYN-ACK之后,收到客户端的ACK之前的TCP连接称为半连接(half-open connect).此时服务器处于Syn_RECV状态.当收到ACK后,服务器转入ESTABLISHED状态.

Syn攻击就是 攻击客户端 在短时间内伪造大量不存在的IP地址,向服务器不断地发送syn包,服务器回复确认包,并等待客户的确认,由于源地址是不存在的,服务器需要不断的重发直 至超时,这些伪造的SYN包将长时间占用未连接队列,正常的SYN请求被丢弃,目标系统运行缓慢,严重者引起网络堵塞甚至系统瘫痪。

Syn攻击是一个典型的DDOS攻击。检测SYN攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击.在Linux下可以如下命令检测是否被Syn攻击

netstat -n -p TCP | grep SYN_RECV

一般较新的TCP/IP协议栈都对这一过程进行修正来防范Syn攻击,修改tcp协议实现。主要方法有SynAttackProtect保护机制、SYN cookies技术、增加最大半连接和缩短超时时间等.

但是不能完全防范syn攻击。

TCP 四次挥手

TCP的连接的拆除需要发送四个包,因此称为四次挥手(four-way handshake)。客户端或服务器均可主动发起挥手动作,在socket编程中,任何一方执行close()操作即可产生挥手操作。

参见wireshark抓包,实测的抓包结果并没有严格按挥手时序。我估计是时间间隔太短造成。

1 、建立连接协议(三次握手)
(1)客户端发送一个带SYN标志的TCP报文到服务器。这是三次握手过程中的报文1。
(2) 服务器端回应客户端的,这是三次握手中的第2个报文,这个报文同时带ACK标志和SYN标志。因此它表示对刚才客户端SYN报文的回应;同时又标志SYN给客户端,询问客户端是否准备好进行数据通讯。
(3) 客户必须再次回应服务段一个ACK报文,这是报文段3。
2 、连接终止协议(四次挥手)
   由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。
 (1) TCP客户端发送一个FIN,用来关闭客户到服务器的数据传送(报文段4)。
 (2) 服务器收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。
 (3) 服务器关闭客户端的连接,发送一个FIN给客户端(报文段6)。
 (4) 客户段发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。
CLOSED: 这个没什么好说的了,表示初始状态。
LISTEN: 这个也是非常容易理解的一个状态,表示服务器端的某个SOCKET处于监听状态,可以接受连接了。
SYN_RCVD: 这个状态表示接受到了SYN报文,在正常情况下,这个状态是服务器端的SOCKET在建立TCP连接时的三次握手会话过程中的一个中间状态,很短暂,基本上用netstat你是很难看到这种状态的,除非你特意写了一个客户端测试程序,故意将三次TCP握手过程中最后一个ACK报文不予发送。因此这种状态时,当收到客户端的ACK报文后,它会进入到ESTABLISHED状态。
SYN_SENT: 这个状态与SYN_RCVD遥想呼应,当客户端SOCKET执行CONNECT连接时,它首先发送SYN报文,因此也随即它会进入到了SYN_SENT状态,并等待服务端的发送三次握手中的第2个报文。SYN_SENT状态表示客户端已发送SYN报文。
ESTABLISHED:这个容易理解了,表示连接已经建立了。
FIN_WAIT_1: 这个状态要好好解释一下,其实FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是:FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态,当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。
FIN_WAIT_2:上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示半连接,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你,稍后再关闭连接。
TIME_WAIT: 表示收到了对方的FIN报文,并发送出了ACK报文,就等2MSL后即可回到CLOSED可用状态了。如果FIN_WAIT_1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。
CLOSING: 这种状态比较特殊,实际情况中应该是很少见,属于一种比较罕见的例外状态。正常情况下,当你发送FIN报文后,按理来说是应该先收到(或同时收到)对方的ACK报文,再收到对方的FIN报文。但是CLOSING状态表示你发送FIN报文后,并没有收到对方的ACK报文,反而却也收到了对方的FIN报文。什么情况下会出现此种情况呢?其实细想一下,也不难得出结论:那就是如果双方几乎在同时close一个SOCKET的话,那么就出现了双方同时发送FIN报文的情况,也即会出现CLOSING状态,表示双方都正在关闭SOCKET连接。
CLOSE_WAIT: 这种状态的含义其实是表示在等待关闭。怎么理解呢?当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以close这个SOCKET,发送FIN报文给对方,也即关闭连接。所以你在CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。
LAST_ACK: 这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。
最后有2个问题的回答,我自己分析后的结论(不一定保证100%正确)
1、 为什么建立连接协议是三次握手,而关闭连接却是四次握手呢?
这是因为服务端的LISTEN状态下的SOCKET当收到SYN报文的建连请求后,它可以把ACK和SYN(ACK起应答作用,而SYN起同步作用)放在一个报文里来发送。但关闭连接时,当收到对方的FIN报文通知时,它仅仅表示对方没有数据发送给你了;但未必你所有的数据都全部发送给对方了,所以你可以未必会马上会关闭SOCKET,也即你可能还需要发送一些数据给对方之后,再发送FIN报文给对方来表示你同意现在可以关闭连接了,所以它这里的ACK报文和FIN报文多数情况下都是分开发送的。
2、 为什么TIME_WAIT状态还需要等2MSL后才能返回到CLOSED状态?
这是因为:虽然双方都同意关闭连接了,而且握手的4个报文也都协调和发送完毕,按理可以直接回到CLOSED状态(就好比从SYN_SEND状态到ESTABLISH状态那样);但是因为我们必须要假想网络是不可靠的,你无法保证你最后发送的ACK报文会一定被对方收到,因此对方处于LAST_ACK状态下的SOCKET可能会因为超时未收到ACK报文,而重发FIN报文,所以这个TIME_WAIT状态的作用就是用来重发可能丢失的ACK报文。

TCP三次握手(建立连接)/四次挥手(关闭连接)相关推荐

  1. TCP的三次握手(建立连接)和四次挥手(关闭连接)

    随心所意 博客园  :: 首页  :: 新随笔  :: 联系  :: 订阅   :: 管理 posts - 437, comments - 52, trackbacks - 0 公告 昵称:higir ...

  2. TCP三次握手建立连接的过程

    来源:TCP三次握手建立连接的过程 TCP 是面向连接的协议,所以每次发出的请求都需要对方进行确认.TCP 客户端与 TCP 服务器在通信之前需要完成三次握手才能建立连接. 下面详细讲解三次握手的过程 ...

  3. TCP的三次握手过程与四次挥手

    TCP握手协议 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接.第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确 ...

  4. 《TCP三次捂手、四次挥手和状态转换详解》

    前言: 本文将讲解TCP三次捂手建立连接,到四次挥手断开连接的过程,并且配合TCP状态转换图解释.解释SYN .seq .ack.FIN的含义和关系.建议读者先理解三捂和四挥后在结合状态转换图看,网络 ...

  5. TCP三次握手建立连接和四次挥手关闭连接

    TCP三次握手 是指建立TCP连接协议时,需要在客户端和服务器之间发送三个包,握手过程中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据. 第一次握手:客户端发送第一个包,其中S ...

  6. Wireshark抓包示范:TCP三次握手建立连接和四次握手断开连接

    转载请标注: 披萨大叔的博客 http://blog.csdn.net/qq_27258799/article/details/51379508 如果您觉得这篇文章对您有帮助,请点下文章最下面的赞~ ...

  7. TCP网络编程-三次握手建立连接-四次挥手断开连接

    客户端与服务器进行TCP通信连接时,要进行三次握手建立连接. 客户端与服务器进行TCP断开连接时,要进行四次挥手断开连接.

  8. TCP三次握手建立连接

    一.三次握手的过程 TCP需要三次握手才能建立连接,整个过程如下图所示: 假设A运行的是TCP客户端进程,而B运行的是TCP服务端进程.最开始的时候两端的TCP进程都处于ClOSED(关闭)状态. 这 ...

  9. 43.TCP三次握手建立连接的过程

    TCP 是面向连接的协议,所以每次发出的请求都需要对方进行确认.TCP 客户端与 TCP 服务器在通信之前需要完成三次握手才能建立连接. 下面详细讲解三次握手的过程. 第 1 次握手 第 1 次握手建 ...

  10. TCP三次握手建立连接四次挥手断开连接

    仅用于做笔记,转载自https://blog.csdn.net/whuslei/article/details/6667471 首先Client端发送连接请求报文,Server段接受连接后回复ACK报 ...

最新文章

  1. 下一步工作,尽量将代码整理归拢成可以随意组合拆装的代码块。
  2. java.lang.NoClassDefFoundError: javax/transaction/Synchronization (jUnit测试报错)
  3. Linux 字符设备驱动开发基础(四)—— ioctl() 函数解析
  4. CSS之不使用Media Queries的自适应CSS
  5. Maven实战---两个war包的调用
  6. 同步方法中的锁对象_互斥锁与读写锁:如何使用锁完成Go程同步?
  7. [翻译]Hystrix wiki–How it Works
  8. webQQ协议——获取信息
  9. Android UI 基础知识
  10. 假想的憧憬,浮云遮住了双眼,
  11. python中的wheel有什么用_python中的wheel怎么用
  12. 计算机视觉方向好中的期刊有哪些?
  13. C语言_统计单词长度
  14. 如何解决“计算机意外地重新启动或遇到错误,Windows 安装无法继续。”
  15. 生成pdf带跳转的书签
  16. 炉石android更新日志,炉石传说新版本一览_炉石传说更新内容
  17. 手写表单及h5表单验证举例
  18. freeswitch的application及号码集
  19. Java程序员掉发系列——程序员必须认识的英文单词(汇总)
  20. 大创:小车运动部分计划及端口(1)

热门文章

  1. java web 跨域_java web服务端CORS跨域配置
  2. 数据结构实验之图论七:驴友计划(最短路Floyd/Dijkstra)
  3. 1.大数据处理架构Hadoop
  4. git与github区别与简介
  5. MFC Combo-box显示大小
  6. Redis事务(transaction)
  7. TCP/UDP,SOCKET,HTTP,FTP协议简析
  8. C++ MFC常用函数(转)
  9. 七步精通Python机器学习
  10. 局部特征(5)——如何利用彩色信息 Color Descriptors