网络编程之多线程——GIL全局解释器锁

一、引子

定义:

In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple

native threads from executing Python bytecodes at once. This lock is necessary mainly

because CPython’s memory management is not thread-safe. (However, since the GIL

exists, other features have grown to depend on the guarantees that it enforces.)

结论:在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势

首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL。

二、GIL介绍

GIL本质就是一把互斥锁,既然是互斥锁,所有互斥锁的本质都一样,都是将并发运行变成串行,以此来控制同一时间内共享数据只能被一个任务所修改,进而保证数据安全。

可以肯定的一点是:保护不同的数据的安全,就应该加不同的锁。

要想了解GIL,首先确定一点:每次执行python程序,都会产生一个独立的进程。例如python test.py,python aaa.py,python bbb.py会产生3个不同的python进程

验证python test.py只会产生一个进程:

#test.py内容

import os,time

print(os.getpid())

time.sleep(1000)

#打开终端执行

python3 test.py

#在windows下查看

tasklist |findstr python

#在linux下下查看

ps aux |grep python

在一个python的进程内,不仅有test.py的主线程或者由该主线程开启的其他线程,还有解释器开启的垃圾回收等解释器级别的线程,总之,所有线程都运行在这一个进程内,毫无疑问。

1、所有数据都是共享的,这其中,代码作为一种数据也是被所有线程共享的(test.py的所有代码以及Cpython解释器的所有代码)

例如:test.py定义一个函数work(代码内容如下图),在进程内所有线程都能访问到work的代码,于是我们可以开启三个线程然后target都指向该代码,能访问到意味着就是可以执行。

2、所有线程的任务,都需要将任务的代码当做参数传给解释器的代码去执行,即所有的线程要想运行自己的任务,首先需要解决的是能够访问到解释器的代码。

综上:

如果多个线程的target=work,那么执行流程是

多个线程先访问到解释器的代码,即拿到执行权限,然后将target的代码交给解释器的代码去执行

解释器的代码是所有线程共享的,所以垃圾回收线程也可能访问到解释器的代码而去执行,这就导致了一个问题:对于同一个数据100,可能线程1执行x=100的同时,而垃圾回收执行的是回收100的操作,解决这种问题没有什么高明的方法,就是加锁处理,如下图的GIL,保证python解释器同一时间只能执行一个任务的代码。

三、GIL与Lock

机智的同学可能会问到这个问题:Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock?

首先,我们需要达成共识:锁的目的是为了保护共享的数据,同一时间只能有一个线程来修改共享的数据

然后,我们可以得出结论:保护不同的数据就应该加不同的锁。

最后,问题就很明朗了,GIL 与Lock是两把锁,保护的数据不一样,前者是解释器级别的(当然保护的就是解释器级别的数据,比如垃圾回收的数据),后者是保护用户自己开发的应用程序的数据,很明显GIL不负责这件事,只能用户自定义加锁处理,即Lock,如下图:

分析:

1、100个线程去抢GIL锁,即抢执行权限

2、肯定有一个线程先抢到GIL(暂且称为线程1),然后开始执行,一旦执行就会拿到lock.acquire()

3、极有可能线程1还未运行完毕,就有另外一个线程2抢到GIL,然后开始运行,但线程2发现互斥锁lock还未被线程1释放,于是阻塞,被迫交出执行权限,即释放GIL

4、直到线程1重新抢到GIL,开始从上次暂停的位置继续执行,直到正常释放互斥锁lock,然后其他的线程再重复2 3 4的过程

代码示范:

from threading import Thread,Lock

import os,time

def work():

global n

lock.acquire()

temp=n

time.sleep(0.1)

n=temp-1

lock.release()

if __name__ == '__main__':

lock=Lock()

n=100

l=[]

for i in range(100):

p=Thread(target=work)

l.append(p)

p.start()

for p in l:

p.join()

print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全,不加锁则结果可能为99

四、GIL与多线程

有了GIL的存在,同一时刻同一进程中只有一个线程被执行。

听到这里,有的同学立马质问:进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势,也就是说python没用了,php才是最牛逼的语言?

别着急,还没讲完呢。

要解决这个问题,我们需要在几个点上达成一致:

1、cpu到底是用来做计算的,还是用来做I/O的?

2、多cpu,意味着可以有多个核并行完成计算,所以多核提升的是计算性能

3、每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处

一个工人相当于cpu,此时计算相当于工人在干活,I/O阻塞相当于为工人干活提供所需原材料的过程,工人干活的过程中如果没有原材料了,则工人干活的过程需要停止,直到等待原材料的到来。

如果你的工厂干的大多数任务都要有准备原材料的过程(I/O密集型),那么你有再多的工人,意义也不大,还不如一个人,在等材料的过程中让工人去干别的活。

反过来讲,如果你的工厂原材料都齐全,那当然是工人越多,效率越高

结论:

1、对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用

2、当然对运行一个程序来说,随着cpu的增多执行效率肯定会有所提高(不管提高幅度多大,总会有所提高),这是因为一个程序基本上不会是纯计算或者纯I/O,所以我们只能相对的去看一个程序到底是计算密集型还是I/O密集型,从而进一步分析python的多线程到底有无用武之地

假设我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:

方案一:开启四个进程

方案二:一个进程下,开启四个线程

单核情况下,分析结果:

1、如果四个任务是计算密集型,多核意味着并行计算,在python中一个进程中同一时刻只有一个线程执行用不上多核,方案一胜

2、如果四个任务是I/O密集型,再多的核也解决不了I/O问题,方案二胜

结论:

现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上的提升,甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。

五、多线程性能测试

如果并发的多个任务是计算密集型:多进程效率高

from multiprocessing import Process

from threading import Thread

import os,time

def work():

res=0

for i in range(100000000):

res*=i

if __name__ == '__main__':

l=[]

print(os.cpu_count()) #本机为4核

start=time.time()

for i in range(4):

p=Process(target=work) #耗时5s多

p=Thread(target=work) #耗时18s多

l.append(p)

p.start()

for p in l:

p.join()

stop=time.time()

print('run time is %s' %(stop-start))

如果并发的多个任务是I/O密集型:多线程效率高

from multiprocessing import Process

from threading import Thread

import threading

import os,time

def work():

time.sleep(2)

print('===>')

if __name__ == '__main__':

l=[]

print(os.cpu_count()) #本机为4核

start=time.time()

for i in range(400):

# p=Process(target=work) #耗时12s多,大部分时间耗费在创建进程上

p=Thread(target=work) #耗时2s多

l.append(p)

p.start()

for p in l:

p.join()

stop=time.time()

print('run time is %s' %(stop-start))

应用:

1、多线程用于IO密集型,如socket,爬虫,web

2、多进程用于计算密集型,如金融分析

关于找一找教程网

本站文章仅代表作者观点,不代表本站立场,所有文章非营利性免费分享。

本站提供了软件编程、网站开发技术、服务器运维、人工智能等等IT技术文章,希望广大程序员努力学习,让我们用科技改变世界。

[网络编程之多线程——GIL全局解释器锁]http://www.zyiz.net/tech/detail-91901.html

gil php,网络编程之多线程——GIL全局解释器锁相关推荐

  1. Python全局解释器锁GIL与多线程

    Python中如果是 I/O密集型的操作,用多线程(协程Asyncio.线程Threading),如果I/O操作很慢,需要很多任务/线程协同操作,用Asyncio,如果需要有限数量的任务/线程,那么使 ...

  2. python中的多线程 GIL(全局解释器锁) 死锁与递归锁

    1.什么的是线程 在程序里一个执行路线就叫做线程,线程是程序执行的最小单位 2.多线程的优点 使用线程可以把占据长时间的程序中的任务放到后台去处理. 在处理I/O密集程序的运行速度可能加快(ps:计算 ...

  3. Python全局解释器锁(GIL)

    目录 1.引言 2.GIL存在的背景 3.GIL主要工作原理 4.Python 线程安全问题 5.可以如何绕过 GIL? 6.延伸阅读 1.引言 我们来看下Python 多线程另一个很重要的话题--G ...

  4. 网络爬虫--18.python中的GIL(全局解释器锁)、多线程、多进程、并发、并行

    参考文献: python的GIL.多线程.多进程 并发和并行的区别? GIL(全局解释器锁)一看就懂的解释! 多谢作者分享!

  5. 多线程—— GIL(全局解释器锁)

    文章目录 1.前言 2.测试 GIL 1.前言 python 的多线程 threading 有时候并不是特别理想. 最主要的原因是就是, Python 的设计上, 有一个必要的环节, 就是 Globa ...

  6. 二十七、GIL及网络编程相关知识

    网络编程相关 一 GIL全局解释器锁 二 GIL与普通互斥锁的区别 三 多线程与多进程区别 3.1 单核 3.2 多核 3.3 代码验证 四 死锁 五 信号量 六 Event事件 七 进程池与线程池 ...

  7. 并发编程中的GIL锁(全局解释器锁)自己理解的他为啥存在

    自己的分析 GIL锁就是一个全局解释器锁 也就是python中因为有垃圾回收机制的存在.垃圾回收机制也是一个线程,如果所有的线程都可以使用cpu的不同资源(也就是多核 cpu并行处理线程的情况) -这 ...

  8. 【Python爬虫学习笔记11】Queue线程安全队列和GIL全局解释器锁

    Queue线程安全队列 在Python多线程编程中,虽然threading模块为我们提供了Lock类和Condition类借助锁机制来处理线程并发执行,但在实际开发中使用加锁和释放锁仍是一个经常性的且 ...

  9. python 全局解释器锁_python全局解释器锁(GIL)

    什么是全局解释器锁GIL 首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念.就好比C++是一套语言(语法)标准,但是可以用不同的编译 ...

最新文章

  1. linux php-fpm优化 php-fpm.conf 重要参数详解
  2. 经典C语言程序100例之十四
  3. C和C++太难了。。搞这个方向进大厂它不香吗?
  4. android gradle proguard,Android Gradle插件2.2.0 ProGuard开始保留内部类
  5. 基于函数计算的 Serverless AI 推理
  6. 算法分析与设计 —— 贪心算法「活动安排」「背包问题」「哈夫曼编码」
  7. Git笔记(17) 协议
  8. 马云再出新语录:月入一两百万很高兴,挣一二十亿很难受
  9. git 编辑提交的技巧
  10. #if defined和#if !defined的含义
  11. 台大李宏毅Machine Learning 2017Fall学习笔记 (13)Semi-supervised Learning
  12. 7开启uasp协议_【转载分享】“代理报关委托书/委托报关协议”相关问题答疑汇总...
  13. Day21 linux安装RPM包
  14. 红帽Linux登录密码忘了,redhat linux忘记登陆密码之解决办法
  15. 国内外各大网站镜像源
  16. 学校做计算机教室锐捷,锐捷网络云课堂:让学生爱上每一节课
  17. C语言中 整数除法 向上取整的数学证明
  18. 以时间作为文件名的后缀
  19. 产品冷思考:大而全or小而美如何选择?
  20. js:nodejs通过async异步提交事务数据

热门文章

  1. Kaggle知识点:数据分析思路与工具(EDA)
  2. GPT-3数学不及格,愁坏伯克利团队,于是他们出了12500道数学作业
  3. 强强联合!Papers with Code 携手 arXiv,上传论文、提交代码一步到位
  4. 扒出了3867篇论文中的3万个基准测试结果,他们发现追求SOTA其实没什么意义
  5. 华为为什么要“囤”700名数学家?中科院院士告诉你!
  6. Bigtable:结构化数据的分布式存储系统
  7. 正则表达式匹配多个字符(*、+、?、{m}、{m,n})
  8. 爬取网站图片并保存到本地
  9. 深度学习两大基础Tricks:Dropout和BN详解
  10. OpenCV标准霍夫直线检测详解