来源:大数据文摘本文约10000字,建议阅读10分钟本文以kaggle比赛的数据为例,为你讲解不平衡二分类问题的解决方法。

本案例使用的数据为kaggle中“Santander Customer Satisfaction”比赛的数据。此案例为不平衡二分类问题,目标为最大化auc值(ROC曲线下方面积)。目前此比赛已经结束。

竞赛题目链接为:

https://www.kaggle.com/c/santander-customer-satisfaction

1. 建模思路

本文档采用微软开源的lightgbm算法进行分类,运行速度极快。具体步骤为:

  • 读取数据;

  • 并行运算:由于lightgbm包可以通过设置相应参数进行并行运算,因此不再调用doParallel与foreach包进行并行运算;

  • 特征选择:使用mlr包提取了99%的chi.square;

  • 调参:逐步调试lgb.cv函数的参数,并多次调试,直到满意为止;

  • 预测结果:用调试好的参数值构建lightgbm模型,输出预测结果;本案例所用程序输出结果的ROC值为0.833386,已超过Private Leaderboard排名第一的结果(0.829072)。

2. lightgbm算法

由于lightgbm算法没有给出具体的数学公式,因此此处不再介绍,如有需要,请查看github项目网址。

lightgbm算法具体介绍网址:

https://github.com/Microsoft/LightGBM

读取数据

options(java.parameters = "-Xmx8g") ## 特征选择时使用,但是需要在加载包之前设置library(readr)lgb_tr1 <- read_csv("C:/Users/Administrator/Documents/kaggle/scs_lgb/train.csv")lgb_te1 <- read_csv("C:/Users/Administrator/Documents/kaggle/scs_lgb/test.csv")

数据探索

1. 设置并行运算

library(dplyr)library(mlr)library(parallelMap)parallelStartSocket(2)

2. 数据各列初步探索

summarizeColumns(lgb_tr1) %>% View()

3. 处理缺失值

impute missing values by mean and mode
imp_tr1 <- impute(as.data.frame(lgb_tr1), classes = list(integer = imputeMean(), numeric = imputeMean())
)
imp_te1 <- impute(as.data.frame(lgb_te1), classes = list(integer = imputeMean(), numeric = imputeMean())
)

处理缺失值后:

summarizeColumns(imp_tr1$data) %>% View()

4. 观察训练数据类别的比例–数据类别不平衡

table(lgb_tr1$TARGET)

5. 剔除数据集中的常数列

lgb_tr2 <- removeConstantFeatures(imp_tr1$data)lgb_te2 <- removeConstantFeatures(imp_te1$data)

6. 保留训练数据集与测试数据及相同的列

tr2_name <- data.frame(tr2_name = colnames(lgb_tr2))te2_name <- data.frame(te2_name = colnames(lgb_te2))tr2_name_inner <- tr2_name %>%     inner_join(te2_name, by = c('tr2_name' = 'te2_name'))TARGET = data.frame(TARGET = lgb_tr2$TARGET)lgb_tr2 <- lgb_tr2[, c(tr2_name_inner$tr2_name[2:dim(tr2_name_inner)[1]])]lgb_te2 <- lgb_te2[, c(tr2_name_inner$tr2_name[2:dim(tr2_name_inner)[1]])]lgb_tr2 <- cbind(lgb_tr2, TARGET)

注:

1)由于本次使用lightgbm算法,故而不对数据进行标准化处理;

2)lightgbm算法运行效率极高,1GB内不进行特征筛选也可以运行的极快,但是此处进行特征筛选,以进一步加快运行速率;

3)本案例直接进行特征筛选,未生成衍生变量,原因为:不知特征实际意义,不好随机生成。

特征筛选–卡方检验

library(lightgbm)

1. 试算最大权重值程序,后面将继续优化

grid_search <- expand.grid(    weight = seq(1, 30, 2)     ## table(lgb_tr1$TARGET)[1] / table(lgb_tr1$TARGET)[2] = 24.27261    ## 故而设定weight在[1, 30]之间)
lgb_rate_1 <- numeric(length = nrow(grid_search))set.seed(0)for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr2$TARGET * i + 1) / sum(lgb_tr2$TARGET * i + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr2[, 1:300]),         label = lgb_tr2$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc'    )    # 交叉验证    lgb_tr2_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        learning_rate = .1,        num_threads = 2,        early_stopping_rounds = 10    )    lgb_rate_1[i] <- unlist(lgb_tr2_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr2_mod$record_evals$valid$auc$eval))]}library(ggplot2)grid_search$perf <- lgb_rate_1ggplot(grid_search,aes(x = weight, y = perf)) +     geom_point()

从此图可知auc值受权重影响不大,在weight=5时达到最大。

2. 特征选择

1) 特征选择

lgb_tr2$TARGET <- factor(lgb_tr2$TARGET)lgb.task <- makeClassifTask(data = lgb_tr2, target = 'TARGET')lgb.task.smote <- oversample(lgb.task, rate = 5)fv_time <- system.time(    fv <- generateFilterValuesData(        lgb.task.smote,        method = c('chi.squared')        ## 此处可以使用信息增益/卡方检验的方法,但是不建议使用随机森林方法,效率极低        ## 如果有兴趣,也可以尝试IV值方法筛选        ## 特征工程决定目标值(此处为auc)的上限,可以把特征筛选方法作为超参数处理    ))

2) 制图查看

# plotFilterValues(fv)plotFilterValuesGGVIS(fv)

3) 提取99%的chi.squared(lightgbm算法效率极高,因此可以取更多的变量)

注:提取的X%的chi.squared中的X可以作为超参数处理。

fv_data2 <- fv$data %>%     arrange(desc(chi.squared)) %>%     mutate(chi_gain_cul = cumsum(chi.squared) / sum(chi.squared))
fv_data2_filter <- fv_data2 %>% filter(chi_gain_cul <= 0.99)dim(fv_data2_filter) ## 减少了一半的自变量fv_feature <- fv_data2_filter$namelgb_tr3 <- lgb_tr2[, c(fv_feature, 'TARGET')]lgb_te3 <- lgb_te2[, fv_feature]

4) 写出数据

write_csv(lgb_tr3, 'C:/users/Administrator/Documents/kaggle/scs_lgb/lgb_tr3_chi.csv')write_csv(lgb_te3, 'C:/users/Administrator/Documents/kaggle/scs_lgb/lgb_te3_chi.csv')

算法

lgb_tr <- rxImport('C:/Users/Administrator/Documents/kaggle/scs_lgb/lgb_tr3_chi.csv')lgb_te <- rxImport('C:/Users/Administrator/Documents/kaggle/scs_lgb/lgb_te3_chi.csv')## 建议lgb_te数据在预测时再读取,以节约内存library(lightgbm)

1. 调试weight参数

grid_search <- expand.grid(    weight = 1:30)
perf_weight_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * i + 1) / sum(lgb_tr$TARGET * i + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc'    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        learning_rate = .1,        num_threads = 2,        early_stopping_rounds = 10    )    perf_weight_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
library(ggplot2)grid_search$perf <- perf_weight_1ggplot(grid_search,aes(x = weight, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在weight=4时达到最大,呈递减趋势。

2. 调试learning_rate参数

grid_search <- expand.grid(    learning_rate = 2 ^ (-(8:1)))
perf_learning_rate_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_learning_rate_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_learning_rate_1ggplot(grid_search,aes(x = learning_rate, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在learning_rate=2^(-5) 时达到最大,但是 2^(-(6:3)) 区别极小,故取learning_rate = .125,提高运行速度。

3. 调试num_leaves参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = seq(50, 800, 50))
perf_num_leaves_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_num_leaves_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_num_leaves_1ggplot(grid_search,aes(x = num_leaves, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在num_leaves=650时达到最大。

4. 调试min_data_in_leaf参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    min_data_in_leaf = 2 ^ (1:7))
perf_min_data_in_leaf_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        min_data_in_leaf = grid_search[i, 'min_data_in_leaf']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_data_in_leaf_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_data_in_leaf_1ggplot(grid_search,aes(x = min_data_in_leaf, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值对min_data_in_leaf不敏感,因此不做调整。

5. 调试max_bin参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin = 2 ^ (5:10))
perf_max_bin_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_max_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_max_bin_1ggplot(grid_search,aes(x = max_bin, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在max_bin=2^10 时达到最大,需要再次微调max_bin值。

6. 微调max_bin参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin = 100 * (6:15))
perf_max_bin_2 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_max_bin_2[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_max_bin_2ggplot(grid_search,aes(x = max_bin, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在max_bin=1000时达到最大。

7. 调试min_data_in_bin参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 2 ^ (1:9)    )
perf_min_data_in_bin_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_data_in_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_data_in_bin_1ggplot(grid_search,aes(x = min_data_in_bin, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在min_data_in_bin=8时达到最大,但是变化极其细微,因此不做调整。

8. 调试feature_fraction参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = seq(.5, 1, .02)    )
perf_feature_fraction_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_feature_fraction_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_feature_fraction_1ggplot(grid_search,aes(x = feature_fraction, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在feature_fraction=.62时达到最大,feature_fraction在[.60,.62]之间时,auc值保持稳定,表现较好;从.64开始呈下降趋势。

9. 调试min_sum_hessian参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = seq(0, .02, .001))
perf_min_sum_hessian_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_sum_hessian_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_sum_hessian_1ggplot(grid_search,aes(x = min_sum_hessian, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在min_sum_hessian=0.005时达到最大,建议min_sum_hessian取值在[0.002, 0.005]区间,0.005后呈递减趋势。

10. 调试lamda参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = seq(0, .01, .002),    lambda_l2 = seq(0, .01, .002))
perf_lamda_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_lamda_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_lamda_1ggplot(data = grid_search, aes(x = lambda_l1, y = perf)) +     geom_point() +     facet_wrap(~ lambda_l2, nrow = 5)

从此图可知建议lambda_l1 = 0, lambda_l2 = 0

11. 调试drop_rate参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = seq(0, 1, .1))
perf_drop_rate_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_drop_rate_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_drop_rate_1ggplot(data = grid_search, aes(x = drop_rate, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在drop_rate=0.2时达到最大,在0, .2, .5较好;在[0, 1]变化不大。

12. 调试max_drop参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = seq(1, 10, 2))
perf_max_drop_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 4 + 1) / sum(lgb_tr$TARGET * 4 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_max_drop_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_max_drop_1ggplot(data = grid_search, aes(x = max_drop, y = perf)) +     geom_point() +    geom_smooth()

从此图可知auc值在max_drop=5时达到最大,在[1, 10]区间变化较小。

二次调参

1. 调试weight参数

grid_search <- expand.grid(    learning_rate = .125,    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_weight_2 <- numeric(length = nrow(grid_search))
for(i in 1:20){    lgb_weight <- (lgb_tr$TARGET * i + 1) / sum(lgb_tr$TARGET * i + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[1, 'learning_rate'],        num_leaves = grid_search[1, 'num_leaves'],        max_bin = grid_search[1, 'max_bin'],        min_data_in_bin = grid_search[1, 'min_data_in_bin'],        feature_fraction = grid_search[1, 'feature_fraction'],        min_sum_hessian = grid_search[1, 'min_sum_hessian'],        lambda_l1 = grid_search[1, 'lambda_l1'],        lambda_l2 = grid_search[1, 'lambda_l2'],        drop_rate = grid_search[1, 'drop_rate'],        max_drop = grid_search[1, 'max_drop']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        learning_rate = .1,        num_threads = 2,        early_stopping_rounds = 10    )    perf_weight_2[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
library(ggplot2)ggplot(data.frame(num = 1:length(perf_weight_2), perf = perf_weight_2), aes(x = num, y = perf)) +     geom_point() +     geom_smooth()

从此图可知auc值在weight>=3时auc趋于稳定, weight=7 the max

2. 调试learning_rate参数

grid_search <- expand.grid(    learning_rate = seq(.05, .5, .03),    num_leaves = 650,    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_learning_rate_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_learning_rate_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_learning_rate_1ggplot(data = grid_search, aes(x = learning_rate, y = perf)) +     geom_point() +    geom_smooth()

结论:learning_rate=.11时,auc最大。

3. 调试num_leaves参数


grid_search <- expand.grid(    learning_rate = .11,    num_leaves = seq(100, 800, 50),    max_bin=1000,    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_num_leaves_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_num_leaves_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_num_leaves_1ggplot(data = grid_search, aes(x = num_leaves, y = perf)) +     geom_point() +    geom_smooth()

结论:num_leaves=200时,auc最大。

4. 调试max_bin参数

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = seq(100, 1500, 100),    min_data_in_bin = 8,    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_max_bin_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_max_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_max_bin_1ggplot(data = grid_search, aes(x = max_bin, y = perf)) +     geom_point() +    geom_smooth()

结论:max_bin=600时,auc最大;400,800也是可接受值。

5. 调试min_data_in_bin参数

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = seq(5, 50, 5),    feature_fraction = .62,    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_min_data_in_bin_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_data_in_bin_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_data_in_bin_1ggplot(data = grid_search, aes(x = min_data_in_bin, y = perf)) +     geom_point() +    geom_smooth()

结论:min_data_in_bin=45时,auc最大;其中25是可接受值。

6. 调试feature_fraction参数

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = 45,    feature_fraction = seq(.5, .9, .02),    min_sum_hessian = .005,    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_feature_fraction_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_feature_fraction_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_feature_fraction_1ggplot(data = grid_search, aes(x = feature_fraction, y = perf)) +     geom_point() +    geom_smooth()

结论:feature_fraction=.54时,auc最大, .56, .58时也较好。

7. 调试min_sum_hessian参数

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = 45,    feature_fraction = .54,    min_sum_hessian = seq(.001, .008, .0005),    lambda_l1 = 0,    lambda_l2 = 0,    drop_rate = .2,    max_drop = 5)
perf_min_sum_hessian_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_min_sum_hessian_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_min_sum_hessian_1ggplot(data = grid_search, aes(x = min_sum_hessian, y = perf)) +     geom_point() +    geom_smooth()

结论:min_sum_hessian=0.0065时auc取得最大值,取min_sum_hessian=0.003,0.0055时可接受。

8. 调试lambda参数

grid_search <- expand.grid(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = 45,    feature_fraction = .54,    min_sum_hessian = 0.0065,    lambda_l1 = seq(0, .001, .0002),    lambda_l2 = seq(0, .001, .0002),    drop_rate = .2,    max_drop = 5)
perf_lambda_1 <- numeric(length = nrow(grid_search))
for(i in 1:nrow(grid_search)){    lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)        lgb_train <- lgb.Dataset(        data = data.matrix(lgb_tr[, 1:148]),         label = lgb_tr$TARGET,         free_raw_data = FALSE,        weight = lgb_weight    )        # 参数    params <- list(        objective = 'binary',        metric = 'auc',        learning_rate = grid_search[i, 'learning_rate'],        num_leaves = grid_search[i, 'num_leaves'],        max_bin = grid_search[i, 'max_bin'],        min_data_in_bin = grid_search[i, 'min_data_in_bin'],        feature_fraction = grid_search[i, 'feature_fraction'],        min_sum_hessian = grid_search[i, 'min_sum_hessian'],        lambda_l1 = grid_search[i, 'lambda_l1'],        lambda_l2 = grid_search[i, 'lambda_l2'],        drop_rate = grid_search[i, 'drop_rate'],        max_drop = grid_search[i, 'max_drop']    )    # 交叉验证    lgb_tr_mod <- lgb.cv(        params,        data = lgb_train,        nrounds = 300,        stratified = TRUE,        nfold = 10,        num_threads = 2,        early_stopping_rounds = 10    )    perf_lambda_1[i] <- unlist(lgb_tr_mod$record_evals$valid$auc$eval)[length(unlist(lgb_tr_mod$record_evals$valid$auc$eval))]}
grid_search$perf <- perf_lambda_1ggplot(data = grid_search, aes(x = lambda_l1, y = perf)) +     geom_point() +     facet_wrap(~ lambda_l2, nrow = 5)

结论:lambda与auc整体呈负相关,取lambda_l1=.0002, lambda_l2 = .0004

9. 调试drop_rate参数

结论:drop_rate=.4时取到最大值,.15, .25可接受。

10. 调试max_drop参数

结论:drop_rate=.4时取到最大值,.15, .25可接受。

预测

1. 权重

lgb_weight <- (lgb_tr$TARGET * 7 + 1) / sum(lgb_tr$TARGET * 7 + 1)

2. 训练数据集

lgb_train <- lgb.Dataset(    data = data.matrix(lgb_tr[, 1:148]),     label = lgb_tr$TARGET,     free_raw_data = FALSE,    weight = lgb_weight)

3. 训练

# 参数params <- list(    learning_rate = .11,    num_leaves = 200,    max_bin = 600,    min_data_in_bin = 45,    feature_fraction = .54,    min_sum_hessian = 0.0065,    lambda_l1 = .0002,    lambda_l2 = .0004,    drop_rate = .4,    max_drop = 14)# 模型lgb_mod <- lightgbm(    params = params,    data = lgb_train,    nrounds = 300,    early_stopping_rounds = 10,    num_threads = 2)# 预测lgb.pred <- predict(lgb_mod, data.matrix(lgb_te))

4. 结果

lgb.pred2 <- matrix(unlist(lgb.pred), ncol = 1)lgb.pred3 <- data.frame(lgb.pred2)

5. 输出

write.csv(lgb.pred3, "C:/Users/Administrator/Documents/kaggle/scs_lgb/lgb.pred1_tr.csv")

注:此处给在校读书的朋友一些建议:

1. 在学校学习机器学习算法时,测试所用数据量一般较少,因此可以尝试大多数算法,大多数的R函数,例如测试随机森林算法时,可以选择randomforest包,如果数据量稍微增多,可以设置并行运算,但是如果数据量达到GB级别,并行运算randomforest包也处理不了了,并且内存会溢出;建议使用专业版R中的函数;

2. 学校学习主要针对理论进行学习,测试数据一般较为干净,实际数据结构一般更为复杂一些。

编辑:黄继彦

R语言 lightgbm 算法优化:不平衡二分类问题(附代码)相关推荐

  1. 教你用R语言分析招聘数据,求职/转行不求人~(附代码、数据集)

    来源:R语言中文社区 作者:Joffy Zhong 本文共4500字,建议阅读8分钟. 本文针对招聘网站的数据分析岗位的数据进行分析与挖掘实战. 项目背景 在学习数据分析的路上,少不了经常逛知乎,这也 ...

  2. 独家 | 手把手教你用R语言做回归后的残差分析(附代码)

    作者:Abhijit Telang 翻译:张睿毅 校对:丁楠雅 本文约2600字,建议阅读10分钟. 本文介绍了做残差分析的方法及其重要性,以及利用R语言实现残差分析. 在这篇文章中,我们通过探索残差 ...

  3. r语言中残差与回归值的残差图_独家 | 手把手教你用R语言做回归后的残差分析(附代码)-阿里云开发者社区...

    作者:Abhijit Telang 翻译:张睿毅 校对:丁楠雅 文章来源:微信公众号 数据派THU 本文介绍了做残差分析的方法及其重要性,以及利用R语言实现残差分析. 在这篇文章中,我们通过探索残差分 ...

  4. 用R语言做WGCNA分析全步骤一(附代码解读)【转载】

    代码逐句分析 一.文章来源 二.基因共表达网络构建及模块识别 1.数据导入.清洗及预处理 2.检查过度缺失值和离群样本 3.聚类做离群样本检测 4.载入临床特征数据 三.自动构建网络及识别模块 1.确 ...

  5. R语言实战应用-lightgbm 算法优化:不平衡二分类问题(附代码)

    前言 本案例使用的数据为kaggle中"Santander Customer Satisfaction"比赛的数据.此案例为不平衡二分类问题,目标为最大化auc值(ROC曲线下方面 ...

  6. R语言与机器学习学习笔记(分类算法)

    转载自:http://www.itongji.cn/article/0P534092014.html 人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经 ...

  7. R语言构建随机森林模型randomForest分类模型并评估模型在测试集和训练集上的效果(accuray、F1、偏差Deviance):随机森林在Bagging算法的基础上加入了列采样(分枝特征随机)

    R语言构建随机森林模型randomForest分类模型并评估模型在测试集和训练集上的效果(accuray.F1.偏差Deviance):随机森林在Bagging算法的基础上加入了列采样(分枝特征随机) ...

  8. R语言实战笔记--第十二章 重抽样(置换检验)与自助法

    R语言实战笔记–第十二章 重抽样(置换检验)与自助法 标签(空格分隔): R语言 重抽样 自助法 置换检验 置换检验 双样本均值检验的时候,假设检验的方法就是,检查正态性.独立性.方差齐性,分别对应的 ...

  9. R语言基础之第六部分 分类(史上最全含ddply、aggregate、split、by)

    R语言基础之第六部分 分类(史上最全含ddply.aggregate.split.by) 数据: 某市2014年-2018年空气质量指数日数据,需要按年分类计算每年 warm值为1和 0的均值. 数据 ...

最新文章

  1. sql server 2008连接oracle操作步骤详细记录,SQLServer连接Oracle详细步骤
  2. VDI序曲二 RemotoAPP晋级篇
  3. 高通加大5G应用力度:发布又一款手机芯片,还推出机器人和无人机5G系统
  4. 数据中心主机房的加湿量和除湿量如何计算
  5. 远程访问mysql数据库_关于远程连接MySQL数据库的问题解决
  6. c/c++ / printf 实现
  7. hduoj 2546饭卡
  8. Lucene5.5.4入门以及基于Lucene实现博客搜索功能
  9. [html] 跨域通信有哪些方式?
  10. Memcache for Windows
  11. 【转载】解决在Vim中鼠标右键不能粘贴
  12. kotlin t class.java_尝试Java,从入门到Kotlin(下)
  13. MySQL replication学习笔记
  14. Process Node.js 进程
  15. 【李宏毅2020 ML/DL】P88-96 Meta Learning – MAML | Reptile
  16. python 运行出现flask运行时提示出错了或者报服务器出错,ValueError: View function did not return a response...
  17. 易 捷文件共享Web服务器破解,局域网临时一键搭建网站或共享文件
  18. 电脑翻译,百度翻译电脑桌面版
  19. 怎么把unity游戏写进HTML,用 HTML代码加载 Unity 内容_Unity3d中文翻译用户手册-游戏蛮牛...
  20. 显示创建Mat对象的七种方式

热门文章

  1. php ajax session失效,PHP中解决ajax请求session过期退出登录问题
  2. python多程优化_Python 基本功: 13. 多线程运算提速
  3. fiddler抓取https的最终说明
  4. java中的重载和重写
  5. Linux 单用户模式修改密码与救援模式修改密码总结
  6. 《新一代SDN——VMware NSX 网络原理与实践》——导读
  7. windows下sqlite3的基本操作
  8. 日志分析工具 LogParser
  9. java类接口实验_实验3_Java类的继承和接口的定义和使用
  10. 怎么检测不到我的音频_检测不到硬盘怎么办?