作者:java蜜蜜
链接:https://www.jianshu.com/p/1369b30b9f99

一、Netty到底是什么

1、从HTTP说起

有了Netty,你可以实现自己的HTTP服务器,FTP服务器,UDP服务器,RPC服务器,WebSocket服务器,Redis的Proxy服务器,MySQL的Proxy服务器等等。

我们回顾一下传统的HTTP服务器的原理:

1、创建一个ServerSocket,监听并绑定一个端口

2、一系列客户端来请求这个端口

3、服务器使用Accept,获得一个来自客户端的Socket连接对象

4、启动一个新线程处理连接

4.1、读Socket,得到字节流

4.2、解码协议,得到Http请求对象

4.3、处理Http请求,得到一个结果,封装成一个HttpResponse对象

4.4、编码协议,将结果序列化字节流 写Socket,将字节流发给客户端

5、继续循环步骤3

HTTP服务器之所以称为HTTP服务器,是因为编码解码协议是HTTP协议,如果协议是Redis协议,那它就成了Redis服务器,如果协议是WebSocket,那它就成了WebSocket服务器,等等。使用Netty你就可以定制编解码协议,实现自己的特定协议的服务器。

2、NIO

上面是一个传统处理http的服务器,但是在高并发的环境下,线程数量会比较多,System load也会比较高,于是就有了NIO。

他并不是Java独有的概念,NIO代表的一个词汇叫着IO多路复用。它是由操作系统提供的系统调用,早期这个操作系统调用的名字是select,但是性能低下,后来渐渐演化成了Linux下的epoll和Mac里的kqueue。我们一般就说是epoll,因为没有人拿苹果电脑作为服务器使用对外提供服务。而Netty就是基于Java NIO技术封装的一套框架。为什么要封装,因为原生的Java NIO使用起来没那么方便,而且还有臭名昭著的bug,Netty把它封装之后,提供了一个易于操作的使用模式和接口,用户使用起来也就便捷多了。

说NIO之前先说一下BIO(Blocking IO),如何理解这个Blocking呢?

客户端监听(Listen)时,Accept是阻塞的,只有新连接来了,Accept才会返回,主线程才能继;

读写socket时,Read是阻塞的,只有请求消息来了,Read才能返回,子线程才能继续处理;

读写socket时,Write是阻塞的,只有客户端把消息收了,Write才能返回,子线程才能继续读取下一个请求;

传统的BIO模式下,从头到尾的所有线程都是阻塞的,这些线程就干等着,占用系统的资源,什么事也不干。

那么NIO是怎么做到非阻塞的呢。它用的是事件机制。它可以用一个线程把Accept,读写操作,请求处理的逻辑全干了。如果什么事都没得做,它也不会死循环,它会将线程休眠起来,直到下一个事件来了再继续干活,这样的一个线程称之为NIO线程。用伪代码表示:

二、Reactor线程模型

1、Reactor单线程模型

一个NIO线程+一个accept线程:

2、Reactor多线程模型

3、Reactor主从模型

主从Reactor多线程:多个acceptor的NIO线程池用于接受客户端的连接

Netty可以基于如上三种模型进行灵活的配置。

4、小结

Netty是建立在NIO基础之上,Netty在NIO之上又提供了更高层次的抽象。

在Netty里面,Accept连接可以使用单独的线程池去处理,读写操作又是另外的线程池来处理。

Accept连接和读写操作也可以使用同一个线程池来进行处理。而请求处理逻辑既可以使用单独的线程池进行处理,也可以跟放在读写线程一块处理。线程池中的每一个线程都是NIO线程。用户可以根据实际情况进行组装,构造出满足系统需求的高性能并发模型。

三、为什么选择Netty

如果不用netty,使用原生JDK的话,有如下问题:

1、API复杂

2、对多线程很熟悉:因为NIO涉及到Reactor模式

3、高可用的话:需要出路断连重连、半包读写、失败缓存等问题

4、JDK NIO的bug

而Netty来说,他的api简单、性能高而且社区活跃(dubbo、rocketmq等都使用了它)

四、什么是TCP 粘包/拆包

1、现象

先看如下代码,这个代码是使用netty在client端重复写100次数据给server端,ByteBuf是netty的一个字节容器,里面存放是的需要发送的数据:

从client端读取到的数据为:

从服务端的控制台输出可以看出,存在三种类型的输出

一种是正常的字符串输出。

一种是多个字符串“粘”在了一起,我们定义这种 ByteBuf 为粘包。

一种是一个字符串被“拆”开,形成一个破碎的包,我们定义这种 ByteBuf 为半包。

2、透过现象分析原因

应用层面使用了Netty,但是对于操作系统来说,只认TCP协议,尽管我们的应用层是按照 ByteBuf 为 单位来发送数据,server按照Bytebuf读取,但是到了底层操作系统仍然是按照字节流发送数据,因此,数据到了服务端,也是按照字节流的方式读入,然后到了 Netty 应用层面,重新拼装成 ByteBuf,而这里的 ByteBuf 与客户端按顺序发送的 ByteBuf 可能是不对等的。因此,我们需要在客户端根据自定义协议来组装我们应用层的数据包,然后在服务端根据我们的应用层的协议来组装数据包,这个过程通常在服务端称为拆包,而在客户端称为粘包。

拆包和粘包是相对的,一端粘了包,另外一端就需要将粘过的包拆开,发送端将三个数据包粘成两个 TCP 数据包发送到接收端,接收端就需要根据应用协议将两个数据包重新组装成三个数据包。

3、如何解决

在没有 Netty 的情况下,用户如果自己需要拆包,基本原理就是不断从 TCP 缓冲区中读取数据,每次读取完都需要判断是否是一个完整的数据包 如果当前读取的数据不足以拼接成一个完整的业务数据包,那就保留该数据,继续从 TCP 缓冲区中读取,直到得到一个完整的数据包。如果当前读到的数据加上已经读取的数据足够拼接成一个数据包,那就将已经读取的数据拼接上本次读取的数据,构成一个完整的业务数据包传递到业务逻辑,多余的数据仍然保留,以便和下次读到的数据尝试拼接。

而在Netty中,已经造好了许多类型的拆包器,我们直接用就好:

选好拆包器后,在代码中client段和server端将拆包器加入到chanelPipeline之中就好了:

如上实例中:

客户端:

服务端:

五、Netty 的零拷贝

1、传统意义的拷贝

是在发送数据的时候,传统的实现方式是:

1. File.read(bytes)

2. Socket.send(bytes)

这种方式需要四次数据拷贝和四次上下文切换:

1. 数据从磁盘读取到内核的read buffer

2. 数据从内核缓冲区拷贝到用户缓冲区

3. 数据从用户缓冲区拷贝到内核的socket buffer

4. 数据从内核的socket buffer拷贝到网卡接口(硬件)的缓冲区

2、零拷贝的概念

明显上面的第二步和第三步是没有必要的,通过java的FileChannel.transferTo方法,可以避免上面两次多余的拷贝(当然这需要底层操作系统支持)

1. 调用transferTo,数据从文件由DMA引擎拷贝到内核read buffer

2. 接着DMA从内核read buffer将数据拷贝到网卡接口buffer

上面的两次操作都不需要CPU参与,所以就达到了零拷贝。

3、Netty中的零拷贝

主要体现在三个方面:

1、bytebuffer

Netty发送和接收消息主要使用bytebuffer,bytebuffer使用对外内存(DirectMemory)直接进行Socket读写。

原因:如果使用传统的堆内存进行Socket读写,JVM会将堆内存buffer拷贝一份到直接内存中然后再写入socket,多了一次缓冲区的内存拷贝。DirectMemory中可以直接通过DMA发送到网卡接口

2、Composite Buffers

传统的ByteBuffer,如果需要将两个ByteBuffer中的数据组合到一起,我们需要首先创建一个size=size1+size2大小的新的数组,然后将两个数组中的数据拷贝到新的数组中。但是使用Netty提供的组合ByteBuf,就可以避免这样的操作,因为CompositeByteBuf并没有真正将多个Buffer组合起来,而是保存了它们的引用,从而避免了数据的拷贝,实现了零拷贝。

3、对于FileChannel.transferTo的使用

Netty中使用了FileChannel的transferTo方法,该方法依赖于操作系统实现零拷贝.

六、Netty 内部执行流程

1、服务端:

1、创建ServerBootStrap实例

2、设置并绑定Reactor线程池:EventLoopGroup,EventLoop就是处理所有注册到本线程的Selector上面的Channel

3、设置并绑定服务端的channel

4、5、创建处理网络事件的ChannelPipeline和handler,网络时间以流的形式在其中流转,handler完成多数的功能定制:比如编解码 SSl安全认证

6、绑定并启动监听端口

7、当轮训到准备就绪的channel后,由Reactor线程:NioEventLoop执行pipline中的方法,最终调度并执行channelHandler

2、客户端

一篇文章让你彻底了解什么叫Netty!大牛看了直呼内行!相关推荐

  1. 《看聊天记录都学不会C语言?太菜了吧》(7)下一篇文章告诉你牛郎是谁

    若是大一学子或者是真心想学习刚入门的小伙伴可以私聊我,若你是真心学习可以送你书籍,指导你学习,给予你目标方向的学习路线,无套路,博客为证. 本系列文章将会以通俗易懂的对话方式进行教学,对话中将涵盖了新 ...

  2. 一篇文章告诉你标准化和归一化的区别?

    一篇文章告诉你标准化和归一化的区别? 2019-02-28 17:12:39 融融网融融网阅读量:484 进一步推进企业的标准化工作,使之发展水平适应经济全球化下市场竞争的要求,促进企业综合实力的提升 ...

  3. 一篇文章让你读懂Pivotal的GemFire家族产品

    一篇文章让你读懂Pivotal的GemFire家族产品 学习了:https://www.sohu.com/a/217157517_747818 转载于:https://www.cnblogs.com/ ...

  4. DEDECMS教程:上/下一篇文章标题长度的截取方法

    对dedecms了解的朋友们,想必对如何获取上一篇.下一篇文章的标签也是非常熟悉.dedecms获取上一篇.下一篇文章的标签分别为:{dede:prenext get='pre'/}.{dede:pr ...

  5. 一篇文章一张思维导图看懂Android学习最佳路线

    一篇文章一张思维导图看懂Android学习最佳路线 先上一张android开发知识点学习路线图思维导图 Android学习路线从4个阶段来对Android的学习过程做一个全面的分析:Android初级 ...

  6. UML科普文,一篇文章掌握14种UML图

    前言 上一篇文章写了一篇建造者模式,其中有几个UML类图,有的读者反馈看不懂了,我们今天就来解决一哈. 什么是UML? UML是Unified Model Language的缩写,中文是统一建模语言, ...

  7. 用一篇文章说清楚如何写作

    专门讲写作的书就有一大堆,这事能用一篇文章说清楚吗? 答案是能的,不信你往下看. 写之前要先弄清楚文章属于什么类型,类型不同写法当然不一样.以沟通为目的的文章最好写,虚构类文章不好写,因为你还要先虚构 ...

  8. 一篇文章告诉你如何成为数据科学家

    文章讲的是一篇文章告诉你如何成为数据科学家,通常来说,年轻人都很容易立志成为什么,例如成为一名科学家,然后又很快放弃.这一方面是因为摆在他们面前的诱惑太多,也因为成为一名科学家真的很不容易. 这一点放 ...

  9. Android:学习AIDL,这一篇文章就够了(下)

    前言 上一篇博文介绍了关于AIDL是什么,为什么我们需要AIDL,AIDL的语法以及如何使用AIDL等方面的知识,这一篇博文将顺着上一篇的思路往下走,接着介绍关于AIDL的一些更加深入的知识.强烈建议 ...

最新文章

  1. 【错误记录】Android NDK 错误排查记录 ( java.lang.UnsatisfiedLinkError: dalvik.system.PathClassLoader )
  2. 怎样进入android模式,安卓手机如何进入Recovery模式的通用方式详解
  3. ffmpeg添加libx265
  4. 自然语言处理领域的两种创新观念
  5. 决策树构建算法之—C4.5
  6. python o创建文件_Python 文件I/O
  7. 第四讲 数学公理化方法(上)
  8. OpenFeign, Zuul, Gateway相互不兼容的问题总结
  9. Build-Docker-Image-from-Zero: 从零构建Docker镜像
  10. flask.Blueprint
  11. mybatis 依赖于jdbc_mybatis 详解(一)------JDBC
  12. 三菱modbusRTU通讯实例_三菱FX5U以太网通讯功能有哪些?
  13. 官网下载Windos10正版镜像并安装
  14. 平面设计基础(PS)知识点总结
  15. R语言入门——rep函数
  16. Python 图算法系列2 -电影推荐
  17. Jmeter进行上传图片接口测试
  18. 明日书苑:史上书法字体分类最全(收藏版)
  19. 直播软件技术介绍,能帮到你
  20. nginx: [warn] conflicting server name “xxx“ on 0.0.0.0:80解决

热门文章

  1. pb 修改数据窗口种指定字段位置_如何在PB数据窗口中修改数据---设置数据窗口的更新属性...
  2. rabbitmq python 消费者_菜鸟世界 -RabbitMQ---消费者示例
  3. Hippo如何进入WebAssembly?一文教会你
  4. HDU3949 XOR (线性基、查找第k小值)
  5. 【数学专题】矩阵乘法
  6. 深度学习机器臂控制_深度学习新进展:可自建任务解决模型的机器人问世
  7. 设计模式——原型模式(Prototype Pattern)
  8. 872.叶子相似的树
  9. 华为出鸿蒙是不是给人看的,谁来成为鸿蒙OS失去的“躯壳” 鸿蒙OS(HarmonyOS),在很多人眼中,是华为万物互联的起点,也是反抗之下诞生出的杰作,亦是中国科技史上重要的里程... - 雪球...
  10. 解决在Tomcat上手动部署WAR服务器不能自动解压的方法