将学习到什么

作为矩阵以及向量范数的一个应用,我们来考虑在计算矩阵以及计算线性方程组的解时界定误差限这个问题.


逆矩阵

如果求一个给定的非奇异矩阵 \(A \in M_n\) 的逆矩阵的计算是在一台数字计算机上用浮点算数进行,就不可避免产生舍入误差以及截断误差,以及 \(A\) 本身测量取值的不确定性. 那么计算中的误差以及数据中的误差会怎样影响所计算的矩阵的逆的元素呢?
 
设 \(\lVert \cdot \rVert\) 是一个给它的矩阵范数,并假设 \(A \in M_n\) 是非奇异的. 我们想要计算 \(A\) 的逆,不过改为处理 \(B=A+\Delta A\),其中我们假设
\begin{align} \label{e0}
\lVert A^{-1}\Delta A \rVert <1
\end{align}
以确保 \(B\) 是非奇异的. 由于 \(B=A(I+A^{-1}\Delta A)\) 以及 \(\rho(A^{-1}\Delta A)\leqslant \lVert A^{-1}\Delta A \rVert <1\),假设条件 \ref{e0} 就确保 \(-1 \notin \sigma(A^{-1}\Delta A)\),从而 \(B\) 是非奇异的.
 
我们目的是计算 \(\lVert A^{-1}-B^{-1} \rVert =A^{-1}(\Delta A)B^{-1}=A^{-1}(B-A)B^{-1}=A^{-1}-B^{-1}\),所以
\begin{align} \label{e1}
\lVert A^{-1}-B^{-1} \rVert = \lVert A^{-1}(\Delta A)B^{-1} \rVert \leqslant \lVert A^{-1}\Delta A \rVert \lVert B^{-1} \rVert
\end{align}
由于 \(B^{-1}=A^{-1}-A^{-1}(\Delta A)B^{-1}\),我们也有
\begin{align}
\lVert B^{-1} \rVert \leqslant \lVert A^{-1} \rVert + \lVert A^{-1}(\Delta A)B^{-1} \rVert \leqslant \lVert A^{-1} \rVert + \lVert A^{-1}\Delta A \rVert \lVert B^{-1} \rVert
\end{align}
移项,它等价于不等式
\begin{align} \label{e2}
\lVert B^{-1} \rVert = \lVert (A+\Delta A)^{-1} \rVert \leqslant \frac{\lVert A^{-1} \rVert}{1-\lVert A^{-1}\Delta A \rVert }
\end{align}
将 \ref{e1} 与 \ref{e2} 组合起来就给出界
\begin{align}
\lVert A^{-1}-B^{-1} \rVert \leqslant \frac{\lVert A^{-1} \rVert \lVert A^{-1}\Delta A \rVert }{1-\lVert A^{-1}\Delta A \rVert } \leqslant \frac{\lVert A^{-1} \rVert \lVert A^{-1} \rVert \lVert \Delta A \rVert }{1-\lVert A^{-1}\Delta A \rVert }
\end{align}
从而计算逆矩阵时的相对误差的上界时
\begin{align}
\frac{\lVert A^{-1}-B^{-1} \rVert}{\lVert A^{-1} \rVert} \leqslant \frac{\lVert A^{-1} \rVert \lVert A \rVert}{1-\lVert A^{-1}\Delta A \rVert } \frac{\lVert \Delta A \rVert}{\lVert A \rVert }
\end{align}

\begin{align}
\kappa(A) = \begin{cases} \lVert A^{-1} \rVert \lVert A \rVert \qquad &\text{如果}\,\, A \,\,\text{是非奇异的} \\ \infty & \text{如果}\,\, A \,\,\text{是奇异的} \end{cases}
\end{align}
称为矩阵逆关于矩阵范数 \(\lVert \cdot \rVert\) 的条件数. 注意:对任何矩阵范数都有 \(\kappa (A)= \lVert A^{-1} \rVert \lVert A \rVert \geqslant \lVert A^{-1} A \rVert = \lVert I \rVert\geqslant 1\). 我们就证明了界
\begin{align} \label{e4}
\frac{\lVert A^{-1}-B^{-1} \rVert}{\lVert A^{-1} \rVert } \leqslant \frac{\kappa (A)}{1-\lVert A^{-1}\Delta A \rVert } \frac{\lVert \Delta A \rVert}{\lVert A \rVert }
\end{align}
如果我们将假设条件 \ref{e0} 加强为
\begin{align} \label{e5}
\lVert A^{-1}\rVert \lVert \Delta A \rVert <1
\end{align}
并注意到
\begin{align}
\lVert A^{-1}\rVert \lVert \Delta A \rVert = \lVert A^{-1}\rVert \lVert A \rVert \frac{\lVert \Delta A \rVert }{\lVert A \rVert} = \kappa(A) \frac{\lVert \Delta A \rVert }{\lVert A \rVert}
\end{align}
那么就由 \ref{e4} 得出
\begin{align} \label{e6}
\frac{\lVert A^{-1}-(A+\Delta A)^{-1} \rVert}{\lVert A^{-1}\rVert } \leqslant \frac{\kappa (A)}{1-\kappa(A) \frac{\lVert \Delta A \rVert }{\lVert A \rVert}} \frac{\lVert \Delta A \rVert}{\lVert A \rVert }
\end{align}
它作为数据的相对误差以及 \(A\) 的条件数的函数,是关于 \(A\) 的逆的计算中出现的相对误差的一个上界. 这样一个界称为先验的界,这是因为它只与任何计算完成之前已知的数据有关.
 
如果 \(\lVert A^{-1}\rVert \lVert \Delta A \rVert\) 不仅小于 \(1\),而且还大大地小于 \(1\),则 \ref{e6} 右边的阶为 \(\kappa (A) \lVert \Delta A \rVert / \lVert A \rVert\),故而我们有充分的理由相信:只要 \(\kappa(A)\) 不大,那么矩阵逆的相对误差与数据的相对误差有同样的阶.
 
我们称矩阵 \(A\) 是病态的或者贫态的,如果 \(\kappa(A)\) 很大;如果 \(\kappa(A)\) 很小,接近于 \(1\),我们就称 \(A\) 是良态的;如果 \(\kappa(A)=1\),我们就称 \(A\) 是优态的. 当然,关于态质的所有这些表述都是相对于一个指定的矩阵范数 \(\lVert \cdot \rVert\) 而言的.

线性方程组

类似的讨论可以用来对线性方程组的解的精确度给出先验的界. 假设我们想要求解线性方程组
\begin{align} \label{e7}
Ax=b, \qquad A \in M_n \,\,\text{是非奇异的且}\,\, b \in \mathbb{C}^n \,\,\text{是非零向量}
\end{align}
但是由于计算误差或者数据中存在的不确定性,我们实际上是求解一个摄动方程组
\begin{align}
(A+\Delta A)\tilde{x}=b+\Delta b, \qquad A,\Delta A \in M_n ,\,\, b ,\Delta b \in \mathbb{C}^n ,\,\,\tilde{x} = x+\Delta x
\end{align}
\(\tilde{x}\) 与 \(x\) 有多么接近,即 \(\Delta x\) 能有多大?我们可以用矩阵范数以及相容的向量范数来得到解的相对误差的界,这个界表示成为数据中的相对误差以及 \(A\) 的条件数的函数.
 
设给定 \(M_n\) 上一个矩阵范数 \(\lVert \cdot \rVert\) 以及 \(\mathbb{C}^n\) 上一个相容的向量范数 \(\lVert \cdot \rVert\),并再次假设不等式 \ref{e0} 满足. 由于 \(Ax=b\),方程组即为
\begin{align}
(A+\Delta A)\tilde{x} &= (A+\Delta A)(x+\Delta x)=Ax+(\Delta A)x+(A+\Delta A)\Delta x \notag \\
&=b+(\Delta A)x + (A+\Delta A) \Delta x = b+\Delta b \notag
\end{align}
或者
\begin{align}
(\Delta A)x+(A+\Delta A)\Delta x=\Delta b \notag
\end{align}
这样一来,就有 \(\Delta x=(A+\Delta A)^{-1}(\Delta b-(\Delta A)x)\) 以及
\begin{align}
\lVert \Delta x \rVert &= \lVert (A+\Delta A)^{-1}(\Delta b-(\Delta A)x) \rVert \notag \\
& \leqslant \lVert (A+\Delta A)^{-1} \rVert \lVert (\Delta b-(\Delta A)x) \rVert \notag
\end{align}
借助于 \ref{e2} 以及相容性,我们就有
\begin{align}
\lVert \Delta x \rVert \leqslant \frac{\lVert A^{-1} \rVert}{1-\lVert A^{-1}\Delta A \rVert } (\lVert \Delta b\rVert + \lVert \Delta A \rVert \lVert x \rVert ) \notag
\end{align}
从而
\begin{align}
\frac{\lVert \Delta x \rVert}{\lVert x \rVert} \leqslant \frac{\lVert A^{-1} \rVert \lVert A \rVert}{1-\lVert A^{-1}\Delta A \rVert } \left(\frac{\lVert \Delta b\rVert}{\lVert A\rVert \lVert x \rVert} + \frac{\lVert \Delta A \rVert}{\lVert A \rVert}\right) \notag
\end{align}
利用 \(\kappa(A)\) 的定义以及界 \(\lVert b \rVert = \lVert Ax \rVert \leqslant \lVert A \rVert \lVert x \rVert\),我们就得到
\begin{align} \label{e8}
\frac{\lVert \Delta x \rVert}{\lVert x \rVert} \leqslant \frac{\kappa(A)}{1-\lVert A^{-1}\Delta A \rVert } \left(\frac{\lVert \Delta b\rVert}{\lVert b \rVert} + \frac{\lVert \Delta A \rVert}{\lVert A \rVert}\right)
\end{align}
如果我们再次做出更强的假设 \ref{e6},我们就得到较弱的然而更加明晰的界
\begin{align} \label{e9}
\frac{\lVert \Delta x \rVert}{\lVert x \rVert} \leqslant \frac{\kappa(A)}{1-\kappa(A)\frac{\lVert A\Delta A \rVert}{\lVert A \rVert} } \left(\frac{\lVert \Delta b\rVert}{\lVert b \rVert} + \frac{\lVert \Delta A \rVert}{\lVert A \rVert}\right)
\end{align}
这个界与 \ref{e6} 有同样的特征以及推论:如果线性方程组 \ref{e7} 中的系数矩阵是良态的,那么关于解的相对误差与关于数据的相对误差有相同的阶.
 
如果现成的有 \ref{e7} 的一个计算出来的解,可以将它用于后验的界中. 再次设 \(\lVert \cdot \rVert\) 是一个与向量范数 \(\lVert \cdot \rVert\) 相容的矩阵范数,设 \(x\) 是 \ref{e7} 的精确解,并考虑剩余向量 \(r=b-A \hat{x}\). 由于 \(A^{-1}r=A^{-1}(b-A\hat{x})=A^{-1}b-\hat{x}=x-\hat{x}\),我们就有界 \(\lVert x-\hat{x}\rVert = \lVert A^{-1}r \rVert \leqslant \lVert A^{-1}\rVert \lVert r \rVert\) 以及 \(\lVert b \rVert = \lVert Ax \rVert \leqslant \lVert A\rVert \lVert x \rVert\),也就是 \(1 \leqslant \lVert A\rVert \lVert x \rVert / \lVert b\rVert\). 那么
\begin{align}
\lVert x-\hat{x} \rVert & \leqslant \lVert A^{-1}\rVert \lVert r \rVert \leqslant \frac{ \lVert A\rVert \lVert x\rVert }{ \lVert b\rVert} \notag \\
&=\lVert A \rVert \lVert A^{-1} \rVert \frac{\lVert r \rVert}{\lVert b \rVert} \lVert x \rVert \notag
\end{align}
所以再算出的解与精确解之间的相对误差就有界限
\begin{align}
\frac{\lVert x-\hat{x} \rVert}{\lVert x \rVert } \leqslant \kappa(A) \frac{\lVert r \rVert}{\lVert b \rVert}
\end{align}
其中用来计算条件数 \(\kappa(A)\) 的矩阵范数与向量范数 \(\lVert \cdot \rVert\) 是相容的. 对于一个良态的问题,解的相对误差与剩余向量的相对误差有同样的阶. 然而,对于一个病态的问题,产生很小剩余所计算出的解与它的精确解仍有可能相差甚远.
 
矩阵范数误差界限的一个共同特征是它们的保守性:即使实际误差很小,上界也可能很大. 然而,如果一个有中等大小元素的中等大小的矩阵有很大的条件数,对么 \(A^{-1}\) 必定有一些大的元素,因而最好对下面的原因保持极大的关注.
 
如果 \(Ax=b\),又如果我们令 \(C=[c_{ij}]=A^{-1}\),那么对恒等式 \(x=Cb\) 关于元素 \(b_j\) 微分就给出恒等式
\begin{align} \label{e11}
\frac{\partial x_i}{\partial b_j}=c_{ij},\quad i,j=1,\cdots,n
\end{align}
此外,如果我们把 \(C=A^{-1}\) 看成是 \(A\) 的函数,那么它的元素正好是 \(A\) 的元素的有理函数,从而也是可微的. 恒等式 \(CA=I\) 意味着对所有 \(i,q=1,\cdots,n\) 都有 \(\Sigma_{p=1}^{n}c_{ip}a_{pq}=\delta_{iq}\),从而有
\begin{align}
\Sigma_{p=1}^n\left( \frac{\partial c_{ip}}{\partial a_{jk}} + \delta_{pq,jk}c_{ip} \right) = \Sigma_{p=1}^n \frac{\partial c_{ip}}{\partial a_{jk}}a_{pq}+\delta_{qk}c_{ij} =0 \notag
\end{align}
这也就是
\begin{align}
\Sigma_{p=1}^n \frac{\partial c_{ip}}{\partial a_{jk}}a_{pk}=-\delta_{qk}c_{ij} ,\quad i,j,k=1,\cdots,n \notag
\end{align}
现在对恒等式 \(x=Cb\) 关于 \(a_{jk}\) 微分得到
\begin{align}
\frac{\partial x_i}{\partial a_{jk}} &= \Sigma_{p=1}^n \frac{\partial c_{ip}}{\partial a_{jk}} b_p = \Sigma_{p=1}^n \Sigma_{q=1}^n \frac{\partial c_{ip}}{\partial a_{jk}}a_{pq}x_q \notag \\
&=\Sigma_{q=1}^n \left( \Sigma_{p=1}^n \frac{\partial c_{ip}}{\partial a_{jk}}a_{pq} \right) x_q = \Sigma_{q=1}^n (-\delta_{qk}c_{ij})x_q = -c_{ij}x_k \notag
\end{align}
这就是恒等式
\begin{align} \label{e12}
\frac{\partial x_i}{\partial a_{jk}}=-c_{ij}\Sigma_{p=1}^nc_{kp}b_p ,\quad i,j=1,\cdots,n
\end{align}
从而 \ref{e11} 以及 \ref{e12} 提醒我们:如果 \(C=A^{-1}\) 有任何相对来说比较大的元素,那么解 \(x\) 的某个元素对于 \(b\) 以及 \(A\) 的某些元素的摄动可能就会有很大且不可避免的敏感度.


应该知道什么

  • 只要条件数 \(\kappa(A)\) 不大,那么矩阵逆的相对误差与数据的相对误差有同样的阶
  • 如果线性方程组中的系数矩阵是良态的,那么关于解的相对误差与关于数据的相对误差有相同的阶

转载于:https://www.cnblogs.com/zhoukui/p/8150184.html

条件数:逆矩阵与线性方程组相关推荐

  1. 【线性代数】利用克拉默法则和逆矩阵求解线性方程组

    一.克拉默法则介绍 二. 逆矩阵解线性方程组原理 三.使用克拉默法则和逆矩阵解线性方程组 四.使用Numpy 解线性方程组 import numpy as np A=np.mat([[1,-1,-1] ...

  2. 中石油训练赛 - Switches(高斯消元求逆矩阵+逆矩阵求线性方程组)

    题目大意:给出一个 n * n 的布尔矩阵表示开关与灯的关系,现在每个灯来说,是否存在一种开关的集合,使得恰好使得只有当前灯是打开状态,其余灯都是熄灭状态,分别输出方案 题目分析:将开关视为变元,将灯 ...

  3. 利用逆矩阵解线性方程组_线性代数入门——矩阵方程简介及一类基本矩阵方程的解法...

    系列简介:这个系列文章讲解线性代数的基础内容,注重学习方法的培养.线性代数课程的一个重要特点(也是难点)是概念众多,而且各概念间有着千丝万缕的联系,对于初学者不易理解的问题我们会不惜笔墨加以解释.在内 ...

  4. 利用逆矩阵解线性方程组_机器人学导论---第四章 操作臂逆运动学(一)4.1-4.11...

    第四章 操作臂逆运动学[(一)4.1-4.11] (一)概述 1.为求出要求的关节角以放置相对于工作台坐标系{S}的工具坐标系{T},可将这个问题分为两部分(1)进行坐标变换求出相对于基坐标{B}的腕 ...

  5. 利用逆矩阵解线性方程组_资料 | 矩阵论简明教程

    下载地址:https://www.yanxishe.com/resourceDetail/1675?from=leiphonecolumn_res0610pm 以下书籍介绍来自京东 内容简介 · · ...

  6. 利用逆矩阵解线性方程组_QR方法求解矩阵所有特征值(一)

    QR分解法是求中小型矩阵全部特征值的最有效并广泛应用的方法. 一般矩阵先经过正交相似变化成为Hessenberg矩阵,然后再应用QR方法求特征值和特征向量. QR 分解 在学习QR方法之前需要知道什么 ...

  7. 基础数学(七)——线性方程组的数值解法

    文章目录 考试要求 基础知识 一般求解思路 消元法 高斯消元法 小主元导致的计算失误 高斯列主元素消去法(期末考试要求之一) 高斯消元法例题(期末必考) 高斯消元法的优缺点 减少fill-in现象(了 ...

  8. 第三章 矩阵的初等变换与线性方程组

    第三章 矩阵的初等变换与线性方程组 矩阵的初等变换⭐ 矩阵的初等变换应用 求最简形矩阵 求可逆矩阵 P,使得 PA 为最简形矩阵 求逆矩阵 求线性方程组的解 矩阵的秩 求矩阵的秩 矩阵的秩的性质⭐ 线 ...

  9. cond--求矩阵的条件数

    [功能简介]求矩阵的条件数.矩阵的条件数用于衡量线性方程组的解对数据误差的敏感性,它反映出矩阵求逆及线性方程组解的精确程度. [语法格式] 1.c=cond(X) 求矩阵X的2-范数的条件数,即X的最 ...

最新文章

  1. 买房必看!又一程序员自编“购房宝典”火爆 GitHub
  2. php ci ajax用户登录,使用jQuery和CI显示AJAX调用数据库的数据
  3. 如何解决tmux中Anaconda虚拟环境下的python版本不正确的问题
  4. MPL,MIL和MCL
  5. 双绞线传输距离_详细了解弱电工程最常用到的网络传输介质:同轴电缆、双绞线、光纤...
  6. 使Netty 4中的HTTP内容压缩工作
  7. 机器学习(八)Apriori算法学习
  8. python字符串,列表常用操作
  9. getoutputstream java_已经为此响应调用了getOutputStream()
  10. weka下载安装以及源码运行
  11. 如何在微信窗口使用计算机,电脑微信窗口太大怎么办
  12. 最新图片交替闪现效果代码
  13. 1-11摇号机java_11选5在线模拟摇号
  14. 负载阻抗、感抗、容抗
  15. 百度地图定位功能的错误has leaked ServiceConnection 解决
  16. 5个增加设计趣味性的方法
  17. mac下 iterm+Zsh+Oh My Zsh+tmux 配置方案
  18. 一声不吭辞职的人都是聪明人
  19. 04 带宽管理的队列规定
  20. 如何在3dmax中断开当前选中的链接

热门文章

  1. Microsoft SQL Server学习(二)--数据库的语法
  2. Mac和 iOS 下的对称和非对称加密算法的使用
  3. python 栈和队列 排序 初级数据结构
  4. HTML5 Canvas白板
  5. log4net简介(三)之无法写入日志
  6. WebSocket相关
  7. python-jsonrpc框架实现JsonRPC协议的web服务
  8. GVIM工具之gvim的配色方式
  9. vue基础整理-组件
  10. 获取本机MSSQL保存凭证