刚开始接触深度学习、卷积神经网络的时候非常懵逼,不知道从何入手,我觉得应该有一个进阶的过程,也就是说,理应有一些基本概念作为奠基石,让你有底气去完全理解一个庞大的卷积神经网络:

本文思路:

一、我认为学习卷积神经网络必须知道的几个概念:

1、卷积过程:

我们经常说卷积神经网络卷积神经网络,到底什么才是卷积?网络层卷积过程到底怎么实现?我们在这里借鉴了另一位博客大牛的动态图来给大家演示一下,

图作者文章在此:http://blog.csdn.net/silence1214/article/details/11809947

我们可以看到,卷积过程其实还是基于一个固定的矩阵,在另外一个矩阵不断一格一格扫过去的到的数值的和,(注意:这里的一格一格非常重要,因为涉及后面的概念:步长→我们不妨想一想当固定矩阵不是一格一格前进的时候,会发生什么呢?)产生的一个新的矩阵,我们以作为比较会发现:粉红色矩阵和绿色矩阵在根本上有很大不一样,

第一,卷积之后的维数降低了;第二,我们要想想为什么降维了?(思考:降低维度到底有没有规律?)

答案是有的:我们发现橙色的固定框为3*3,绿色是5*5,出来是三乘三;

所以规律可以得到:粉红色最后的卷积结果矩阵维度=绿色矩阵维数-橙色矩阵维数+1

(我们又应该思考:如果我不想最后减少维度,我只希望卷积,怎么办呢?)

2、两层之间的池化:

我们依然延用博客大牛的另一个动图(再次点赞做的精细准确!)

我们可以发现其实跟之前没什么不一样:还是以三个矩阵之间的运算,但是我们很容易发现,它并不是一行一行扫过去的,橙色矩阵维度是黄色矩阵的整数倍,所以池化的最终的结论是要把原来的维度减少到1/n.这是池化最根本的原理(当然也有特殊情况。)

(思考点:我们想象一下如果一个19*19的矩阵做池化,会是一种什么样的体验呢?我们不可以缩小整数倍!!答案会在后面的VGG16里面讲清楚,不急不急

3、第三个知识点是步长的概念:

卷积核(后面讲到VGG16会介绍)移动的步长(stride)小于卷积核的边长(一般为正方行)时,变会出现卷积核与原始输入矩阵作用范围在区域上的重叠(overlap),卷积核移动的步长(stride)与卷积核的边长相一致时,不会出现重叠现象。

通俗一点其实就是:刚刚说的那个粉红色矩阵,他每一次移动多少格,格子就是步长!!

4、卷积核:

一个听起来很高大上的词语,我们依然用之前的基础来解释:通俗易懂:就是粉红色矩阵的个数!!因为有时候我们要提取的特征非常多非常广泛,所以需要我们用更多的矩阵来扫(多扫几遍),那么粉红色矩阵的个数就是卷积核个数。

5、Padding:

这个应该是最抽象的概念了:但是也不会特别难呢,就是我们在之前讲到第一点:卷积的时候,我抛下了一个问题:

(我们又应该思考:如果我不想最后减少维度,我只希望卷积,怎么办呢?)(现在知道括号的重要性了吧哈哈?

现在我们来解决这个问题:比如:我们需要做一个300*300的原始矩阵,用一个3*3卷积核(粉红色矩阵)来扫,扫出来,按照之前公式,结果的矩阵应该是:298*298的矩阵,但是这样很难计算,减得也不多,反而增加我计算难度,还不如池化(pooling)来得干脆是吧!那我们就在300*300矩阵外面周围加一圈“0”,记住,是在外面外包一层“0”

重点是:这样的300*300就变成了302*302的矩阵,这样就可以完全避开卷积后那两层的抵消。

6、还有一个就是通道的概念:这个不算知识点,仅仅是一个常识词语,比如一张图片,有RGB三种颜色,对应三个灰度级别,也就是三个通道了:

更加抽象的图可以参照下面的结构:

二、等待已久的VGG16:

VGG16分为16层,我们主要讲前面的前几层(越详细越好吧,后面是一样的)

——首先教会大家一个看其他神经网络也是用的办法:官方数据表格:

看懂一些式子表达:

Conv3-512   →    第三层卷积后维度变成512;

Conv3_2 s=2     →     第三层卷积层里面的第二子层,滑动步长等于2(每次移动两个格子)

好了,我们有了以上的知识可以考试剖析VGG16卷积神经网络了

三、利用之前的基本概念来解释深层的VGG16卷及网络;

【1、从INPUT到Conv1:】

首先两个黄色的是卷积层,是VGG16网络结构十六层当中的第一层(Conv1_1)和第二层(Conv1_2),他们合称为Conv1。

我们主要讲述第一个,也就是第一层(Conv1_1),它怎么把一个300*300*3的矩阵变成一个300*300*64的矩阵?

我们假设蓝色框是一个RGB图像,橙色是一个3*3*3的卷积核,我们对一个三维的27个数求和,然后扫过去,按照第一部分算的得出来的是一维的298*298的矩阵(因为卷积核也是三维所以结果是一维);

然后回想一下什么是Padding、前面也讲过它的概念了;所以不了一圈的圆,回到了300*300*1;

然后,VGG16这一层安置有64个卷积核,那么,原来的300*300*1变成300*300*64

于是我们的到了想要的东西;最后的绿色框;

【1、从Conv1到Conv2之间的过度:】

这一步用的Pooling是:2*2*64 s=2;

也就是说,步长是二,滑动的矩阵本身没有重叠;刚好减半,第三维度64不变;

【3、顺利来到Conv2并且结构完全一样进入Conv3:】

我们知道原来INPUT是300*300*3过了第一层出来时150*150*64

那么第二层仍然有池化有128个卷积核,联想推理:

出来的应该是75*75*128;这一步没有问题,我们继续往下分析:

【4、进入Conv3的推演:】

可以知道第三层有256个卷积核,包含三层小的卷基层:

【5、从Conv3到Conv4之间的过度:】

池化没有问题,但是这里75不是一个偶数怎么弄,还记得我们第一部分前面的括号吗?

就是这样,我们在75这里相加了一个一,使之成为76,变成一个偶数,还有一种方法是通过步长的设置这里先不展开来讲了;

【6、后续的步骤】

后面的方法很简单,根据我给的那个VGG16的表格查找每一层里面有什么卷积核?多少个?池化的大小?步长多少?是否需要Padding?解决这些问题,你的VGG16就已经完全可以从头到尾说清楚了!!!

【7、Faster Rcnn的例子】

http://blog.csdn.net/errors_in_life/article/details/70916583

____________后续我将介绍一些基于VGG16深度学习的图像分类知识,一个爱分享自己错误和经验的师兄,多多指教!

干货丨深度学习、图像分类入门,从VGG16卷积神经网络开始相关推荐

  1. 花书+吴恩达深度学习(十四)卷积神经网络 CNN 之经典案例(LetNet-5, AlexNet, VGG-16, ResNet, Inception Network)

    目录 0. 前言 1. LeNet-5 2. AlexNet 3. VGG-16 4. ResNet 残差网络 5. Inception Network 如果这篇文章对你有一点小小的帮助,请给个关注, ...

  2. 花书+吴恩达深度学习(十二)卷积神经网络 CNN 之全连接层

    目录 0. 前言 1. 全连接层(fully connected layer) 如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔~我会非常开心的~ 花书+吴恩达深度学习(十)卷积神经网络 CNN ...

  3. 深度学习多变量时间序列预测:卷积神经网络(CNN)算法构建时间序列多变量模型预测交通流量+代码实战

    深度学习多变量时间序列预测:卷积神经网络(CNN)算法构建时间序列多变量模型预测交通流量+代码实战 卷积神经网络,听起来像是计算机科学.生物学和数学的诡异组合,但它们已经成为计算机视觉领域中最具影响力 ...

  4. 【深度学习】基于Pytorch的卷积神经网络概念解析和API妙用(一)

    [深度学习]基于Pytorch的卷积神经网络API妙用(一) 文章目录 1 不变性 2 卷积的数学分析 3 通道 4 互相关运算 5 图像中目标的边缘检测 6 基于Pytorch的卷积核 7 特征映射 ...

  5. 【深度学习】基于Pytorch的卷积神经网络概念解析和API妙用(二)

    [深度学习]基于Pytorch的卷积神经网络API妙用(二) 文章目录1 Padding和Stride 2 多输入多输出Channel 3 1*1 Conv(笔者在看教程时,理解为降维和升维) 4 池 ...

  6. 深度学习笔记(26) 卷积神经网络

    深度学习笔记(26) 卷积神经网络 1. CONV 2. POOL 3. Layer 4. FC 5. 卷积的优势 1. CONV 假设,有一张大小为32×32×3的输入图片,这是一张RGB模式的图片 ...

  7. 【深度学习】5:CNN卷积神经网络原理

    前言:先坦白的说,深度神经网络的学习在一开始对我造成的困扰还是很大的,我也是通过不断地看相关的视频资料.文献讲解尝试去理解记忆.毕竟这些内容大多都是不可查的,我们看到的都只是输入输出的东西,里面的内部 ...

  8. 深度学习笔记其六:现代卷积神经网络和PYTORCH

    深度学习笔记其六:现代卷积神经网络和PYTORCH 1. 深度卷积神经网络(AlexNet) 1.1 学习表征 1.1 缺少的成分:数据 1.2 缺少的成分:硬件 1.2 AlexNet 1.2.1 ...

  9. 干货丨深度学习究竟怎么入门?两位Google大神掀起剑气之争

    作为一名(华山派新弟子)深度学习新手,该先学会用框架快速搭出神经网络,用到实际问题中去,还是该先练习用Python基本徒手搭建模型,在小数据集上训练,了解它们的工作原理? 谷歌的两位研究员最近在Twi ...

最新文章

  1. 微信小程序使用阿里巴巴iconfont字体图标
  2. spark指定python版本_如何将正常的Python应用程序正确转换为PySpark版本
  3. Linux_系统进程管理
  4. 明天参加GDG devfest
  5. 精简版sprintf适合嵌入式使用
  6. 为什么说 Flink + AI 值得期待?
  7. 获取Class对象方式
  8. SVN的使用及MyEclipse的集成
  9. python3菜鸟教程电商网站开发_python3菜鸟教程笔记
  10. ASP.NET WebAPI构建API接口服务实战演练
  11. Hilbert变换器
  12. 使用Visio画各种可视化的流程图之用例图和类图
  13. 让人眼前一亮的小众PC浏览器
  14. 程序员(工作十几年)的创业血泪史,万字长文,与君共勉!
  15. OPENCV函数介绍:normalize()
  16. #Ubuntu# #机械键盘# 功能键/多媒体键切换无效
  17. 火狐的调试利器-----Firebug
  18. 内网安全-域横向CobaltStrikeSPNRDP
  19. html5选择年月日 年月日时分 年月日时分秒
  20. java eclipse 查看版本_怎么查看eclipse的版本号

热门文章

  1. 深度学习中的图像分割:方法和应用、特点
  2. 吴恩达deeplearning.ai发布NLP课程!
  3. 知识图谱前沿跟进,看这篇就够了,Philip S. Yu 团队发布权威综述,六大开放问题函待解决!...
  4. 阿里OceanBase GitHub点赞送礼引争议,CTO道歉,贾扬清、李沐讨论开源刷Star
  5. 清华放大招!从初中生招起,8年时间培养到博士毕业!内卷也要加速了?
  6. 复旦大学教授邱锡鹏:NLP 任务中有哪些巧妙的 idea?
  7. 推荐一个比吴恩达还优质的机器学习课程
  8. Activity如何后台运行?不是缓存,是运行。
  9. AgileGAN130毫秒生成动漫肖像!LeCun点赞:超越梵高
  10. 7999元大疆最新无人机,支持第一人称视角极速拍摄,直接起飞