关键词:构造函数,浅拷贝,深拷贝,堆栈(stack),堆heap,赋值运算符
摘要:
    在面向对象程序设计中,对象间的相互拷贝和赋值是经常进行的操作。
    如果对象在申明的同时马上进行的初始化操作,则称之为拷贝运算。例如:
        class1 A("af"); class1 B=A;
     此时其实际调用的是B(A)这样的浅拷贝操作。
    如果对象在申明之后,在进行的赋值运算,我们称之为赋值运算。例如:
        class1 A("af"); class1 B;
        B=A;
        此时实际调用的类的缺省赋值函数B.operator=(A);
        不管是浅拷贝还是赋值运算,其都有缺省的定义。也就是说,即使我们不overload这两种operation,仍然可以运行。
那么,我们到底需不需要overload这两种operation 呢?
        答案就是:一般,我们我们需要手动编写析构函数的类,都需要overload 拷贝函数和赋值运算符。

 下面介绍类的赋值运算符
1.C++中对象的内存分配方式
        在C++中,对象的实例在编译的时候,就需要为其分配内存大小,因此,系统都是在stack上为其分配内存的。这一点和C#完全不同!千万记住:在C#中,所有类都是reference type,要创建类的实体,必须通过new在heap上为其分配空间,同时返回在stack上指向其地址的reference.
        因此,在C++中,只要申明该实例,在程序编译后,就要为其分配相应的内存空间,至于实体内的各个域的值,就由其构造函数决定了。
    例如:

class A
{
public:
    A()
    {
    }
    A(int id,char *t_name)
    {
    _id=id;
    name=new char[strlen(t_name)+1];
    strcpy(name,t_name);
    }
    private:
        char *username;
        int _id;
}

int main()
{
A a(1,"herengang");
A b;
}

在程序编译之后,a和b在stack上都被分配相应的内存大小。只不过对象a的域都被初始化,而b则都为随机值。
其内存分配如下:

2. 缺省情况下的赋值运算符
    如果我们执行以下:
    b=a;
        则其执行的是缺省定义的缺省的赋值运算。所谓缺省的赋值运算,是指对象中的所有位于stack中的域,进行相应的复制。但是,如果对象有位于heap上的域的话,其不会为拷贝对象分配heap上的空间,而只是指向相同的heap上的同一个地址。
        执行b=a这样的缺省的赋值运算后,其内存分配如下:

        因此,对于缺省的赋值运算,如果对象域内没有heap上的空间,其不会产生任何问题。但是,如果对象域内需要申请heap上的空间,那么在析构对象的时候,就会连续两次释放heap上的同一块内存区域,从而导致异常。

    ~A()
    {        
        delete name;
    }

3.解决办法--重载(overload)赋值运算符
        因此,对于对象的域在heap上分配内存的情况,我们必须重载赋值运算符。当对象间进行拷贝的时候,我们必须让不同对象的成员域指向其不同的heap地址--如果成员域属于heap的话。    
因此,重载赋值运算符后的代码如下:

class A
{
public:

    A()
    {
    }
    A(int id,char *t_name)
    {
        _id=id;
        name=new char[strlen(t_name)+1];
        strcpy(name,t_name);
    }
    
    A& operator =(A& a)
//注意:此处一定要返回对象的引用,否则返回后其值立即消失!
    {
            if(name!=NULL)
                delete name;
        this->_id=a._id;
        int len=strlen(a.name);
        name=new char[len+1];
        strcpy(name,a.name);
        return *this;
    }

    ~A()
    {
        cout<<"~destructor"<<endl;
        delete name;
    }

    int _id;
    char *name;
};

int main()
{
 A a(1,"herengang");
 A b;
 b=a;
}

其内存分配如下:

这样,在对象a,b退出相应的作用域,其调用相应的析构函数,然后释放分别属于不同heap空间的内存,程序正常结束。

references:
类的深拷贝函数的重载
    public class A
{
    public:
        ...
        A(A &a);//重载拷贝函数
        A& operator=(A &b);//重载赋值函数
        //或者 我们也可以这样重载赋值运算符 void operator=(A &a);即不返回任何值。如果这样的话,他将不支持客户代买中的链式赋值 ,例如a=b=c will be prohibited!
    private:
        int _id;
        char *username;
}

A::A(A &a)
{
    _id=a._id;
    username=new char[strlen(a.username)+1];
    if(username!=NULL)
        strcpy(username,a.usernam);
}

A& A::operaton=(A &a)
{
        if(this==&a)//  问:什么需要判断这个条件?(不是必须,只是优化而已)。答案:提示:考虑a=a这样的操作。
            return *this;
        if(username!=NULL)
            delete username;
        _id=a._id;
        username=new char[strlen(a.username)+1];
        if(username!=NULL)
            strcpy(username,a.usernam);
        return *this;    
}
//另外一种写法:
void A::operation=(A &a)
{
        if(username!=NULL)
            delete username;
        _id=a._id;
        username=new char[strlen(a.username)+1];
        if(username!=NULL)
            strcpy(username,a.usernam);
}

其实,从上可以看出,赋值运算符和拷贝函数很相似。只不过赋值函数最好有返回值(进行链式赋值),返回也最好是对象的引用(为什么不是对象本身呢?note2有讲解), 而拷贝函数不需要返回任何。同时,赋值函数首先要释放掉对象自身的堆空间(如果需要的话),然后进行其他的operation.而拷贝函数不需要如此,因为对象此时还没有分配堆空间。

note1:
    不要按值向函数传递对象。如果对象有内部指针指向动态分配的堆内存,丝毫不要考虑把对象按值传递给函数,要按引用传递。并记住:若函数不能改变参数对象的状态和目标对象的状态,则要使用const修饰符

note2:问题:
    对于类的成员需要动态申请堆空间的类的对象,大家都知道,我们都最好要overload其赋值函数和拷贝函数。拷贝构造函数是没有任何返回类型的,这点毋庸置疑。 而赋值函数可以返回多种类型,例如以上讲的void,类本身class1,以及类的引用 class &? 问,这几种赋值函数的返回各有什么异同?
    答:1 如果赋值函数返回的是void ,我们知道,其唯一一点需要注意的是,其不支持链式赋值运算,即a=b=c这样是不允许的!
          2 对于返回的是类对象本身,还是类对象的引用,其有着本质的区别!
              第一:如果其返回的是类对象本身。
   A operator =(A& a)
    {
            if(name!=NULL)
                delete name;
        this->_id=a._id;
        int len=strlen(a.name);
       name=new char[len+1];
        strcpy(name,a.name);
        return *this;
    }
          其过程是这样的:
                       class1 A("herengnag");
                        class1 B;   
                        B=A;
                    看似简单的赋值操作,其所有的过程如下:
                       1 释放对象原来的堆资源
                       2 重新申请堆空间
                       3 拷贝源的值到对象的堆空间的值
                       4 创建临时对象(调用临时对象拷贝构造函数),将临时对象返回
                       5. 临时对象结束,调用临时对象析构函数,释放临时对象堆内存
my god,还真复杂!!
            但是,在这些步骤里面,如果第4步,我们没有overload 拷贝函数,也就是没有进行深拷贝。那么在进行第5步释放临时对象的heap 空间时,将释放掉的是和目标对象同一块的heap空间。这样当目标对象B作用域结束调用析构函数时,就会产生错误!!
            因此,如果赋值运算符返回的是类对象本身,那么一定要overload 类的拷贝函数(进行深拷贝)!
            第二:如果赋值运算符返回的是对象的引用,
   A& operator =(A& a)
    {
            if(name!=NULL)
                delete name;
        this->_id=a._id;
        int len=strlen(a.name);
       name=new char[len+1];
        strcpy(name,a.name);
        return *this;
    }
        那么其过程如下:
                   1 释放掉原来对象所占有的堆空间
                   1.申请一块新的堆内存
                   2 将源对象的堆内存的值copy给新的堆内存
                   3 返回源对象的引用
                    4 结束。
    因此,如果赋值运算符返回的是对象引用,那么其不会调用类的拷贝构造函数,这是问题的关键所在!!
 
完整代码如下:

// virtual.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include "string.h"
#include "stdlib.h"
#include "assert.h"

class complex
{
public:
        int real;
        int virt;
public:
    complex(){real=virt=0;}
    complex(int treal,int tvirt){real=treal;virt=tvirt;}
    complex operator+(const complex &x)
    {
        real+=x.real;
        virt+=x.virt;
        return *this;
    }
    complex operator=(const complex &x)
    {
        return complex(x.real,x.virt);
    }
};


class A
{
public:
    A(){m_username=NULL;printf("null constructor");}
    A(char *username)
    {
        int len;
        len=strlen(username);
        m_username=new char[len+1];//(char*)malloc(sizeof(len+1));
        strcpy(m_username,username);
        printf("\nUsername is %s\n",m_username);
    }
    
    A(A &a);
    A operator=(A &b);
    int test(const int &x)
    {
        return x;
    }

    virtual ~A()
    {
    //    if(m_username)
        {
        delete m_username;
        printf("\nA is destructed\n");
        }
    }



protected:
    char *m_username;

};



A::A(A &a)
{

    int len=strlen(a.m_username);
    this->m_username=new char[len+2];
    strcpy(m_username,a.m_username);
    strcat(m_username,"f");
    printf("\ndeep copy function");
}


A A::operator=(A &b)
{
    if(m_username)
        delete m_username;

    int len=strlen(b.m_username);
    this->m_username=new char[len+1];
    strcpy(m_username,b.m_username);
//    printf("copied successfully!");
     return *this;
}

 

class B:public A
{
public:
    B(char *username,char *password):A(username)
    {
        int len=strlen(password)+1;
        m_password=new char[len];//(char *)malloc(sizeof(len));
        strcpy(m_password,password);
        printf("username:%s,password:%s\n",m_username,m_password);
    }
    ~B()
    {
        delete m_password;
        printf("B is destructed\n");
    }
protected:
    char *m_password;
};

int main(int argc, char* argv[])
{
//    B b("herengang","982135");
//    A *a=&b;
//    delete a;
    A a("haha");
    A b;

    printf("\nbegin to invoke copy function");
    b=a;

//    printf("%d",b.test(2));
    //complex x(1,3),y(1,4);
    //x=(x+y);
    //printf("%d,%d",x.real,x.virt);
    return 0;


}

1 重载赋值运算符返回结果为类对象的运行结果


明显, 运算符最后调用了拷贝构造函数

2 重载赋值运算符返回结果为类对象引用的运行结果

很明显,没有调用拷贝构造函数

转载于:https://www.cnblogs.com/fire909090/p/9055968.html

C++本质:类的赋值运算符=的重载,以及深拷贝和浅拷贝相关推荐

  1. 类的赋值运算符的重载函数

    题目:类CMyString的声明如下,请实现其赋值运算符的重载函数,要求异常安全,即当对一个对象进行赋值时发生异常,对象的状态不能改变. class CMyString { public:CMyStr ...

  2. C++的拷贝构造函数、operator=运算符重载,深拷贝和浅拷贝、explicit关键字

    1.在C++编码过程中,类的创建十分频繁. 简单的功能,当然不用考虑太多,但是从进一步深刻理解C++的内涵,类的结构和用法,编写更好的代码的角度去考虑,我们就需要用到标题所提到的这些内容. 最近,在看 ...

  3. C++ 类的深拷贝与浅拷贝||深拷贝通过重载拷贝构造函数与重载赋值运算符实现

    http://blog.csdn.net/wangshihui512/article/details/9842225 在面向对象程序设计中,对象间的相互拷贝和赋值是经常进行的操作. 如果对象在申明的同 ...

  4. C++类的赋值运算符“=”重载,以及深拷贝和浅拷贝

    C++类的赋值运算符"="重载,以及深拷贝和浅拷贝 在面向对象程序设计中,对象间的相互拷贝和赋值是经常进行的操作. 如果对象在申明的同时马上进行初始化操作,则称之为拷贝运算.例如: ...

  5. C++:运算符重载与类的赋值运算符重载函数

    目录 章节知识架构 一.运算符重载 1. 运算符重载的基本概念 代码段1 2.关于运算符重载的重要语法细则 二.运算符重载在类中的使用 三.类的默认成员函数:=重载函数(赋值运算符重载) 1.自定义= ...

  6. 派生类的赋值运算符重载【C++继承】

    派生类的赋值符重载 情况分析 父类和子类都使用系统默认提供的赋值运算符重载 父类自实现赋值运算符重载,子类使用系统默认提供的赋值运算符重载. 父类使用系统默认提供的赋值运算符重载,子类自实现赋值运算符 ...

  7. 类中赋值运算符重载函数

    声明一个字符串类,为这个类型添加赋值运算符 class MyString { public://构造函数MyString(char* pData = NULL);//构造函数MyString(cons ...

  8. 【黑马程序员 C++教程从0到1入门编程】【笔记4】C++核心编程(类和对象——封装、权限、对象的初始化和清理、构造函数、析构函数、深拷贝、浅拷贝、初始化列表、友元friend、运算符重载)

    黑马程序员C++教程 文章目录 4 类和对象(类属性[成员属性],类函数[成员函数]) 4.1 封装 4.1.1 封装的意义(三种权限:public公共.protected保护.private私有)( ...

  9. c++学习笔记(12) 需要对对象做拷贝时(深拷贝,浅拷贝),如何重载赋值运算符

    在c++学习笔记(8)中,介绍了拷贝构造函数的概念:涉及到深拷贝和浅拷贝的概念: 拷贝构造函数:每一个类都有一个都有一个拷贝构造函数,用于拷贝对象.拷贝构造函数可以用来创建一个对象,并用另一个对象的数 ...

最新文章

  1. 深度树匹配模型(TDM)
  2. 设计模式-合成复用原则
  3. 零基础入门学习Python(14)-格式化字符串
  4. python爬虫反爬 对方是如何丧心病狂的通过css_如何应对网站反爬虫策略?如何高效地爬大量数据?...
  5. Java基础之String深入解析
  6. 查询linux上调度命令,浅析Linux中crontab任务调度
  7. 2021数字化转型下银行发展供应链金融研究报告(上篇)
  8. 又拍云,音视频CDN加速利器
  9. 【MyBatis笔记】08-输出类型
  10. 滴滴是如何从零构建集中式实时计算平台的?| 技术头条
  11. PHP 生成csv的遇到的分隔符问题
  12. linux下mysql默认安装目录和常用命令
  13. Vue源码解读之事件机制
  14. java生成uuid_Java UUID
  15. 谷歌地球网页版_谷歌地球:Google Earth 专业版
  16. 安卓自定义Toast的原理及实现
  17. core音标_core的意思在线翻译,解释core中文英文含义,短语词组,音标读音,例句,词源【澳典网ODict.Net】...
  18. 操作系统经典书籍推荐
  19. cst2020的linux版本,如何安装CST2020的windows版本
  20. @所有人 尊贵的所有微信用户,现邀您开通VIP会员等级功能!

热门文章

  1. SAP MM MIGO 移动类型242将固定资产转物料库存
  2. SAP WM LT15不能取消二步法确认场景中只做过第一步确认的TO单
  3. SAP PM 入门系列 - IL03显示Function Location主数据
  4. 中国知名企业ERP失败案例深入剖析
  5. 微软旷视人脸识别100%失灵!照片「隐身衣」,帮你保护照片隐私数据
  6. 2019 年 ACM Fellow出炉,陈熙霖、陶大程、周礼栋、谢源、李向阳等7位华人学者入选
  7. 30年前过气老论文,为何能催生革命全球的CNN框架?
  8. 7 papers | 对抗样本前,BERT也不行;AutoML的商业实践综述
  9. 关于GAN的七个问题:谷歌大脑工程师带你梳理生成对抗网络
  10. (已解决)linux如何删除-开头的文件或者目录