来源:网络大数据

摘要:谷歌技术人员、MIT博士Ali Rahimi受光学的启发,从功能模块化和层级的角度讨论了一种解释深度学习的新思路。

深度学习已经成熟到可以教给高中生了么?

我思考的这个问题,源于不久前我收到的⼀封来自某大公司产品经理的邮件。

我喜欢将私人通讯邮件公开于众,所以我将邮件内容摘在下面:

来自:M.

你好 Ali, ...

你如何训练团队里的年轻成员,使得他们有更好的直觉和预判?我团队里的工程师经常从其他科研员那「借鉴」超参数的值,但他们太担心要自己去调整参数了。...

我对着这封邮件思考了数日,却没有办法找到⼀个有条理的答案。

如果说应该有正确答案的话,我想回复说:也许她的工程师应该要有这种担心。

如果你是个工程师,你拿到了这个神经网络,然后你被要求去改进这个网络在某个数据集上的表现。你也许会假设这每层都是有它自己的作用和功能,但在深度学习领域,我们目前还没有统的语言和词汇去描述这些功效。我们教授深度学习的方法和我们教授其他科学学科的方法很不同。

几年前我迷上了光学。在光学领域,你会堆叠好几层不同的组件以处理输的光源。例如下图,就是相机的镜头:

要设计这样的系统,你从最简单的组件开始堆叠,这些组件往往以知名的发明者命名。然后通过仿真,你可 以判断你的设计是否符合你的要求,然后再添加不同的组件去修正先前设计的缺陷。

紧接着你会各种数学优化过程去调整这些组件的参数,例如镜面的形状、位置和倾斜角度等等,去最大程度实现你的设计目标。你就重复如此仿真、修改、调优的过程。

这很像我们设计深度网络的过程。

上图里所有的 36 个元素都是故意加⼊这个堆叠的系统,以用于修正某项具体的偏差的。这样的设计需要非常精确的解释模型去描述什么样的元素能够对透过它的光有什么样的效应。这个模型往往是关于这个元素的作用的,例如说折射、反射、衍射、散射和波前校正。

⼈们不害怕这样的设计过程。每年,美国培养的许多⼯程师都能设计出有的镜头,他们并不为这样的作感到担心害怕。

这并不是因为光学很容易,而是因为我们对光学的模型了然在心。

现代光学是通过抽象出不同层级的知识内容去教授的。

在最顶级,也是最容易的层级,是几何光学。几何光学是对波光学的抽象,光射线于于表达简单的矢量波光 学的波前矢量。而波光学⼜是对麦克斯韦方程的进⼀步简化。麦克斯韦方程 由能由量子力学推导而出,量子力学则超出了我的理解范围。

每⼀个层级都是通过作出⼀些简化的假定由紧邻的下⼀个层级推导⽽出,所以每⼀个层级能够比上⼀个层级解释更为复杂的现象。

我花了不少时间在顶四层抽象里设计系统。

这就是当今我们教授光学的方法。但相关理论并非总是如此按层级来组织。在百年前,这些理论还是在⼀个 相互矛盾的状态中共存。实践家们只能依赖于近乎道听途说的光学理论。

但这并没有阻止伽利略打造性能不错的望远镜,而且是在牛顿形式化几何光学前近⼀个世纪的时间点上。因 为伽利略对于如何造出能够放大数⼗倍的望远镜有足够好的解释模型。但他对光学的理解,却不足以让他的望远镜能够修正色差或者获得广视角。

在这些光学理论被抽象总结出来之前,每⼀项理论都需要从光的最基本概念出发。这就牵涉到要作出⼀套涵盖许多也许不切实际的假设。牛顿的几何光学把光假定作⼀束束可以被吸引、排斥的固体粒⼦。惠更斯则⽤ 由「以太」作为介质的纵波去描述光,也就是说用类似声波的方式去构建光。麦克斯韦也假设光经由以太传播。你从麦克斯韦方程的系数的名字也能窥得这种思路的⼀⼆。

愚蠢的模型,确实。但它们可量化且有预测的能力。

这些假设,我们今天听来也许觉得很愚蠢,但它们可量化而且有预测的能力。你可以随意代入数字于其中并得到精准的量化预测。这对于工程师而言极其有用。

寻找用于描述每层深度学习网络作用的模块化语言

如果我们能够像讨论光纤穿越每⼀层镜头元素的作用那样去讨论神经网络每⼀层的作用,那么设计神经网络将会变得更容易。

我们说卷积层就像在输⼊上滑动相应滤波器,然后说池化是处理了对应的非线性。但这只是非常低层次的描述,就像用麦克斯韦方程去解释镜头的作用。

也许我们应该依赖于更高级抽象描述,具体表达某个量被神经网络的层级如何改变了,好比我们用镜头的具 体作用去解释它如何弯曲光线那样。

如果这种抽象也能够量化,使得你只需要代⼊具体数值到某个公式里,它就能告诉你⼀个大概的量化分析,这样你就能更好地设计你的网络了。

我们离这样的语言还很远。我们先从简单点的开始

上⾯也许只是我被自己的幻想带跑了。

我们从简单点的开始。我们对深度学习的运作方式有很多解释模型。下⾯我会罗列⼀系列值得解释的现象,然后我们看看⼀些现有的模型对这些现象解释的能力有多强。

在开始之前,我得承认这种努力也许最后是徒劳的。光学花了 300 年在打磨自己的模型之上,而我只花了⼀ 个周六下午,所以这只能算是博客上的⼀些个⼈观点和想法。


现象:随机梯度下降 (SGD) 的随机初始化足够好了。但细微的数字错误或者步长会使 SGD 失效。

很多⼈在实践中发现,对于如何累积梯度的细微调整,可以导致对整个测试集表现的巨大变化。例如说你只用GPU而不是 CPU 去训练,结果可能会截然不同。

现象:浅的局部最优值意味着比深的局部最优值更好的泛化能力。

这种说法很时髦。有些⼈认为它是真的。有些⼈则用实际数据反驳。另外也有⼈给出了这个现象的变种 。众说纷纭,争议目前不断。

这个现象也许有争议性,但我还是先放在这里。


现象:批标准化层 (Batch Norm) 可以给 SGD 提速。

这个基本无争议,我只能提供⼀个小例外。

现象:即使有很多局部最优和鞍点,SGD 也表现卓越。

这个说法也包含了几个小的点。经常有人声称深度学习的损失表面充斥着鞍点和局部最优。也有不同的 说法,要不就认为梯度下降可以遍历这些区域,要不就认为梯度下降可以不遍历这些区域,但都能给出泛化能力不错的答案。也有说损失表面其实也没那么不堪。

现象:Dropout 胜于其他随机化策略。

我不知道如何正确分类类似 Dropout 的做法,所以我就称之为「随机化策略」了。

现象:深度网络能够记忆随机标签,但它们能泛化。

证据很直白,我的朋友们亲自见证并主张这种说法。

对这些现象的解释

对应上面列举的这些现象,我在下面列举我觉得最能解释这些现象的理论,这些理论均来自我上面引用的论文。

先别激动,原因如下:

1. 我们尝试解释的这些现象部分有争议。

2. 我没办法把这些解释按照抽象层级组织好。光学好教学的特性也没办法在这⾥重现。

3. 我怀疑部分我引用的理论不正确。

我想说的是

有很多人正在加⼊这个领域,然而我们能够给他们传授的不过是近乎道听途说的经验和⼀些预训练好的深度网络,然后就叫他们去继续创新。我们甚⾄都不能认同我们要解释的这些现象。所以我认为我们离能够在高中教授这些内容还有很远的距离。

那我们如何才能离这⼀步近点?

最好的不过是我们能够就每⼀层深度网络的功能作用,按照不同层级的抽象,给出对应的解释模型。例如 说,神经网络里的折射、散射和衍射会是怎么样的?也许你早就用具体的功能去思考神经网络,但我们就这些概念还没有统⼀的语言。

我们应该把⼀系列确认的现象组织起来,然后才来进行理论上的解释。例如说神经网络里的牛顿环、磁光克 尔效应和法拉第现象会是怎样的?

我和一小批同事已经开始了⼀项重大的实践工作,尝试去分类构建适合我们领域的解释模型,去形式化它 们,并且用实验去验证它们。这项工作是巨大的,我认为第⼀步应该是构建⼀个分层级的深度学习解释模 型,以用于高中的教学。

原文链接:http://www.argmin.net/2018/01/25/optics/

未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

解释深度学习的新角度,来自光学的启发相关推荐

  1. 一文探讨可解释深度学习技术在医疗图像诊断中的应用

    2020-10-20 14:39:24 机器之心分析师网络 作者:仵冀颖 编辑:Joni 本文依托于综述性文章,首先回顾了可解释性方法的主要分类以及可解释深度学习在医疗图像诊断领域中应用的主要方法.然 ...

  2. AlphaFold2立功!清华团队用深度学习增强新冠抗体,创AI里程碑

    AlphaFold 2的问世可谓是生物学界海啸级地震,让蛋白质结构预测走上另一个新阶段.同时,AlphaFold的开创性方法也对其他研究产生深远的影响.这不,清华和MIT研究团队在最新研究中就用上了它 ...

  3. 2015伦敦深度学习峰会笔记:来自DeepMind、Clarifai等大神的分享

    2015伦敦深度学习峰会笔记:来自DeepMind.Clarifai等大神的分享 发表于 2015-10-20 06:35| 940次阅读| 来源 Medium| 3 条评论| 作者 Alessand ...

  4. LncLocator 2.0:具有可解释深度学习的长链非编码RNA的细胞特异性亚细胞定位预测器

    Motivation:长链非编码RNA ( lncRNA )通常以组织特异性的方式表达,lncRNA的亚细胞定位取决于它们表达的组织或细胞系. <特色> 以前用于预测lncRNA亚细胞定位 ...

  5. 基于NVIDIA GPUs的深度学习训练新优化

    基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用 ...

  6. 知识图谱与深度学习(新时代·技术新未来)

    作者:刘知远,韩旭,孙茂松 出版社:清华大学出版社 品牌:清华大学出版社 出版时间:2020-05-01 知识图谱与深度学习(新时代·技术新未来)

  7. 【深度学习】新的深度学习优化器探索(协同优化)

    [深度学习]新的深度学习优化器探索(协同优化) 文章目录 1 RAdam VS Adam 2 自适应优化 3 LookAhead3.1 "侵入式"优化器3.2 LookAhead ...

  8. 实录丨戴琼海:深度学习遭遇瓶颈,全脑观测启发下一代AI算法

    2020-09-03 20:03:00 目前我们还无法精细到神经元级别的观测,只能从功能层面理解大脑,但这些成果也启发了很多经典的人工智能算法,例如卷积神经网络启发自猫脑视觉感受野研究,胶囊网络启发自 ...

  9. 戴琼海:深度学习遭遇瓶颈,全脑观测启发下一代AI算法

    2020-09-03 02:24:51 作者 | 青暮.陈彩娴 编辑 | 陈彩娴 目前我们还无法精细到神经元级别的观测,只能从功能层面理解大脑,但这些成果也启发了很多经典的人工智能算法,例如卷积神经网 ...

最新文章

  1. [Leetcode] Max Area of Island 最大岛屿面积
  2. Ciruy英雄谭 Chapter 1 序章
  3. hdu3006 状态压缩+位运算+hash(小想法题)
  4. 2020年终总结一下吧
  5. OpenCV textDetectionModel和textRecognitionModel API的端到端的实例(附完整代码)
  6. 制作新网络框架快速自动生成消息结构体的编辑器
  7. React Native之提示Unable to load script from assets ‘index.android.bundle
  8. 原始套接字抓取所有以太网数据包与分析
  9. extjs中为什么使用“var me = this”?
  10. ubuntu12.04 64位系统配置jdk1.6和jdk-6u20-linux-i586.bin下载地址
  11. php5.2 sqlserver2000,Linux系统下让PHP连sqlserver2000
  12. MFCC/Filter Bank的提取流程
  13. Gym 100818I Olympic Parade(位运算)
  14. 技术狂何波:战斗在程序化交易第一线
  15. 三个线性同余方程组的计算机解决方案(C程序)
  16. macOS 开发 - 使用 ScreenSaverView 制作屏幕保护程序
  17. 学习Maya学习MayaArnoldArnold
  18. 使用 Docker 来快速上手中文 Stable Diffusion 模型:太乙
  19. 【Delphi学习】Form的borderstyle属性
  20. 独角推荐,只需一个邮箱号就可以注册购买阿里云国际版

热门文章

  1. 教程 | 一文读懂自学机器学习的误区和陷阱(附学习资料)
  2. 数据派新年寄语 | 新时代,新年好!
  3. LeetCode:937. Reorder Log Files
  4. 马斯克为了解决堵车挖的隧道,已经堵上了
  5. 华人小哥控诉机器学习「四大Boring」,CS博士:深有同感,正打算退学
  6. 1370亿参数、接近人类水平,谷歌重磅推出对话AI模型LaMDA
  7. 学神!手握7篇Nature的他,今天再发Science!
  8. 腾讯首位17级研究员/杰出科学家诞生
  9. Github标星3K+,超轻量级中文OCR,支持竖排文字识别、ncnn推理,总模型仅17M
  10. SAP MM 中级之事务代码MICN的相关逻辑