修改了一下linux 内核3.3 中的list.h,

可以在自己的程序中直接使用;

list

直接上代码比较实在。

#ifndef _LINUX_LIST_H

#define _LINUX_LIST_H

#ifdef __cplusplus

extern "C" {

#endif

#ifndef NULL

#define NULL (void *) 0x0

#endif

/*

* Simple doubly linked list implementation.

*

* Some of the internal functions ("__xxx") are useful when

* manipulating whole lists rather than single entries, as

* sometimes we already know the next/prev entries and we can

* generate better code by using them directly rather than

* using the generic single-entry routines.

*/

#ifndef offsetof

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

#endif

#define container_of(ptr, type, member) ( { \

const typeof( ((type *)0)->member ) *__mptr = (ptr); \

(type *)( (char *)__mptr - offsetof(type,member) ); } )

static inline void prefetch(const void *x) {;}

static inline void prefetchw(const void *x) {;}

#define LIST_POISON1  ((void *) 0x00100100)

#define LIST_POISON2  ((void *) 0x00200200)

struct list_head {

struct list_head *next, *prev;

};

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \

struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)

{

list->next = list;

list->prev = list;

}

/*

* Insert a new entry between two known consecutive entries.

*

* This is only for internal list manipulation where we know

* the prev/next entries already!

*/

#ifndef CONFIG_DEBUG_LIST

static inline void __list_add(struct list_head *new,

struct list_head *prev,

struct list_head *next)

{

next->prev = new;

new->next = next;

new->prev = prev;

prev->next = new;

}

#else

extern void __list_add(struct list_head *new,

struct list_head *prev,

struct list_head *next);

#endif

/**

* list_add - add a new entry

* @new : new entry to be added

* @head : list head to add it after

*

* Insert a new entry after the specified head.

* This is good for implementing stacks.

*/

static inline void list_add(struct list_head *new, struct list_head *head)

{

__list_add(new, head, head->next);

}

/**

* list_add_tail - add a new entry

* @new : new entry to be added

* @head : list head to add it before

*

* Insert a new entry before the specified head.

* This is useful for implementing queues.

*/

static inline void list_add_tail(struct list_head *new, struct list_head *head)

{

__list_add(new, head->prev, head);

}

/*

* Delete a list entry by making the prev/next entries

* point to each other.

*

* This is only for internal list manipulation where we know

* the prev/next entries already!

*/

static inline void __list_del(struct list_head * prev, struct list_head * next)

{

next->prev = prev;

prev->next = next;

}

/**

* list_del - deletes entry from list.

* @entry : the element to delete from the list.

* Note: list_empty() on entry does not return true after this, the entry is

* in an undefined state.

*/

#ifndef CONFIG_DEBUG_LIST

static inline void __list_del_entry(struct list_head *entry)

{

__list_del(entry->prev, entry->next);

}

static inline void list_del(struct list_head *entry)

{

__list_del(entry->prev, entry->next);

entry->next = LIST_POISON1;

entry->prev = LIST_POISON2;

}

#else

extern void __list_del_entry(struct list_head *entry);

extern void list_del(struct list_head *entry);

#endif

/**

* list_replace - replace old entry by new one

* @old : the element to be replaced

* @new : the new element to insert

*

* If @old was empty, it will be overwritten.

*/

static inline void list_replace(struct list_head *old,

struct list_head *new)

{

new->next = old->next;

new->next->prev = new;

new->prev = old->prev;

new->prev->next = new;

}

static inline void list_replace_init(struct list_head *old,

struct list_head *new)

{

list_replace(old, new);

INIT_LIST_HEAD(old);

}

/**

* list_del_init - deletes entry from list and reinitialize it.

* @entry : the element to delete from the list.

*/

static inline void list_del_init(struct list_head *entry)

{

__list_del_entry(entry);

INIT_LIST_HEAD(entry);

}

/**

* list_move - delete from one list and add as another's head

* @list : the entry to move

* @head : the head that will precede our entry

*/

static inline void list_move(struct list_head *list, struct list_head *head)

{

__list_del_entry(list);

list_add(list, head);

}

/**

* list_move_tail - delete from one list and add as another's tail

* @list : the entry to move

* @head : the head that will follow our entry

*/

static inline void list_move_tail(struct list_head *list,

struct list_head *head)

{

__list_del_entry(list);

list_add_tail(list, head);

}

/**

* list_is_last - tests whether @list is the last entry in list @head

* @list : the entry to test

* @head : the head of the list

*/

static inline int list_is_last(const struct list_head *list,

const struct list_head *head)

{

return list->next == head;

}

/**

* list_empty - tests whether a list is empty

* @head : the list to test.

*/

static inline int list_empty(const struct list_head *head)

{

return head->next == head;

}

/**

* list_empty_careful - tests whether a list is empty and not being modified

* @head : the list to test

*

* Description:

* tests whether a list is empty _and_ checks that no other CPU might be

* in the process of modifying either member (next or prev)

*

* NOTE: using list_empty_careful() without synchronization

* can only be safe if the only activity that can happen

* to the list entry is list_del_init(). Eg. it cannot be used

* if another CPU could re-list_add() it.

*/

static inline int list_empty_careful(const struct list_head *head)

{

struct list_head *next = head->next;

return (next == head) && (next == head->prev);

}

/**

* list_rotate_left - rotate the list to the left

* @head : the head of the list

*/

static inline void list_rotate_left(struct list_head *head)

{

struct list_head *first;

if (!list_empty(head)) {

first = head->next;

list_move_tail(first, head);

}

}

/**

* list_is_singular - tests whether a list has just one entry.

* @head : the list to test.

*/

static inline int list_is_singular(const struct list_head *head)

{

return !list_empty(head) && (head->next == head->prev);

}

static inline void __list_cut_position(struct list_head *list,

struct list_head *head, struct list_head *entry)

{

struct list_head *new_first = entry->next;

list->next = head->next;

list->next->prev = list;

list->prev = entry;

entry->next = list;

head->next = new_first;

new_first->prev = head;

}

/**

* list_cut_position - cut a list into two

* @list : a new list to add all removed entries

* @head : a list with entries

* @entry : an entry within head, could be the head itself

*and if so we won't cut the list

*

* This helper moves the initial part of @head , up to and

* including @entry , from @head to @list. You should

* pass on @entry an element you know is on @head. @list

* should be an empty list or a list you do not care about

* losing its data.

*

*/

static inline void list_cut_position(struct list_head *list,

struct list_head *head, struct list_head *entry)

{

if (list_empty(head))

return;

if (list_is_singular(head) &&

(head->next != entry && head != entry))

return;

if (entry == head)

INIT_LIST_HEAD(list);

else

__list_cut_position(list, head, entry);

}

static inline void __list_splice(const struct list_head *list,

struct list_head *prev,

struct list_head *next)

{

struct list_head *first = list->next;

struct list_head *last = list->prev;

first->prev = prev;

prev->next = first;

last->next = next;

next->prev = last;

}

/**

* list_splice - join two lists, this is designed for stacks

* @list : the new list to add.

* @head : the place to add it in the first list.

*/

static inline void list_splice(const struct list_head *list,

struct list_head *head)

{

if (!list_empty(list))

__list_splice(list, head, head->next);

}

/**

* list_splice_tail - join two lists, each list being a queue

* @list : the new list to add.

* @head : the place to add it in the first list.

*/

static inline void list_splice_tail(struct list_head *list,

struct list_head *head)

{

if (!list_empty(list))

__list_splice(list, head->prev, head);

}

/**

* list_splice_init - join two lists and reinitialise the emptied list.

* @list : the new list to add.

* @head : the place to add it in the first list.

*

* The list at @list is reinitialised

*/

static inline void list_splice_init(struct list_head *list,

struct list_head *head)

{

if (!list_empty(list)) {

__list_splice(list, head, head->next);

INIT_LIST_HEAD(list);

}

}

/**

* list_splice_tail_init - join two lists and reinitialise the emptied list

* @list : the new list to add.

* @head : the place to add it in the first list.

*

* Each of the lists is a queue.

* The list at @list is reinitialised

*/

static inline void list_splice_tail_init(struct list_head *list,

struct list_head *head)

{

if (!list_empty(list)) {

__list_splice(list, head->prev, head);

INIT_LIST_HEAD(list);

}

}

/**

* list_entry - get the struct for this entry

* @ptr:the &struct list_head pointer.

* @type:the type of the struct this is embedded in.

* @member:the name of the list_struct within the struct.

*/

#define list_entry(ptr, type, member) \

container_of(ptr, type, member)

/**

* list_first_entry - get the first element from a list

* @ptr:the list head to take the element from.

* @type:the type of the struct this is embedded in.

* @member:the name of the list_struct within the struct.

*

* Note, that list is expected to be not empty.

*/

#define list_first_entry(ptr, type, member) \

list_entry((ptr)->next, type, member)

/**

* list_for_each-iterate over a list

* @pos:the &struct list_head to use as a loop cursor.

* @head :the head for your list.

*/

#define list_for_each(pos, head) \

for (pos = (head)->next; pos != (head); pos = pos->next)

/**

* __list_for_each-iterate over a list

* @pos:the &struct list_head to use as a loop cursor.

* @head :the head for your list.

*

* This variant doesn't differ from list_for_each() any more.

* We don't do prefetching in either case.

*/

#define __list_for_each(pos, head) \

for (pos = (head)->next; pos != (head); pos = pos->next)

/**

* list_for_each_prev-iterate over a list backwards

* @pos:the &struct list_head to use as a loop cursor.

* @head :the head for your list.

*/

#define list_for_each_prev(pos, head) \

for (pos = (head)->prev; pos != (head); pos = pos->prev)

/**

* list_for_each_safe - iterate over a list safe against removal of list entry

* @pos:the &struct list_head to use as a loop cursor.

* @n:another &struct list_head to use as temporary storage

* @head :the head for your list.

*/

#define list_for_each_safe(pos, n, head) \

for (pos = (head)->next, n = pos->next; pos != (head); \

pos = n, n = pos->next)

/**

* list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry

* @pos:the &struct list_head to use as a loop cursor.

* @n:another &struct list_head to use as temporary storage

* @head :the head for your list.

*/

#define list_for_each_prev_safe(pos, n, head) \

for (pos = (head)->prev, n = pos->prev; \

pos != (head); \

pos = n, n = pos->prev)

/**

* list_for_each_entry-iterate over list of given type

* @pos:the type * to use as a loop cursor.

* @head :the head for your list.

* @member:the name of the list_struct within the struct.

*/

#define list_for_each_entry(pos, head, member) \

for (pos = list_entry((head)->next, typeof(*pos), member);\

&pos->member != (head); \

pos = list_entry(pos->member.next, typeof(*pos), member))

/**

* list_for_each_entry_reverse - iterate backwards over list of given type.

* @pos:the type * to use as a loop cursor.

* @head :the head for your list.

* @member:the name of the list_struct within the struct.

*/

#define list_for_each_entry_reverse(pos, head, member)\

for (pos = list_entry((head)->prev, typeof(*pos), member);\

&pos->member != (head); \

pos = list_entry(pos->member.prev, typeof(*pos), member))

/**

* list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()

* @pos:the type * to use as a start point

* @head :the head of the list

* @member:the name of the list_struct within the struct.

*

* Prepares a pos entry for use as a start point in list_for_each_entry_continue().

*/

#define list_prepare_entry(pos, head, member) \

((pos) ? : list_entry(head, typeof(*pos), member))

/**

* list_for_each_entry_continue - continue iteration over list of given type

* @pos:the type * to use as a loop cursor.

* @head :the head for your list.

* @member:the name of the list_struct within the struct.

*

* Continue to iterate over list of given type, continuing after

* the current position.

*/

#define list_for_each_entry_continue(pos, head, member) \

for (pos = list_entry(pos->member.next, typeof(*pos), member);\

&pos->member != (head);\

pos = list_entry(pos->member.next, typeof(*pos), member))

/**

* list_for_each_entry_continue_reverse - iterate backwards from the given point

* @pos:the type * to use as a loop cursor.

* @head :the head for your list.

* @member:the name of the list_struct within the struct.

*

* Start to iterate over list of given type backwards, continuing after

* the current position.

*/

#define list_for_each_entry_continue_reverse(pos, head, member)\

for (pos = list_entry(pos->member.prev, typeof(*pos), member);\

&pos->member != (head);\

pos = list_entry(pos->member.prev, typeof(*pos), member))

/**

* list_for_each_entry_from - iterate over list of given type from the current point

* @pos:the type * to use as a loop cursor.

* @head :the head for your list.

* @member:the name of the list_struct within the struct.

*

* Iterate over list of given type, continuing from current position.

*/

#define list_for_each_entry_from(pos, head, member) \

for (; &pos->member != (head);\

pos = list_entry(pos->member.next, typeof(*pos), member))

/**

* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry

* @pos:the type * to use as a loop cursor.

* @n:another type * to use as temporary storage

* @head :the head for your list.

* @member:the name of the list_struct within the struct.

*/

#define list_for_each_entry_safe(pos, n, head, member)\

for (pos = list_entry((head)->next, typeof(*pos), member),\

n = list_entry(pos->member.next, typeof(*pos), member);\

&pos->member != (head); \

pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**

* list_for_each_entry_safe_continue - continue list iteration safe against removal

* @pos:the type * to use as a loop cursor.

* @n:another type * to use as temporary storage

* @head :the head for your list.

* @member:the name of the list_struct within the struct.

*

* Iterate over list of given type, continuing after current point,

* safe against removal of list entry.

*/

#define list_for_each_entry_safe_continue(pos, n, head, member) \

for (pos = list_entry(pos->member.next, typeof(*pos), member), \

n = list_entry(pos->member.next, typeof(*pos), member);\

&pos->member != (head);\

pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**

* list_for_each_entry_safe_from - iterate over list from current point safe against removal

* @pos:the type * to use as a loop cursor.

* @n:another type * to use as temporary storage

* @head :the head for your list.

* @member:the name of the list_struct within the struct.

*

* Iterate over list of given type from current point, safe against

* removal of list entry.

*/

#define list_for_each_entry_safe_from(pos, n, head, member) \

for (n = list_entry(pos->member.next, typeof(*pos), member);\

&pos->member != (head);\

pos = n, n = list_entry(n->member.next, typeof(*n), member))

/**

* list_for_each_entry_safe_reverse - iterate backwards over list safe against removal

* @pos:the type * to use as a loop cursor.

* @n:another type * to use as temporary storage

* @head :the head for your list.

* @member:the name of the list_struct within the struct.

*

* Iterate backwards over list of given type, safe against removal

* of list entry.

*/

#define list_for_each_entry_safe_reverse(pos, n, head, member)\

for (pos = list_entry((head)->prev, typeof(*pos), member),\

n = list_entry(pos->member.prev, typeof(*pos), member);\

&pos->member != (head); \

pos = n, n = list_entry(n->member.prev, typeof(*n), member))

/**

* list_safe_reset_next - reset a stale list_for_each_entry_safe loop

* @pos:the loop cursor used in the list_for_each_entry_safe loop

* @n:temporary storage used in list_for_each_entry_safe

* @member:the name of the list_struct within the struct.

*

* list_safe_reset_next is not safe to use in general if the list may be

* modified concurrently (eg. the lock is dropped in the loop body). An

* exception to this is if the cursor element (pos) is pinned in the list,

* and list_safe_reset_next is called after re-taking the lock and before

* completing the current iteration of the loop body.

*/

#define list_safe_reset_next(pos, n, member) \

n = list_entry(pos->member.next, typeof(*pos), member)

/*

* Double linked lists with a single pointer list head.

* Mostly useful for hash tables where the two pointer list head is

* too wasteful.

* You lose the ability to access the tail in O(1).

*/

//HASH LIST

struct hlist_head {

struct hlist_node *first;

};

struct hlist_node {

struct hlist_node *next, **pprev;

};

#define HLIST_HEAD_INIT { .first = NULL }

#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }

#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)

static inline void INIT_HLIST_NODE(struct hlist_node *h)

{

h->next = NULL;

h->pprev = NULL;

}

static inline int hlist_unhashed(const struct hlist_node *h)

{

return !h->pprev;

}

static inline int hlist_empty(const struct hlist_head *h)

{

return !h->first;

}

static inline void __hlist_del(struct hlist_node *n)

{

struct hlist_node *next = n->next;

struct hlist_node **pprev = n->pprev;

*pprev = next;

if (next)

next->pprev = pprev;

}

static inline void hlist_del(struct hlist_node *n)

{

__hlist_del(n);

n->next = LIST_POISON1;

n->pprev = LIST_POISON2;

}

static inline void hlist_del_init(struct hlist_node *n)

{

if (!hlist_unhashed(n)) {

__hlist_del(n);

INIT_HLIST_NODE(n);

}

}

static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)

{

struct hlist_node *first = h->first;

n->next = first;

if (first)

first->pprev = &n->next;

h->first = n;

n->pprev = &h->first;

}

/* next must be != NULL */

static inline void hlist_add_before(struct hlist_node *n,

struct hlist_node *next)

{

n->pprev = next->pprev;

n->next = next;

next->pprev = &n->next;

*(n->pprev) = n;

}

static inline void hlist_add_after(struct hlist_node *n,

struct hlist_node *next)

{

next->next = n->next;

n->next = next;

next->pprev = &n->next;

if(next->next)

next->next->pprev  = &next->next;

}

/* after that we'll appear to be on some hlist and hlist_del will work */

static inline void hlist_add_fake(struct hlist_node *n)

{

n->pprev = &n->next;

}

/*

* Move a list from one list head to another. Fixup the pprev

* reference of the first entry if it exists.

*/

static inline void hlist_move_list(struct hlist_head *old,

struct hlist_head *new)

{

new->first = old->first;

if (new->first)

new->first->pprev = &new->first;

old->first = NULL;

}

#define hlist_entry(ptr, type, member) container_of(ptr,type,member)

#define hlist_for_each(pos, head) \

for (pos = (head)->first; pos ; pos = pos->next)

#define hlist_for_each_safe(pos, n, head) \

for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \

pos = n)

/**

* hlist_for_each_entry- iterate over list of given type

* @tpos:the type * to use as a loop cursor.

* @pos:the &struct hlist_node to use as a loop cursor.

* @head :the head for your list.

* @member:the name of the hlist_node within the struct.

*/

#define hlist_for_each_entry(tpos, pos, head, member)\

for (pos = (head)->first;\

pos && \

({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

pos = pos->next)

/**

* hlist_for_each_entry_continue - iterate over a hlist continuing after current point

* @tpos:the type * to use as a loop cursor.

* @pos:the &struct hlist_node to use as a loop cursor.

* @member:the name of the hlist_node within the struct.

*/

#define hlist_for_each_entry_continue(tpos, pos, member)\

for (pos = (pos)->next;\

pos && \

({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

pos = pos->next)

/**

* hlist_for_each_entry_from - iterate over a hlist continuing from current point

* @tpos:the type * to use as a loop cursor.

* @pos:the &struct hlist_node to use as a loop cursor.

* @member:the name of the hlist_node within the struct.

*/

#define hlist_for_each_entry_from(tpos, pos, member)\

for (; pos && \

({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

pos = pos->next)

/**

* hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry

* @tpos:the type * to use as a loop cursor.

* @pos:the &struct hlist_node to use as a loop cursor.

* @n:another &struct hlist_node to use as temporary storage

* @head :the head for your list.

* @member:the name of the hlist_node within the struct.

*/

#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \

for (pos = (head)->first;\

pos && ({ n = pos->next; 1; }) && \

({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \

pos = n)

#ifdef __cplusplus

}

#endif

#endif

来源:oschina

链接:https://my.oschina.net/u/208153/blog/53665

linux内核 list 使用,使用linux 内核中代码之--list相关推荐

  1. 【Linux 内核 内存管理】Linux 内核堆内存管理 ① ( 堆内存管理 | 内存描述符 mm_struct 结构体 | mm_struct 结构体中的 start_brk、brk 成员 )

    文章目录 一.堆内存管理 二.内存描述符 mm_struct 结构体 三.mm_struct 结构体中的 start_brk.brk 成员 一.堆内存管理 Linux 操作系统中的 " 堆内 ...

  2. linux内核学习之三:linux中的32位与64位

    linux内核学习之三:linux中的"32位"与"64位" 在通用PC领域,不论是windows还是linux界,我们都会经常听到"32位" ...

  3. Linux内核defconfig在哪,Linux内核根目录中的配置文件.config中包含了许多宏定义,...

    满意答案 大大bigone 推荐于 2017.11.22 采纳率:52%    等级:9 已帮助:813人 一.Linux内核的配置系统由三个部分组成,分别是: 1.Makefile:分布在 Linu ...

  4. linux 进程映射空间 libc,为什么不能在64位内核的32位Linux进程中映射(MAP_FIXED)最高虚拟页面?...

    尝试测试时是否允许访问跨越x86中零边界的内存?在Linux的用户空间中,我编写了一个32位测试程序,该程序试图映射32位虚拟地址空间的低和高页. 之后echo 0 | sudo tee /proc/ ...

  5. 镜像安装linux选择内核版本,在CentOS和Ubuntu中安装Linux Kernel 4.13.10

    Linus Torvalds 在 10 月 17 日星期五正式发布了稳定版 Linux Kernel 4.13.10,这个最新版本发布了新功能,进行了诸多修复和问题改进.下面将向大家介绍在 CentO ...

  6. linux 内核开发_25年Linux内核开发中的9课

    linux 内核开发 由于Linux内核社区在2016年庆祝了25年的开发历史,因此许多人向我们询问了该项目的长寿和成功秘诀. 我通常会开玩笑,说我们真的不知道如何到达这里. 在此过程中,该项目面临许 ...

  7. mint linux更新内核,如何在Ubuntu/Linux Mint中安装最新Linux 5.2.5内核

    原标题:如何在Ubuntu/Linux Mint中安装最新Linux 5.2.5内核 Linux 5.2的Ubuntu主线内核包最终可以在32位和64位操作系统中下载和安装. 由于构建失败,Linux ...

  8. windows linux内核版本,微软决定在Windows10中发布一个完整的Linux内核

    原标题:微软决定在Windows10中发布一个完整的Linux内核 近年来,微软让Linux开发者社区的许多人都感到惊喜,包括在Windows中加入了Bash shell,在Win10中加入了本地Op ...

  9. 透明大页相关内核参数_Alibaba Cloud Linux 2系统中与透明大页THP相关的性能调优方法...

    免责声明:本文档可能包含第三方产品信息,该信息仅供参考.阿里云对第三方产品的性能.可靠性以及操作可能带来的潜在影响,不做任何暗示或其他形式的承诺. 概述 本文主要介绍在Alibaba Cloud Li ...

  10. 调皮的程序员:Linux之父雕刻在Linux内核中的故事

    本文内容由公众号"格友"原创分享. 1.引言 (不羁的大神,连竖中指都这么帅) 因为LINUX操作系统的流行,Linus 已经成为地球人都知道的名人.虽然大家可能都听过钱钟书先生的 ...

最新文章

  1. Java多线程同步Synchronized深入解析
  2. 实验9 结构程序设计 7-4 查找书籍
  3. nginx+tomcat
  4. toolbar + DrawerLayout 实现抽屉菜单
  5. java异或_JAVA面试必备之HashMap必会点
  6. Java集合基础知识总结
  7. 读者教育浏览器兼容解决方法
  8. 使用Robomongo 连接MongoDB 3.x 报 Authorization failed 解决办法(转)
  9. 块层介绍 第二篇: request层
  10. 中小企业信息化的时机如何把握?
  11. 国产各数据库厂商数据库梳理
  12. 排列组合的写法_排列组合公式探究
  13. 实验吧 NSCTF web200
  14. 与公共云提供商进行谈判的3个技巧
  15. 人工智能(AI)革命性提升了人类的生活质量和工作效率
  16. 岳父岳母-12个未接电话
  17. matlab 1向量组,matlab-线性代数 rank 向量组的秩
  18. 中文技术文档写作规范【转载】
  19. mcinabox运行库下载_MCinaBox运行库下载-MCinaBox启动器官网版下载v0.1.3- 游侠下载站...
  20. Dataset - DeepFashion 服装数据集

热门文章

  1. cartographer探秘第四章之代码解析(八) --- 生成地图
  2. 使用move_base做4个点循环跑的导航
  3. 血管穿刺机器人研究汇总
  4. 计算机SCI期刊征稿 | 影响因子最高10+,一区,毕业/评职称不要错过!
  5. 读博天赋更重要还是努力更重要?
  6. Linux 设备模型
  7. Sending form data
  8. CSS类,ID,标签和伪类详细说明
  9. 如何让js在浏览器宽度改变的时候执行一个函数?浏览器宽度变化
  10. 7k7k游戏盒与逗游游戏库,你更喜欢哪个