在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。

1、MOS管种类和结构

MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2、MOS管导通特性

导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3、MOS开关管损失

不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。

MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。

4、MOS管驱动

跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。

在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。

上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。而且电压越高,导通速度越快,导通电阻也越小。现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。

MOS管的驱动电路及其损失,可以参考Microchip公司的AN799MatchingMOSFETDriverstoMOSFETs。讲述得很详细,所以不打算多写了。

5、MOS管应用电路

MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。

5种常用开关电源MOSFET驱动电路解析

在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。更细致的,MOSFET还应考虑本身寄生的参数。对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。

当电源IC与MOS管选定之后, 选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。

一个好的MOSFET驱动电路有以下几点要求:

(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。

(2)开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。

(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。

(4)驱动电路结构简单可靠、损耗小。

(5)根据情况施加隔离。

下面介绍几个模块电源中常用的MOSFET驱动电路。

1、电源IC直接驱动MOSFET

电源IC直接驱动是我们最常用的驱动方式,同时也是最简单的驱动方式,使用这种驱动方式,应该注意几个参数以及这些参数的影响。第一,查看一下电源IC手册,其最大驱动峰值电流,因为不同芯片,驱动能力很多时候是不一样的。第二,了解一下MOSFET的寄生电容,如图 1中C1、C2的值。如果C1、C2的值比较大,MOS管导通的需要的能量就比较大,如果电源IC没有比较大的驱动峰值电流,那么管子导通的速度就比较慢。如果驱动能力不足,上升沿可能出现高频振荡,即使把图 1中Rg减小,也不能解决问题! IC驱动能力、MOS寄生电容大小、MOS管开关速度等因素,都影响驱动电阻阻值的选择,所以Rg并不能无限减小。

2、电源IC驱动能力不足时

如果选择MOS管寄生电容比较大,电源IC内部的驱动能力又不足时,需要在驱动电路上增强驱动能力,常使用图腾柱电路增加电源IC驱动能力,其电路图 2虚线框所示。

这种驱动电路作用在于,提升电流提供能力,迅速完成对于栅极输入电容电荷的充电过程。这种拓扑增加了导通所需要的时间,但是减少了关断时间,开关管能快速开通且避免上升沿的高频振荡。

3、驱动电路加速MOS管关断时间

关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压快速泄放,保证开关管能快速关断。为使栅源极间电容电压的快速泄放,常在驱动电阻上并联一个电阻和一个二极管,如图 3所示,其中D1常用的是快恢复二极管。这使关断时间减小,同时减小关断时的损耗。Rg2是防止关断的时电流过大,把电源IC给烧掉。

在第二点介绍的图腾柱电路也有加快关断作用。当电源IC的驱动能力足够时,对图 2中电路改进可以加速MOS管关断时间,得到如图 4所示电路。用三极管来泄放栅源极间电容电压是比较常见的。如果Q1的发射极没有电阻,当PNP三极管导通时,栅源极间电容短接,达到最短时间内把电荷放完,最大限度减小关断时的交叉损耗。与图 3拓扑相比较,还有一个好处,就是栅源极间电容上的电荷泄放时电流不经过电源IC,提高了可靠性。

4、驱动电路加速MOS管关断时间

为了满足如图 5所示高端MOS管的驱动,经常会采用变压器驱动,有时为了满足安全隔离也使用变压器驱动。其中R1目的是抑制PCB板上寄生的电感与C1形成LC振荡,C1的目的是隔开直流,通过交流,同时也能防止磁芯饱和。

5、当源极输出为高电压时的驱动

当源极输出为高电压的情况时,我们需要采用偏置电路达到电路工作的目的,既我们以源极为参考点,搭建偏置电路,驱动电压在两个电压之间波动,驱动电压偏差由低电压提供,如下图6所示。

除了以上驱动电路之外,还有很多其它形式的驱动电路。对于各种各样的驱动电路并没有一种驱动电路是最好的,只有结合具体应用,选择最合适的驱动。

MOS管开关设计知识-(五种MOS管开关电路图方式)相关推荐

  1. H.266/VVC相关技术学习笔记21:帧间预测中五种Merge模式的熵编码方式

    今天主要详细讲一下帧间预测中五种Merge模式的熵编码方式,以及对应的VTM的代码中的编码方式的实现.现阶段VTM6.0中Merge模式大致上分为五种,分别是Subblock_Merge.MMVD_M ...

  2. app启动页html模板,APP引导页设计的五种常见表现方式

    app引导页,想必大家都很熟悉.目前来说,APP引导页设计并不是每一个APP的必备设计环节啦.因为一款App是否需要引导页,取决于每一个APP出发点或者说是用途. 比如,在功能引导页和操作引导页上的设 ...

  3. 功放板加开关音量_一种带音量开关功能的音响功放板的制作方法

    本实用新型涉及音响功放板领域,尤其涉及一种带音量开关功能的音响功放板. 背景技术: 随着时代的变化,人们对于技术的研究飞速,人们的生活中越来越多的工具,其中也缺少不了音响功放板这些设施,在人们使用的过 ...

  4. 字体设计:五种常用的字体修改方法,让你的文字更好看

    第一:笔画替代法 笔画替换,.以原来文字为基础,用其中的一个笔画或者多个笔画通过其他的方式来进行替换,可以是另字体笔画的嫁接,也可以接触其他的图形的创意表达. 第二:细节添加 根据设计要表达的内容进行 ...

  5. C51单片机设计红绿灯五种通行方式

    大学生C51单片机红绿灯开发流程思路: 观察十字路口红绿灯工作流程,设计交通灯. 1.初始时:南北向.东西向直行左转均为红灯 2.南北向直行: ①南北向直行绿灯亮,延时若干秒 ②启动南北向左转数码管显 ...

  6. [:zh]<机械课程设计>五种表格自动填写部分[:]2017-12-23

  7. Linux五种清理系统垃圾的方式

    ​ Linux系统使用时间长了,安装了很多软件,更新了不少的软件包,会导致Linux系统反应速度严重下降.下面有5种清理Linux系统下冗余垃圾的命令,总共有sudo apt-get下的clean.a ...

  8. 【模电知识总结】MOS管

    文章目录 一.MOS管是什么? 二.结构与工作原理 三.输出特性 1.VDS不变,VGS改变 2.VGS固定,VDS改变 四.答疑 1.进入饱和区,若想加大电流该怎么做? 2.MOS管的特性 3.为什 ...

  9. Spring事务配置的五种方式和spring里面事务的传播属性和事务隔离级别、不可重复读与幻读的区别

    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家.点击跳转到教程. spring事务配置的五种方式 前段时间对Spring的事务配置做了比较深入的研究,在此之间对Spr ...

最新文章

  1. PyTorch官方中文文档:torch.optim 优化器参数
  2. php读取mysql分页查询
  3. 14. 函数返回值为引用?
  4. 软件开发中的一些感想
  5. Cpp 对象模型探索 / 虚基类表作用
  6. 关于SYSLINUX的一些重要描述摘录
  7. 记录一下 Linux飞鸽传书 QIpMsg 的下载链接
  8. 483. Smallest Good Base
  9. @PreDestroy 为什么不执行
  10. NodeJS连接MySQL
  11. It is impossible to add a QtClass to the current project问题的解决
  12. 博文视点“阿里云全系列技术图书”隆重亮相2021云栖大会
  13. 联通笔试真题(有答案)
  14. 分享一个无意间发现的躺赚网络创业小项目!
  15. 61家公司入选“2021年大中华区最佳职场”榜单;针对“奥密克戎”!云顶新耀与加拿大生物技术公司研发新型疫苗 | 美通社头条...
  16. python绘制图像并渲染_用Python的Matplotlib模块绘制3D图像
  17. tcprewrite批量修改报文ip地址二
  18. 一个计算机爱好者的不完整回忆(十)插播游戏
  19. Win32窗口--XBox游戏手柄--C++--方向轮和按键捕获
  20. 遇到了 “遇到以零作除数错误” 的问题

热门文章

  1. Python实现微信自动拉群机器人
  2. 深度学习笔试、面试题 三
  3. Hexo+Github+Vscode搭建个人博客内含添加图片和更换主题
  4. 为什么你总是后知后觉?
  5. linux mongodb集群搭建
  6. python编写超市销售系统_Python基础项目:超市商品销售管理系统
  7. 锐捷 Smartweb管理系统 命令执行漏洞
  8. Linux驱动开发 / fbtft源码速读
  9. C++字符串类std::string介绍
  10. 计算机安全协议是,计算机通信网安全协议的分析研究