一、RDD的概述

1.1 什么是RDD?

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

1.2 RDD的属性

(1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

(2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

(3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

(4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

(5)一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。

二、RDD编程API

Spark支持两个类型(算子)操作:Transformation和Action

2.1 Transformation

主要做的是就是将一个已有的RDD生成另外一个RDD。Transformation具有lazy特性(延迟加载)。Transformation算子的代码不会真正被执行。只有当我们的程序里面遇到一个action算子的时候,代码才会真正的被执行。这种设计让Spark更加有效率地运行。

常用的Transformation

转换

含义

map(func)

返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成

filter(func)

返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成

flatMap(func)

类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)

mapPartitions(func)

类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]

mapPartitionsWithIndex(func)

类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是

(Int, Interator[T]) => Iterator[U]

sample(withReplacement, fraction, seed)

根据fraction指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed用于指定随机数生成器种子

union(otherDataset)

对源RDD和参数RDD求并集后返回一个新的RDD

intersection(otherDataset)

对源RDD和参数RDD求交集后返回一个新的RDD

distinct([numTasks]))

对源RDD进行去重后返回一个新的RDD

groupByKey([numTasks])

在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD

reduceByKey(func, [numTasks])

在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

先按分区聚合 再总的聚合   每次要跟初始值交流 例如:aggregateByKey(0)(_+_,_+_) 对k/y的RDD进行操作

sortByKey([ascending], [numTasks])

在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD

sortBy(func,[ascending], [numTasks])

与sortByKey类似,但是更灵活 第一个参数是根据什么排序  第二个是怎么排序 false倒序   第三个排序后分区数  默认与原RDD一样

join(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD  相当于内连接(求交集)

cogroup(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD

cartesian(otherDataset)

两个RDD的笛卡尔积  的成很多个K/V

pipe(command, [envVars])

调用外部程序

coalesce(numPartitions)   

重新分区 第一个参数是要分多少区,第二个参数是否shuffle 默认false  少分区变多分区 true   多分区变少分区 false

repartition(numPartitions)

重新分区 必须shuffle  参数是要分多少区  少变多

repartitionAndSortWithinPartitions(partitioner)

重新分区+排序  比先分区再排序效率高  对K/V的RDD进行操作

foldByKey(zeroValue)(seqOp)

该函数用于K/V做折叠,合并处理 ,与aggregate类似   第一个括号的参数应用于每个V值  第二括号函数是聚合例如:_+_

combineByKey

合并相同的key的值 rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)

partitionBy(partitioner)

对RDD进行分区  partitioner是分区器 例如new HashPartition(2

cache

RDD缓存,可以避免重复计算从而减少时间,区别:cache内部调用了persist算子,cache默认就一个缓存级别MEMORY-ONLY ,而persist则可以选择缓存级别

persist

Subtract(rdd)

返回前rdd元素不在后rdd的rdd

leftOuterJoin

leftOuterJoin类似于SQL中的左外关联left outer join,返回结果以前面的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。

rightOuterJoin

rightOuterJoin类似于SQL中的有外关联right outer join,返回结果以参数中的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可

subtractByKey

substractByKey和基本转换操作中的subtract类似只不过这里是针对K的,返回在主RDD中出现,并且不在otherRDD中出现的元素

2.2 Action

触发代码的运行,我们一段spark代码里面至少需要有一个action操作。

常用的Action:

动作

含义

reduce(func)

通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的

collect()

在驱动程序中,以数组的形式返回数据集的所有元素

count()

返回RDD的元素个数

first()

返回RDD的第一个元素(类似于take(1))

take(n)

返回一个由数据集的前n个元素组成的数组

takeSample(withReplacement,num, [seed])

返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子

takeOrdered(n[ordering])

saveAsTextFile(path)

将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本

saveAsSequenceFile(path)

将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。

saveAsObjectFile(path)

countByKey()

针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。

foreach(func)

在数据集的每一个元素上,运行函数func进行更新。

aggregate

先对分区进行操作,在总体操作

reduceByKeyLocally

lookup

top

fold

foreachPartition

 

三、RDD Partition

3.1 详细介绍

我们要想对spark中RDD的分区进行一个简单的了解的话,就不免要先了解一下hdfs的前世今生。

众所周知,hdfs是一个非常不错的分布式文件系统,这是这么多年来大家有目共睹的。

hdfs文件为分布式存储,每个文件都被切分为block(默认为128M)。为了达到容错的目的,他们还提供为每个block存放了N个副本(默认为3个)。当然,以上说的这些也可以根据实际的环境业务调整。

多副本除了可以达到容错的目的,也为计算时数据的本地性提供了便捷。当数据所在节点的计算资源不充足时,多副本机制可以不用迁移数据,直接在另一个副本所在节点计算即可。此时看到这里,肯定就有人会问了,那如果所有副本所在的节点计算资源都不充足那该怎么办?

问的很好,一般会有一个配置来设置一个等待时长来等待的,假设等待时长为三秒,如果超过三秒,还没有空闲资源,就会分配给别的副本所在节点计算的,如果再别的副本所在节点也需等待且超过了三秒。则就会启动数据迁移了(诸多因素影响,代价就比较大了)。

接下来我们就介绍RDD,RDD是什么?弹性分布式数据集。

弹性:并不是指他可以动态扩展,而是血统容错机制。

分布式:顾名思义,RDD会在多个节点上存储,就和hdfs的分布式道理是一样的。hdfs文件被切分为多个block存储在各个节点上,而RDD是被切分为多个partition。不同的partition可能在不同的节点上。

再spark读取hdfs的场景下,spark把hdfs的block读到内存就会抽象为spark的partition。至于后续遇到shuffle的操作,RDD的partition可以根据Hash再次进行划分(一般pairRDD是使用key做Hash再取余来划分partition)。

再spark计算末尾,一般会把数据做持久化到hive,hbase,hdfs等等。我们就拿hdfs举例,将RDD持久化到hdfs上,RDD的每个partition就会存成一个文件,如果文件小于128M,就可以理解为一个partition对应hdfs的一个block。反之,如果大于128M,就会被且分为多个block,这样,一个partition就会对应多个block。

鉴于上述partition大于128M的情况,在做sparkStreaming增量数据累加时一定要记得调整RDD的分区数。假设,第一次保存RDD时10个partition,每个partition有140M。那么该RDD保存在hdfs上就会有20个block,下一批次重新读取hdfs上的这些数据,RDD的partition个数就会变为20个。再后续有类似union的操作,导致partition增加,但是程序有没有repartition或者进过shuffle的重新分区,这样就导致这部分数据的partition无限增加,这样一直下去肯定是会出问题的。所以,类似这样的情景,再程序开发结束一定要审查需不需要重新分区。

3.2 分区的3种方式

1、HashPartitioner

scala> val counts = sc.parallelize(List((1,'a'),(1,'aa'),(2,'b'),(2,'bb'),(3,'c')), 3)
.partitionBy(new HashPartitioner(3))

Spark中非常重要的一个分区器,也是默认分区器,默认用于90%以上的RDD相关API上;功能:依据RDD中key值的hashCode的值将数据取模后得到该key值对应的下一个RDD的分区id值,支持key值为null的情况,当key为null的时候,返回0;该分区器基本上适合所有RDD数据类型的数据进行分区操作;但是需要注意的是,由于JAVA中数组的hashCode是基于数组对象本身的,不是基于数组内容的,所以如果RDD的key是数组类型,那么可能导致数据内容一致的数据key没法分配到同一个RDD分区中,这个时候最好自定义数据分区器,采用数组内容进行分区或者将数组的内容转换为集合。

HashPartitioner确定分区的方式:partition = key.hashCode () % numPartitions

2、RangePartitioner

SparkCore中除了HashPartitioner分区器外,另外一个比较重要的已经实现的分区器,主要用于RDD的数据排序相关API中,比如sortByKey底层使用的数据分区器就是RangePartitioner分区器;该分区器的实现方式主要是通过两个步骤来实现的,第一步:先从整个RDD中抽取出样本数据,将样本数据排序,计算出每个分区的最大key值,形成一个Array[KEY]类型的数组变量rangeBounds;第二步:判断key在rangeBounds中所处的范围,给出该key值在下一个RDD中的分区id下标;该分区器要求RDD中的KEY类型必须是可以排序的。

3、CustomPartitioner

CustomPartitioner可以根据自己具体的应用需求,自定义分区。

Spark RDD与Partion相关推荐

  1. RDD中partion和block的对比

    第一段引用:http://www.tuicool.com/articles/fyuABfQ RDD是一个分布式数据集,顾名思义,其数据应该分部存储于多台机器上.事实上,每个RDD的数据都以Block的 ...

  2. Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)...

    1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...

  3. spark学习13(spark RDD)

    RDD及其特点 1)RDD(Resillient Distributed Dataset)弹性分布式数据集,是spark提供的核心抽象.它代表一个不可变.可分区.里面的元素可并行计算的集合 2)RDD ...

  4. Spark RDD API:Map和Reduce

    参考文章: http://blog.csdn.net/jewes/article/details/39896301 http://homepage.cs.latrobe.edu.au/zhe/Zhen ...

  5. 第14课:Spark RDD解密

    以下为Spark RDD解密课程学习心得: 在介绍Spark RDD之前,先简单的说下Hadoop MapReduce,它是基于数据流的方式进行计算,从物理存储上加载数据,然后操作数据, 最后写入到物 ...

  6. Spark学习之Spark RDD算子

    个人主页zicesun.com 这里,从源码的角度总结一下Spark RDD算子的用法. 单值型Transformation算子 map /*** Return a new RDD by applyi ...

  7. Spark RDD概念学习系列之rdd持久化、广播、累加器(十八)

    1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/loca ...

  8. spark RDD官网RDD编程指南

    http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell Overview(概述) 在较高的层次上, ...

  9. 学习笔记Spark(三)—— Spark架构及原理(spark架构、spark RDD)

    一.Spark架构 1.1.基本组件 Cluster Manager 在standalone模式中即为Master主节点,控制整个集群,监控worker.在YARN模式中为资源管理器. Worker ...

最新文章

  1. 1.QML语法、属性和元素
  2. 详细讲解在Spring中进行集成测试AbstractDependencyInjectionSpringContextTests
  3. 在windows下写makefile编译代码
  4. 即时通讯软件在企业里的应用及发展
  5. MySql应用原理分析系列文章目录
  6. swift -- Tuple 元组 Dictionary
  7. python赋值运算符难理解_零基础学 Python(8)运算符 — 算术、比较、赋值、逻辑...
  8. ubuntu 安装php mcrypt扩展
  9. 某台机器上IE8抛“Invalid procedure call or argument”异常
  10. 如何在word2016中使用自带的公式编辑器
  11. java 汉字乱码_【转】Java中文乱码的解决
  12. 医院绩效考核和奖金分配方案
  13. 如何提高学习效率,三大法则,五大步骤
  14. 16条时间管理法则 让你快速提高效率
  15. 记录一下第一个个人小程序
  16. Win10+Ubuntu16.04双系统安装过程中遇到的一些问题及解决办法
  17. 旺店通·企业奇门与金蝶云星空对接集成查询退货入库单打通销售退货新增
  18. 广州实时公交深圳实时公交东莞实时公交上海实时公交北京实时公交杭州实时公交接口API实现
  19. libreoffice安装+libreoffice转换pdf (linux)
  20. r语言中的或怎么表示什么不同_R语言中灵活运用if实现根据不同条件执行不同的语句...

热门文章

  1. 又发现一个免费网盘分享给大家
  2. 5个酷毙的 Python 神器工具
  3. mac 4k分辨率 字太小 27寸 hidpi_2019年显示器选购经验分享 上篇(点距与尺寸和分辨率的关系)...
  4. 嵌入式linux 竖屏,嵌入式Linux下竖屏显示配置
  5. 自媒体怎么快速入门?这几个技巧一定要掌握好
  6. 工程测量实训心得体会
  7. 数据上报--应用进程通过CGI与html交互
  8. php ppt read_PHP生成PPT
  9. 【软件群英会】 12月1日晚上聊天记录
  10. 6个炒菜习惯 丢失营养