一、原理介绍

1.1 定义

蒙特卡罗方法又称统计模拟法,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的⽅法。将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。

1.2 提出

蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.
冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘⾊彩。在这之前,蒙特卡罗方法就已经存在。1777年,法国Buffon提出用投针实验的方法求圆周率,这被认为是蒙特卡罗方法的起源。

1.3 原理

由大数定理可知,当样本容量足够大时,事件的发生频率即为其概率。

1.4 讨论

1.4.1 蒙特卡洛是一种算法吗?

答:算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令。蒙特卡罗准确的来说只是一种思想,或者是是一种方法。如果我们所求解的问题与概率模型有一定的关联,那么我们就可以使用计算机多次模拟事件发生,以获得问题的近似解。从数学建模⻆度来看,大家千万别认为蒙特卡罗有一个通用的代码。每个问题对应的代码都是不同的,我们分析清楚题目后,就要自己进行编写适用于这个题目的代码。

1.4.2 蒙特卡洛与计算机仿真的关系

答:计算机仿真(模拟)早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法,其主要应用在复杂问题的数值模拟上。但随着计算机的性能的提升以及各种新兴产业的发展,目前计算机仿真涉及的内容要广得多,例如过程控制、动画仿真、图像静态模拟等都属于计算机仿真的应用(例如用计算机模拟原子弹爆炸的过程、使用计算机生成特效大片等)。在数学建模中,我们不用刻意的去区分两者的区别,大家只需要知道如何使用计算机对问题进行模拟即可。

1.4.3 蒙特卡洛与枚举法

枚举法是我们中学就接触的算法,就是把所有可能发生情况都考虑进去,最终计算出来一个确定结果。这就与蒙特卡罗方法的想法很类似,蒙特卡罗法模拟的次数越多,计算的就越准确。由于生活中有许多事件发生的结果都有无限种可能(例如一个连续分布的取值),因此我们不可能枚举出所有的结果,这时候就只能通过蒙特卡罗模拟,将一个不确定性的问题转化成很多个确定性问题,并得到一个近似解,因此蒙特卡罗算法也可以看成是枚举法的一种变异。

二、案例之布丰投针实验


注意:当针和平行线相交时有,针的中点xxx与针与直线的夹角φ\varphiφ满足 x⩽l2sin⁡φx\leqslant \frac{l}{2}\sin \varphix⩽2l​sinφ

具体代码实现:

%%  蒙特卡罗用于布丰投针实验%% (1)预备知识
%  rand(m,n)函数产生由在[0,1]之间均匀分布的随机数组成的m行n列的矩阵(或称为数组)。
rand(5,4)
%     0.8300    0.1048    0.2396    0.4398
%     0.5663    0.1196    0.8559    0.5817
%     0.9281    0.2574    0.3013    0.9355
%     0.3910    0.3173    0.2108    0.1676
%     0.3645    0.4372    0.8819    0.9232
rand(3) % 若只给一个输入,则会生成一个方阵
%     0.1709    0.4951    0.0541
%     0.9374    0.8500    0.6155
%     0.2400    0.3156    0.5741
% a + rand(m,n)*(b-a) 可以输出在[a,b]之间均匀分布的随机数组成的m行n列的矩阵。
-2 + rand(3,2) * (2 - (-2))  % 输出在[-2,2]之间均匀分布的随机数组成的3行2列的矩阵。
%    -1.2743    0.6013
%    -1.3084    0.0766
%     1.5075    0.7563
% a + rand(m,n)*(b-a)等价于unifrnd(a,b,m,n)
unifrnd(-2,2,3,2)%% (2)代码部分
l =  0.520;     % 针的长度(任意给的)
a = 1.314;    % 平行线的宽度(大于针的长度l即可)
n = 1000000;    % 做n次投针试验,n越大求出来的pi越准确
m = 0;    % 记录针与平行线相交的次数
x = rand(1, n) * a / 2 ;   % 在[0, a/2]内服从均匀分布随机产生n个数, x中每一个元素表示针的中点和最近的一条平行线的距离
phi = rand(1, n) * pi;    % 在[0, pi]内服从均匀分布随机产生n个数,phi中的每一个元素表示针和最近的一条平行线的夹角
% axis([0,pi, 0,a/2]);   box on;  % 画一个坐标轴的框架,x轴位于0-pi,y轴位于0-a/2, 并打开图形的边框
for i=1:n  % 开始循环,依次看每根针是否和直线相交if x(i) <= l / 2 * sin(phi (i))     % 如果针和平行线相交m = m + 1;    % 那么m就要加1
%         plot(phi(i), x(i), 'r.')   % 模仿书上的那个图,横坐标为phi,纵坐标为x , 用红色的小点进行标记
%         hold on  % 在原来的图形上继续绘制end
end
p = m / n;    % 针和平行线相交出现的频率
mypi = (2 * l) / (a * p);  % 我们根据公式计算得到的pi
disp(['蒙特卡罗方法得到pi为:', num2str(mypi)])%% (3) 由于一次模拟的结果具有偶然性,因此我们可以重复100次后再来求一个平均的pi
result = zeros(100,1);  % 初始化保存100次结果的矩阵
l =  0.520;     a = 1.314;
n = 1000000;
for num = 1:100m = 0;  x = rand(1, n) * a / 2 ;phi = rand(1, n) * pi;for i=1:nif x(i) <= l / 2 * sin(phi (i))m = m + 1;endendp = m / n;mypi = (2 * l) / (a * p);result(num) = mypi;  % 把求出来的myphi保存到结果矩阵中
end
mymeanpi = mean(result);  % 计算result矩阵中保存的100次结果的均值
disp(['蒙特卡罗方法得到pi为:', num2str(mymeanpi)])

三、案例之三门问题



蒙特卡洛模拟代码:

%%  蒙特卡罗用于模拟三门问题
clear;clc
%% (1)预备知识
% randi([a,b],m,n)函数可在指定区间[a,b]内随机取出大小为m*n的整数矩阵
randi([1,5],5,8) %在区间[1,5]内随机取出大小为5*8的整数矩阵
%      2     5     4     5     3     1     4     2
%      3     3     1     5     4     2     1     2
%      4     1     3     3     2     2     5     1
%      5     3     3     4     4     5     4     4
%      4     2     3     4     2     4     2     4
randi([1,5])   %在区间[1,5]内随机取出1个整数
%     3% 字符串的连接方式:(1)['字符串1','字符串2'] (2)strcat('字符串1','字符串2') (第一期视频第一讲)
['数学建模','学习交流']
strcat('数学建模','学习交流')% num2str函数:将数值转换为字符串 (第一期视频第一讲)
mystr = num2str(1224)  % 注意观察工作区的mystr这个变量的值
disp([num2str(1224),'祝大家平安夜平平安安'])  % disp函数是输出函数%% (2)代码部分(在成功的条件下的概率)
n = 100000;  % n代表蒙特卡罗模拟重复次数
a = 0;  % a表示不改变主意时能赢得汽车的次数
b = 0;  % b表示改变主意时能赢得汽车的次数
for i= 1 : n  % 开始模拟n次x = randi([1,3]);  % 随机生成一个1-3之间的整数x表示汽车出现在第x扇门后y = randi([1,3]);  % 随机生成一个1-3之间的整数y表示自己选的门% 下面分为两种情况讨论:x=y和x~=yif x == y   % 如果x和y相同,那么我们只有不改变主意时才能赢a = a + 1;     b = b + 0;else  % x ~= y ,如果x和y不同,那么我们只有改变主意时才能赢a = a + 0;     b = b +1;end
end
disp(['蒙特卡罗方法得到的不改变主意时的获奖概率为:', num2str(a/n)]);
disp(['蒙特卡罗方法得到的改变主意时的获奖概率为:', num2str(b/n)]);%% (3)考虑失败情况的代码(无条件概率)
n = 100000;  % n代表蒙特卡罗模拟重复次数
a = 0;  % a表示不改变主意时能赢得汽车的次数
b = 0;  % b表示改变主意时能赢得汽车的次数
c = 0;  % c表示没有获奖的次数
for i= 1 : n  % 开始模拟n次x = randi([1,3]);  % 随机生成一个1-3之间的整数x表示汽车出现在第x扇门后y = randi([1,3]);  % 随机生成一个1-3之间的整数y表示自己选的门change = randi([0, 1]); % change =0  不改变主意,change = 1 改变主意% 下面分为两种情况讨论:x=y和x~=yif x == y   % 如果x和y相同,那么我们只有不改变主意时才能赢if change == 0  % 不改变主意a = a + 1; else  % 改变了主意c= c+1;endelse  % x ~= y ,如果x和y不同,那么我们只有改变主意时才能赢if change == 0  % 不改变主意c = c + 1; else  % 改变了主意b= b + 1;endend
end
disp(['蒙特卡罗方法得到的不改变主意时的获奖概率为:', num2str(a/n)]);
disp(['蒙特卡罗方法得到的改变主意时的获奖概率为:', num2str(b/n)]);
disp(['蒙特卡罗方法得到的没有获奖的概率为:', num2str(c/n)]);

四、案例之模拟排队问题






模拟排队问题的代码实现:

%%  蒙特卡罗模拟排队问题%% (1)预备知识
% normrnd(MU,SIGMA):生成一个服从正态分布(MU参数代表均值,SIGMA参数代表标准差,方差开根号是标准差)的随机数
normrnd(10,2)  % 均值为10 标准差为2(方差为4)的正态分布随机数
% exprnd(M)表示生成一个均值为M的指数分布随机数(其对应的参数为1/M)
exprnd(5)  % 均值为5的指数分布随机数(对应的参数为0.2)
% mean函数是用来求解均值的函数(第一期视频第五讲)
mean([1,2,3])
% tic函数和toc函数可以用来返回代码运行的时间,例如我们要计算一段代码的运行时间,就可以在这段代码前加上tic,在这段代码后加上toc (我的微信公众号"数学建模学习交流"中有一篇推送《为什么要对代码初始化》中使用过这对函数)
tic
a = 2^100
toc%% (2)模型中出现的变量的说明
% x(i)表示第i-1个客户和第i个客户到达的间隔时间,服从参数为0.1的指数分布
% y(i)表示第i个客户的服务持续时间,服从均值为10方差为4(标准差为2)的正态分布 (若小于1则按1计算)
% c(i)表示第i个客户的到达时间,那么c(i) = c(i-1) + x(i),初始值c0=0
% b(i)表示第i个客户开始服务的时间
% e(i)表示第i个客户结束服务的时间,初始值e0=0
% 第i个客户结束服务的时间 = 第i个客户开始服务的时间 + 第i个客户的服务持续时间
% 即:e(i) = b(i) + y(i)
% 第i个客户开始服务的时间取决于该客户的到达时间和上一个客户结束服务的时间
% 即:b(i) = max(c(i),e(i-1)),初始值b1=c1;
% 第i个客户等待的时间 = 第i个客户开始服务的时间 - 第i个客户到达银行的时间
% 即:wait(i) = b(i) - c(i)
% w表示所有客户等待时间的总和
% 假设一天内银行最终服务了n个顾客,那么客户的平均等待时间t = w/n%% (3)问题1的代码
clear
tic  %计算tic和toc中间部分的代码的运行时间
i = 1;  % i表示第i个客户,最开始取i=1
w = 0;  % w用来表示所有客户等待的总时间,初始化为0
e0 = 0;  c0 = 0;   % 初始化e0和c0为0
x(1) = exprnd(10);  % 第0个客户(假想的)和第1个客户到达的时间间隔
c(1) = c0 + x(1);  % 第1个客户到达的时间
b(1) = c(1); % 第1个客户的开始服务的时间
while b(i) <= 480  % 开始设置循环,只要第i个顾客开始服务的时间(时刻)小于480,就可以对其服务(银行每天工作8小时,折换为分钟就是480分钟)y(i) = normrnd(10,2); % 第i个客户的服务持续时间,服从均值为10方差为4(标准差为2)的正态分布if y(i) < 1  % 根据题目的意思:若服务持续时间不足一分钟,则按照一分钟计算y(i) = 1;ende(i) = b(i) + y(i); % 第i个客户结束服务的时间 = 第i个客户开始服务的时间 + 第i个客户的服务持续时间wait(i) = b(i) - c(i); % 第i个客户等待的时间 = 第i个客户开始服务的时间 - 第i个客户到达银行的时间w = w + wait(i); % 更新所有客户等待的总时间i = i + 1; % 增加一名新的客户x(i) = exprnd(10); % 这位新客户和上一个客户到达的时间间隔c(i) = c(i-1) + x(i); % 这位新客户到达银行的时间 = 上一个客户到达银行的时间 + 这位新客户和上一个客户到达的时间间隔b(i) = max(c(i),e(i-1)); % 这个新客户开始服务的时间取决于其到达时间和上一个客户结束服务的时间
end
n = i-1; % n表示银行一天8小时一共服务的客户人数
t = w/n; % 客户的平均等待时间
disp(['银行一天8小时一共服务的客户人数为: ',num2str(n)])
disp(['客户的平均等待时间为: ',num2str(t)])
toc  %计算tic和toc中间部分的代码的运行时间%% (4)问题2的代码
clear
tic  %计算tic和toc中间部分的代码的运行时间
day = 100;  % 假设模拟100天
n = zeros(day,1); % 初始化用来保存每日接待客户数结果的矩阵
t = zeros(day,1); % 初始化用来保存每日客户平均等待时长的矩阵
for k = 1:dayi = 1;  % i表示第i个客户,最开始取i=1w = 0;  % w用来表示所有客户等待的总时间,初始化为0e0 = 0;  c0 = 0;   % 初始化e0和c0为0x(1) = exprnd(10);  % 第0个客户(假想的)和第1个客户到达的时间间隔c(1) = c0 + x(1);  % 第1个客户到达的时间b(1) = c(1); % 第1个客户的开始服务的时间while b(i) <= 480  % 开始设置循环,只要第i个顾客开始服务的时间(时刻)小于480,就可以对其服务(银行每天工作8小时,折换为分钟就是480分钟)y(i) = normrnd(10,2); % 第i个客户的服务持续时间,服从均值为10方差为4(标准差为2)的正态分布if y(i) < 1  % 根据题目的意思:若服务持续时间不足一分钟,则按照一分钟计算y(i) = 1;ende(i) = b(i) + y(i); % 第i个客户结束服务的时间 = 第i个客户开始服务的时间 + 第i个客户的服务持续时间wait(i) = b(i) - c(i); % 第i个客户等待的时间 = 第i个客户开始服务的时间 - 第i个客户到达银行的时间w = w + wait(i); % 更新所有客户等待的总时间i = i + 1; % 增加一名新的客户x(i) = exprnd(10); % 这位新客户和上一个客户到达的时间间隔c(i) = c(i-1) + x(i); % 这位新客户到达银行的时间 = 上一个客户到达银行的时间 + 这位新客户和上一个客户到达的时间间隔b(i) = max(c(i),e(i-1)); % 这个新客户开始服务的时间取决于其到达时间和上一个客户结束服务的时间endn(k) = i-1; % n(k)表示银行第k天服务的客户人数t(k) = w/n(k); % t(k)表示该银行第k天客户的平均等待时间
end
disp([num2str(day),'个工作日中,银行每日平均服务的客户人数为: ',num2str(mean(n))])
disp([num2str(day),'个工作日中,银行每日客户的平均等待时间为: ',num2str(mean(t))])
toc  %计算tic和toc中间部分的代码的运行时间

五、有约束的非线性规划问题




案例代码实现:

%%  蒙特卡罗求解有约束的非线性规划问题
% max f(x) = x1*x2*x3
% s.t.
% (1) -x1+2*x2+2*x3>=0
% (2) x1+2*x2+2*x3<=72
% (3) x2<=20 & x2>=10
% (4) x1-x2 == 10%% (1)预备知识
%  (1) format long g  可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
5/7
5895*514100
format long g
5/7
5895*514100
%  (2)unifrnd(a,b,m,n)可以输出在[a,b]之间均匀分布的随机数组成的m行n列的矩阵。(等价于 a + rand(m,n)*(b-a))
unifrnd(0,5,4,3)
%           4.07361843196589          3.16179623112705          4.78753417717149
%            4.5289596853781         0.487702024997048          4.82444267599638
%           0.63493408146753          1.39249109433524         0.788065408387741
%            4.5668792806951          2.73440759602492          4.85296390880308%% (2)代码部分
clc,clear;
tic %计算tic和toc中间部分的代码的运行时间
n=10000000; %生成的随机数组数
x1=unifrnd(20,30,n,1);  % 生成在[20,30]之间均匀分布的随机数组成的n行1列的向量构成x1
x2=x1 - 10;
x3=unifrnd(-10,16,n,1);  % 生成在[-10,16]之间均匀分布的随机数组成的n行1列的向量构成x3
fmax=-inf; % 初始化函数f的最大值为负无穷(后续只要找到一个比它大的我们就对其更新)
for i=1:nx = [x1(i), x2(i), x3(i)];  %构造x向量, 这里千万别写成了:x =[x1, x2, x3]if (-x(1)+2*x(2)+2*x(3)>=0)  &  (x(1)+2*x(2)+2*x(3)<=72)     % 判断是否满足条件result = x(1)*x(2)*x(3);  % 如果满足条件就计算函数值if  result  > fmax  % 如果这个函数值大于我们之前计算出来的最大值fmax = result;  % 那么就更新这个函数值为新的最大值X = x;  % 并且将此时的x1 x2 x3保存到一个变量中endend
end
disp(strcat('蒙特卡罗模拟得到的最大值为',num2str(fmax)))
disp('最大值处x1 x2 x3的取值为:')
disp(X)
toc %计算tic和toc中间部分的代码的运行时间%% (3)缩小范围重新模拟得到更加精确的取值
clc,clear;
tic %计算tic和toc中间部分的代码的运行时间
n=10000000; %生成的随机数组数
x1=unifrnd(22,23,n,1);  % 生成在[22,23]之间均匀分布的随机数组成的n行1列的向量构成x1
x2=x1 - 10;
x3=unifrnd(11,13,n,1);  % 生成在[11,13]之间均匀分布的随机数组成的n行1列的向量构成x3
fmax=-inf; % 初始化函数f的最大值为负无穷(后续只要找到一个比它大的我们就对其更新)
for i=1:nx = [x1(i), x2(i), x3(i)];  %构造x向量, 这里千万别写成了:x =[x1, x2, x3]if (-x(1)+2*x(2)+2*x(3)>=0)  &  (x(1)+2*x(2)+2*x(3)<=72)     % 判断是否满足条件result = x(1)*x(2)*x(3);  % 如果满足条件就计算函数值if  result  > fmax  % 如果这个函数值大于我们之前计算出来的最大值fmax = result;  % 那么就更新这个函数值为新的最大值X = x;  % 并且将此时的x1 x2 x3保存到一个变量中endend
end
disp(strcat('蒙特卡罗模拟得到的最大值为',num2str(fmax)))
disp('最大值处x1 x2 x3的取值为:')
disp(X)
toc %计算tic和toc中间部分的代码的运行时间

六、书店买书问题(0-1规划)



案例代码实现:

%% 书店买书问题的蒙特卡罗的模拟
%% (1)预备知识
% (1)unique函数: 剔除一个矩阵或者向量的重复值,并将结果按照从小到大的顺序排列
% adj.  唯一的; 独一无二的   [ju'ni:k]
unique([1 2 5; 6 8 9;2 4 6])
unique([5 6 8 8 4 1 6 2 2 4 8 4 5 6])% (2)randi([a,b],m,n)函数可在指定区间[a,b]内随机取出大小为m*n的整数矩阵
randi([-5,5],2,6)%% (2)代码求解
min_money = +Inf;  % 初始化最小的花费为无穷大,后续只要找到比它小的就更新
min_result = randi([1, 6],1,5);  % 初始化五本书都在哪一家书店购买,后续我们不断对其更新
%若min_result = [5 3 6 2 3],则解释为:第1本书在第5家店买,第2本书在第3家店买,第3本书在第6家店买,第4本书在第2家店买,第5本书在第3家店买
n = 100000;  % 蒙特卡罗模拟的次数
M = [18     39 29  48  5924    45  23  54  4422    45  23  53  5328    47  17  57  4724    42  24  47  5927    48  20  55  53];  % m_ij  第j本书在第i家店的售价
freight = [10 15 15 10 10 15];  % 第i家店的运费
for k = 1:n  % 开始循环result = randi([1, 6],1,5); % 在1-6这些整数中随机抽取一个1*5的向量,表示这五本书分别在哪家书店购买index = unique(result);  % 在哪些商店购买了商品,因为我们等下要计算运费money = sum(freight(index)); % 计算买书花费的运费% 计算总花费:刚刚计算出来的运费 + 五本书的售价for i = 1:5   money = money + M(result(i),i);  endif money < min_money  % 判断刚刚随机生成的这组数据的花费是否小于最小花费,如果小于的话min_money = money  % 我们更新最小的花费min_result = result % 用这组数据更新最小花费的结果end
end
min_money   % 18+39+48+17+47+20
min_result

七、导弹追踪问题







案例代码实现:

%%  蒙特卡罗用于模拟导弹追击问题
clear;clc
%% (1)预备知识
% mod(m,n)表示求m/n的余数
mod(8,3)
mod(1000,50)% 设置横纵坐标的范围并标上字符
x = 1:0.01:3;
y = x .^ 2;
plot(x,y)  % 画出x和y的图形
axis([0 3 0 10])  % 设置横坐标范围为[0, 3] 纵坐标范围为[0, 10]
pause(3)  % 暂停3秒后再继续接下来的命令
text(2,4,'清风')  % 在坐标为(2,4)的点上标上字符串:清风
close % 关闭图形窗口%% (2) 代码求解
% 1. 不画追击的示意图
clear;clc
v=200; % 任意给定B船的速度(后期我们可以再改的)
dt=0.0000001; % 定义时间间隔
x=[0,20]; % 定义导弹和B船的横坐标分别为x(1)和x(2)
y=[0,0]; % 定义导弹和B船的纵坐标分别为y(1)和y(2)
t=0; % 初始化导弹击落B船的时间
d=0; % 初始化导弹飞行的距离
m=sqrt(2)/2;   % 将sqrt(2)/2定义为一个常量,使后面看起来很简洁
dd=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2); % 导弹与B船的距离
while(dd>=0.001)  % 只要两者的距离足够大,就一直循环下去。(两者距离足够小时表示导弹击中,这里的临界值要结合dt来取,否则可能导致错过交界处的情况)t=t+dt; % 更新导弹击落B船的时间d=d+3*v*dt; % 更新导弹飞行的距离x(2)=20+t*v*m;  y(2)=t*v*m;   % 计算新的B船的位置 (注:m=sqrt(2)/2)dd=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2);  % 更新导弹与B船的距离tan_alpha=(y(2)-y(1))/(x(2)-x(1));   % 计算斜率,即tan(α)cos_alpha=sqrt(1/(1+tan_alpha^2));   % sec(α)^2 = (1+tan(α)^2)sin_alpha=sqrt(1-cos_alpha^2);  % sin(α)^2 +cos(α)^2 = 1x(1)=x(1)+3*v*dt*cos_alpha;   y(1)=y(1)+3*v*dt*sin_alpha; % 计算新的导弹的位置if d>50  % 导弹的有效射程为50个单位disp('导弹没有击中B船');break;  % 退出循环endif d<=50 & dd<0.001   % 导弹飞行的距离小于50个单位且导弹和B船的距离小于0.001(表示击中)disp(['导弹飞行',num2str(d),'单位后击中B船'])disp(['导弹飞行的时间为',num2str(t*60),'分钟'])end
end% 2. 画追击的示意图
clear;clc
v=200; % 任意给定B船的速度(后期我们可以再改的)
dt=0.0000001; % 定义时间间隔
x=[0,20]; % 定义导弹和B船的横坐标分别为x(1)和x(2)
y=[0,0]; % 定义导弹和B船的纵坐标分别为y(1)和y(2)
t=0; % 初始化导弹击落B船的时间
d=0; % 初始化导弹飞行的距离
m=sqrt(2)/2;   % 将sqrt(2)/2定义为一个常量,使后面看起来很简洁
dd=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2); % 导弹与B船的距离
for i=1:2plot(x(i),y(i),'.k','MarkerSize',1);  % 画出导弹和B船所在的坐标,点的大小为1,颜色为黑色(k),用小点表示grid on;  % 打开网格线hold on;  % 不关闭图形,继续画图
end
axis([0 30 0 10])  % 固定x轴的范围为0-30  固定y轴的范围为0-10
k = 0;  % 引入一个变量  为了控制画图的速度(因为Matlab中画图的速度超级慢)
while(dd>=0.001)  % 只要两者的距离足够大,就一直循环下去。(两者距离足够小时表示导弹击中,这里的临界值要结合dt来取,否则可能导致错过交界处的情况)t=t+dt; % 更新导弹击落B船的时间d=d+3*v*dt; % 更新导弹飞行的距离x(2)=20+t*v*m;  y(2)=t*v*m;   % 计算新的B船的位置 (注:m=sqrt(2)/2)dd=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2);  % 更新导弹与B船的距离tan_alpha=(y(2)-y(1))/(x(2)-x(1));   % 计算斜率,即tan(α)cos_alpha=sqrt(1/(1+tan_alpha^2));   % 利用公式:sec(α)^2 = (1+tan(α)^2)  计算出cos(α)sin_alpha=sqrt(1-cos_alpha^2);  % 利用公式: sin(α)^2 +cos(α)^2 = 1  计算出sin(α)x(1)=x(1)+3*v*dt*cos_alpha;   y(1)=y(1)+3*v*dt*sin_alpha;   % 计算新的导弹的位置k = k +1 ;  if mod(k,500) == 0   % 每刷新500次时间就画出下一个导弹和B船所在的坐标  mod(m,n)表示求m/n的余数for i=1:2plot(x(i),y(i),'.k','MarkerSize',1);hold on; % 不关闭图形,继续画图endpause(0.001);  % 暂停0.001s后再继续下面的操作endif d>50  % 导弹的有效射程为50个单位disp('导弹没有击中B船');break;  % 退出循环endif d<=50 & dd<0.001   % 导弹飞行的距离小于50个单位且导弹和B船的距离小于0.001(表示击中)disp(['导弹飞行',num2str(d),'个单位后击中B船'])disp(['导弹飞行的时间为',num2str(t*60),'分钟'])end
end

六、旅行商问题(TSP)


案例代码实现:

%% TSP(旅行商问题)
%% (1)预备知识
plot([1,2],[5,10],'-o') % 画出一条线段,x范围是[1, 2] ,y范围是[5,10]
text(1.5,7.5,'清风') % 在坐标(1.5,7.5)处标上文本:清风
close% randperm函数的用法
randperm(5)  % 生成1-5组成的一个随机序列(类似于洗牌的操作)
%      3     5     1     2     4
%      1     4     5     3     2%% (2)代码求解
clear;clc
% 只有10个城市的简单情况coord =[0.6683 0.6195 0.4    0.2439 0.1707 0.2293 0.5171 0.8732 0.6878 0.8488 ;0.2536 0.2634 0.4439 0.1463 0.2293 0.761  0.9414 0.6536 0.5219 0.3609]' ;  % 城市坐标矩阵,n行2列
% 38个城市,TSP数据集网站(http://www.tsp.gatech.edu/world/djtour.html) 上公测的最优结果6656。% coord = [11003.611100,42102.500000;11108.611100,42373.888900;11133.333300,42885.833300;11155.833300,42712.500000;11183.333300,42933.333300;11297.500000,42853.333300;11310.277800,42929.444400;11416.666700,42983.333300;11423.888900,43000.277800;11438.333300,42057.222200;11461.111100,43252.777800;11485.555600,43187.222200;11503.055600,42855.277800;11511.388900,42106.388900;11522.222200,42841.944400;11569.444400,43136.666700;11583.333300,43150.000000;11595.000000,43148.055600;11600.000000,43150.000000;11690.555600,42686.666700;11715.833300,41836.111100;11751.111100,42814.444400;11770.277800,42651.944400;11785.277800,42884.444400;11822.777800,42673.611100;11846.944400,42660.555600;11963.055600,43290.555600;11973.055600,43026.111100;12058.333300,42195.555600;12149.444400,42477.500000;12286.944400,43355.555600;12300.000000,42433.333300;12355.833300,43156.388900;12363.333300,43189.166700;12372.777800,42711.388900;12386.666700,43334.722200;12421.666700,42895.555600;12645.000000,42973.333300];n = size(coord,1);  % 城市的数目figure(1)  % 新建一个编号为1的图形窗口
plot(coord(:,1),coord(:,2),'o');   % 画出城市的分布散点图
for i = 1:ntext(coord(i,1)+0.01,coord(i,2)+0.01,num2str(i))   % 在图上标上城市的编号(加上0.01表示把文字的标记往右上方偏移一点)
end
hold on % 等一下要接着在这个图形上画图的d = zeros(n);   % 初始化两个城市的距离矩阵全为0
for i = 2:n  for j = 1:i  coord_i = coord(i,:);   x_i = coord_i(1);     y_i = coord_i(2);  % 城市i的横坐标为x_i,纵坐标为y_icoord_j = coord(j,:);   x_j = coord_j(1);     y_j = coord_j(2);  % 城市j的横坐标为x_j,纵坐标为y_jd(i,j) = sqrt((x_i-x_j)^2 + (y_i-y_j)^2);   % 计算城市i和j的距离end
end
d = d+d';   % 生成距离矩阵的对称的一面min_result = +inf;  % 假设最短的距离为min_result,初始化为无穷大,后面只要找到比它小的就对其更新
min_path = [1:n];   % 初始化最短的路径就是1-2-3-...-n
N = 10000000;  % 蒙特卡罗模拟的次数
for i = 1:N  % 开始循环result = 0;  % 初始化走过的路程为0path = randperm(n);  % 生成一个1-n的随机打乱的序列for i = 1:n-1  result = d(path(i),path(i+1)) + result;  % 按照这个序列不断的更新走过的路程这个值endresult = d(path(1),path(n)) + result;  % 别忘了加上从最后一个城市返回到最开始那个城市的距离if result < min_result  % 判断这次模拟走过的距离是否小于最短的距离,如果小于就更新最短距离和最短的路径min_path = path;min_result = resultend
end
min_path
min_path = [min_path,min_path(1)];   % 在最短路径的最后面加上一个元素,即第一个点(我们要生成一个封闭的图形)
n = n+1;  % 城市的个数加一个(紧随着上一步)
for i = 1:n-1 j = i+1;coord_i = coord(min_path(i),:);   x_i = coord_i(1);     y_i = coord_i(2); coord_j = coord(min_path(j),:);   x_j = coord_j(1);     y_j = coord_j(2);plot([x_i,x_j],[y_i,y_j],'-')    % 每两个点就作出一条线段,直到所有的城市都走完pause(0.5)  % 暂停0.5s再画下一条线段hold on
end

更多有关于蒙特卡洛模拟的经典获奖论文和文中代码用到的数据集,关注公众号,回复,“蒙特卡洛”,即可免费领取!!!

【16】 数学建模 | 蒙特卡洛模拟方法 | 详细案例和代码解析(清风课程,有版权问题,私聊删除)相关推荐

  1. 数学建模-蒙特卡洛模拟(Matlab)

    目录 一.布丰投针实验 二.三门问题 三.单窗口排队办事问题 四.非线性规划问题 五.书店买书问题 六.导弹追踪问题 七.旅行商问题 注意:代码文件仅供参考,一定不要直接用于自己的数模论文中 国赛对于 ...

  2. 数学建模 --- 蒙特卡洛模拟使用的一些函数

    简单思想 蒙特卡洛模拟是在计算机上模拟项目实施了成千上万次,每次输入都随机选择输入值.由于每个输入很多时候本身就是一个估计区间,因此计算机模型会随机选取每个输入的该区间内的任意值,通过大量成千上万甚至 ...

  3. 2023美国大学生数学建模竞赛A题详细公式和代码分享

    目录 2023美赛A题翻译 1.1 建立一个数学模型,预测一个植物群落在各种不规则的天气周期中如何随时间变化.包括本该降水充足的干旱时期.该模型应考虑到干旱周期中不同物种之间的相互作用. 1.2就植物 ...

  4. 2021年暑假数学建模第一次模拟赛:新冠疫情预测(插值,时间序列,微分方程建模)

    本系列赛题.数据获取: 2021年暑假数学建模模拟赛(赛题+数据+分析) 不直接提供论文等资料,分析已经很详细了 整理不易,欢迎点赞+关注+收藏 2021年暑假数学建模第一次模拟赛:新冠疫情预测(插值 ...

  5. 最小二乘蒙特卡洛模拟方法-美式期权定价

    对于最小二乘蒙特卡洛模拟方法,相信很多人刚开始都搞不清楚到底是怎么回事,特别是对于非金融专业的同学来说,解决此类问题有点吃力,但解决美式期权定价问题,此方法被广泛使用,下面给出介绍: 由于美式期权允许 ...

  6. 如何使用计算机建模,第二讲:数学建模的基本方法和步骤

    第二讲数学建模的基本方法和步骤 数学建模面临的实际问题是多种多样的,建模的目的不同.分析的方法不同.采用的数学工具不同,所得模型的类型也不同,我们不能指望归纳出若干条准则,适用于一切实际问题的数学建模 ...

  7. 2023美国大学生数学建模竞赛(美赛)思路代码

    2023美国大学生数学建模竞赛(美赛)思路&代码 报名 时间节点 比赛说明 问题A(数据分析题):收干旱影响的植物群落(MCM) 第一问 第二问 问题B(仿真建模题):重塑马赛马拉(MCM) ...

  8. 2020全国大学生数学建模A题思路讲解与核心代码

    2020全国大学生数学建模A题思路讲解与核心代码 题目 核心方法: 问题一 问题二 问题三和问题四 答案如下: 题目 核心方法: 热传导 有限差分法 遍历法 问题一 建立焊接区域中心温度变化规律模型, ...

  9. 2021美国大学生数学建模竞赛(美赛)思路代码

    2021美国大学生数学建模竞赛(美赛)思路&代码 比赛说明 一.A题(真菌对木制分解效率的影响)--赛题解读&解题思路 二.B 题(discrete) 三.C题(大黄蜂传播规律和目击准 ...

  10. 联邦学习算法介绍-FedAvg详细案例-Python代码获取

    联邦学习算法介绍-FedAvg详细案例-Python代码获取 一.联邦学习系统框架 二.联邦平均算法(FedAvg) 三.联邦随梯度下降算法 (FedSGD) 四.差分隐私随联邦梯度下降算法 (DP- ...

最新文章

  1. 阿里分布式事务框架GTS开源了!
  2. NDC 2010视频下载:看看其他微软平台程序员们都在做什么
  3. android notification点击无效,Notification.addAction在Android O中无效
  4. HDU 4832 Chess 排列组合 DP
  5. (原创).Net将EF运用于Oralce一 准备工作
  6. android新年祝福代码,讯飞输入法发布Android新春版 Biu一下敲出美好祝愿!
  7. Markdown编译器插入公式的数学符号及字体颜色、背景
  8. DHCP服务(dhcpd)
  9. iOS基础 - UIDynamic
  10. Navicat for Mysql 的使用
  11. html点击发送qq邮箱_qq邮箱怎么发送文件夹
  12. 360优化开机速度后慢了_提高电脑开机速度的优化技巧
  13. uni-app两种方法解决跨域问题【已验证】
  14. python网上在线编程_在线python编程
  15. visio安装后导致excel滑动滚动条闪退的问题
  16. 符合规则的c语言常量,c语言常量定义规则知识点总结
  17. Forth 语言概要
  18. cortex a8 java_ARM Cortex-
  19. PageRank实践-博客园用户PageRank排名
  20. php 里面的echo啥意思,echo的含义 echo 有哪些含义,有什么功能

热门文章

  1. eova(JFinal)项目一键式部署方法
  2. 计算机二级评分标准和未来教育一样吗,未来教育题库准吗
  3. 【LwM2M】LwM2M协议官方文档
  4. SQL SERVER拼接字符串(字符串中有变量)
  5. Spring 最常用的注解,史上最强整理!
  6. echarts地图显示问题
  7. malloc函数详解
  8. Linux自学:常用删除命令(rm)使用方法
  9. 企业信息系统战略规划
  10. Altium Designer(AD)软件绘图一般步骤